法线变换矩阵的推导

news2024/9/28 19:28:36

背景

在冯氏光照模型中,其中的漫反射项需要我们对法向量和光线做点乘计算。

从顶点着色器中读入的法向量数据处于模型空间,我们需要将法向量转换到世界空间,然后在世界空间中让法向量和光线做运算。这里便有一个问题,如何将法线从当前的模型空间变换到世界空间?

首先,法向量只是一个方向向量,不能表达空间中的特定位置。同时,法向量没有齐次坐标(顶点位置中的w分量)。这意味着,位移不应该影响到法向量。因此,如果我们打算把法向量乘以一个模型矩阵,我们就要从矩阵中移除位移部分,只选用模型矩阵左上角3×3的矩阵(注意,我们也可以把法向量的w分量设置为0,再乘以4×4矩阵;这同样可以移除位移)。对于法向量,我们只希望对它实施缩放和旋转变换。

其次,如果模型矩阵执行了不等比缩放,顶点的改变会导致法向量不再垂直于表面了。因此,我们不能用这样的模型矩阵来变换法向量。下面的图展示了应用了不等比缩放的模型矩阵对法向量的影响:

在这里插入图片描述

当我们应用一个不等比缩放时(注意:等比缩放不会破坏法线,因为法线的方向没被改变,仅仅改变了法线的长度,而这很容易通过标准化来修复),法向量就不会再垂直于对应的表面了,这样光照就会被破坏。

修复这个行为的诀窍是使用一个为法向量专门定制的模型矩阵。这个矩阵称之为法线矩阵(Normal Matrix),它使用了一些线性代数的操作来移除对法向量错误缩放的影响。

推导过程

为了将一个顶点从模型空间转换到世界空间,我们可以乘上一个模型矩阵model,包含物体的移动、旋转、缩放信息。在shader中的代码如下:

FragPos = vec3(model * vec4(aPos, 1.0));

对于一个向量,正如上面的图展示的一样,我们不能简单乘上model矩阵。如果乘上model矩阵,向量就不再和原来的表面切线垂直了。

我们可以定义表面切线为 T = P 2 − P 1 T = P_2 - P1 T=P2P1,其中 P 1 , P 2 P_1,P_2 P1,P2都是表面上的顶点。当表面前线乘上model矩阵时,我们有:
m o d e l ∗ T = m o d e l ∗ P 2 − m o d e l ∗ P 1 T ′ = P 2 ′ − P 1 ′ model * T = model * P_2 - model * P_1 \\ T' = P_2' - P_1' modelT=modelP2modelP1T=P2P1
变换后的表面切线 T ′ T' T仍然可以表示成表面上顶点的差,因此乘上model矩阵之后,表面切线不会被破坏。

对于表面上的法线 N N N,我们无法从表面上找到两个顶点来表示,但是我们知道表面法线与切线互相垂直,即
N ⋅ T = 0 N \cdot T = 0 NT=0
我们假设矩阵 G G G就是可以将法线从模型空间转换到世界空间的正确矩阵,并用 M M M来表示模型矩阵model,于是有下式:
N ′ ⋅ T ′ = ( G N ) ⋅ ( M T ) = 0 N' \cdot T' = (GN)\cdot(MT) = 0 NT=(GN)(MT)=0
转化成矩阵表示的形式
( G N ) ⋅ ( M T ) = ( G N ) T ∗ ( M T ) = N T G T M T = 0 (GN)\cdot(MT) = (GN)^T*(MT) = N^TG^TMT = 0 (GN)(MT)=(GN)T(MT)=NTGTMT=0
我们知道 N ⋅ T = N T T = 0 N\cdot T = N^TT = 0 NT=NTT=0,所以如果 G T M = a I G^TM = aI GTM=aI a a a是任意非零常数,我们便有
N ′ ⋅ T ′ = N T G T M T = N T a I T = a N T T = 0 N'\cdot T' = N^TG^TMT = N^TaIT = aN^TT = 0 NT=NTGTMT=NTaIT=aNTT=0
由于我们不想改变法向量的模长,因此令 a = 1 a = 1 a=1,只要满足 G T M = I G^TM = I GTM=I的条件,我们就可以说 G G G是我们最终需要的矩阵,进一步计算
G T M = I ⟷ G = ( M − 1 ) T G^TM = I \longleftrightarrow G = (M^{-1})^T GTM=IG=(M1)T
最终可得,将法线从模型空间转换到世界空间的矩阵为 ( M − 1 ) T (M^{-1})^T (M1)T

补充说明

当模型矩阵只进行了旋转或等比缩放时,我们用这个矩阵来变换法线向量,可以得到正确的结果。

这是因为旋转矩阵和等比缩放矩阵都是正交矩阵,正交矩阵有一个属性:矩阵的转置等于矩阵的逆。

因此
M − 1 = M T → G = ( M − 1 ) T = M M^{-1} = M^T \rightarrow G = (M^{-1})^T = M M1=MTG=(M1)T=M

参考

https://learnopengl-cn.github.io/02%20Lighting/02%20Basic%20Lighting/

http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/the-normal-matrix/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1363705.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

问答领域的基本了解

问答领域是人工智能领域中的一个重要研究方向,旨在让计算机能够理解人类提出的问题,并以自然语言形式回答这些问题。问答系统可以应用于各种场景,包括搜索引擎、虚拟助手、智能客服等。 一.目标 目标: 问答系统的主要目标是使计…

逆向一个Go程序

前奏 事先声明,自导自演,纯属为了演示基本的逆向思维 用Go写一段模拟登录的代码: package mainimport ("fmt" )func main() {pass : ""fmt.Print("input password:")fmt.Scan(&pass)if pass "hel…

基于YOLOv3开发构建道路交通场景下CCTSDB2021交通标识检测识别系统

交通标志检测是交通标志识别系统中的一项重要任务。与其他国家的交通标志相比,中国的交通标志有其独特的特点。卷积神经网络(CNN)在计算机视觉任务中取得了突破性进展,在交通标志分类方面取得了巨大的成功。CCTSDB 数据集是由长沙…

柠檬Lemon测评机的配置和测试方法

柠檬Lemon测评机的配置和测试方法 只需3步,即可配置好柠檬 第一步:选择g++,点击下一步 第二步:找到g++的目录,添加编译器,点击下一步 第三步:检查结果,点击完成。(此时,配置完成) 只需3步,即可用柠檬做考试测试 第一步:新建比赛

如何实现公网访问GeoServe Web管理界面共享空间地理信息【内网穿透】

文章目录 前言1.安装GeoServer2. windows 安装 cpolar3. 创建公网访问地址4. 公网访问Geo Servcer服务5. 固定公网HTTP地址 前言 GeoServer是OGC Web服务器规范的J2EE实现,利用GeoServer可以方便地发布地图数据,允许用户对要素数据进行更新、删除、插入…

普中STM32-PZ6806L开发板(资料收集...)

简介 逐渐收集一些开发过程中使用到的文档资料数据手册 DS18B20 数据手册 DS18B20 Datasheet 开发文档 STM32F1各种文档 https://www.st.com/en/embedded-software/stm32cubef1.html#documentation HAL库文档开发文档 你使用的HAL文档, 在STM32CubeMX生成过程的最下面有…

uniapp 解决安卓App使用uni.requestPayment实现沙箱环境支付宝支付报错

背景:uniapp与Java实现的安卓端app支付宝支付,本想先在沙箱测试环境测支付,但一直提示“商家订单参数异常,请重新发起付款。”,接着报错信息就是:{ "errMsg": "requestPayment:fail [pa…

基于springboot智慧食堂管理系统源码和论文

随着Internet的发展,人们的日常生活已经离不开网络。未来人们的生活与工作将变得越来越数字化,网络化和电子化。网上管理,它将是直接管理“智慧食堂”系统的最新形式。本论文是以构建“智慧食堂”系统为目标,使用java技术制作&…

Spring之循环依赖底层源码(一)

文章目录 一、简介1. 回顾2. 循环依赖3. Bean的生命周期回顾4. 三级缓存5. 解决循环依赖的思路 二、源码分析三、相关问题1. Async情况下的循环依赖解析2. 原型Bean情况下的循环依赖解析3. 构造方法导致的循环依赖解析 一、简介 1. 回顾 前面首先重点分析了Spring Bean的整个…

消息队列-RocketMQ-概览与搭建

RocketMQ 领域模型 RockeMQ整体结构预览 RocketMQ 中的一些概念 Topic:主题,可以理解为类别、分类的概念 MessageQueue:消息队列,存储数据的一个容器(队列索引数据),默认每个 Topic 下有 4 个队…

Danil Pristupov Fork(强大而易用的Git客户端) for Mac/Windows

在当今软件开发领域,团队协作和版本控制是非常重要的方面。在这个过程中,Git成为了最受欢迎的版本控制工具之一。然而,对于Git的使用,一个好的客户端是至关重要的。 今天,我们要为大家介绍一款强大而易用的Git客户端—…

C++ 软件常用分析工具及项目实战问题分析案例集锦

目录 1、库依赖关系查看工具Dependency Walker 2、GDI对象查看工具GDIview 3、PE信息查看工具PeViewer/MiTeC EXE Explorer 4、进程信息查看工具Process Explorer 5、进程监控工具Process Monitor 6、API函数调用监测工具API Monitor C软件异常排查从入门到精通系列教程&…

Linux-v4l2框架

框架图 从上图不难看出,v4l2_device作为顶层管理者,一方面通过嵌入到一个video_device中,暴露video设备节点给用户空间进行控制;另一方面,video_device内部会创建一个media_entity作为在media controller中的抽象体&a…

基于springboot的停车场管理系统-计算机毕业设计源码82061

摘要 由于数据库和数据仓库技术的快速发展,停车场管理系统建设越来越向模块化、智能化、自我服务和管理科学化的方向发展。停车场管理系统对处理对象和服务对象,自身的系统结构,处理能力,都将适应技术发展的要求发生重大的变化。停…

【读书笔记】网空态势感知理论与模型(九)

对分析人员数据分类分流操作的研究 1.概述 本章节介绍一种以人员为中心的智能数据分类分流系统,该系统利用了入侵检测分析人员的认知轨迹。整合了3个维度的动态网络-人系统(cyber-humber system):网空防御分析人员、网络监测数据…

基于天牛须算法优化的Elman神经网络数据预测 - 附代码

基于天牛须算法优化的Elman神经网络数据预测 - 附代码 文章目录 基于天牛须算法优化的Elman神经网络数据预测 - 附代码1.Elman 神经网络结构2.Elman 神经用络学习过程3.电力负荷预测概述3.1 模型建立 4.基于天牛须优化的Elman网络5.测试结果6.参考文献7.Matlab代码 摘要&#x…

OpenCV图像处理|1.1 OpenCV介绍与环境搭建

1.1.1 介绍 OpenCV(Open Source Computer Vision Library)开放源代码计算机视觉库,主要算法涉及图像处理、计算机视觉和机器学习相关方法。OpenCV 其实就是一堆 C 和 C语言的源代码文件,这些源代码文件中实现了许多常用的计算机视…

JavaWeb——新闻管理系统(Jsp+Servlet)之jsp新闻新增

java-ee项目结构设计 1.dao:对数据库的访问,实现了增删改查 2.entity:定义了新闻、评论、用户三个实体,并设置对应实体的属性 3.filter:过滤器,设置字符编码都为utf8,防止乱码出现 4.service:业务逻辑处理 5.servlet:处…

Spring中事务控制的API介绍(PlatformTransactionManager和TransactionDefinition)

事务控制的API PlatformTransactionManager接口 作用:是一个事务管理器,负责开启、提交或回滚事务 实现类:DataSourceTransactionManager(sqlSession) 此接口是spring的事务管理器,它里面提供了我们常用的操作事务的方法…

生信 R语言

11.芯片表达矩阵下游分析 ​rm(list ls())#清除所有变量 options(stringsAsFactors F) #BiocManager::install("CLL") suppressPackageStartupMessages(library(CLL)) data("sCLLex") sCLLex ## ExpressionSet (storageMode: lockedEnvironment) ## as…