【数据结构】二叉树的概念及堆

news2025/1/13 13:55:51

 前言

我们已经学过了顺序表、链表、栈和队列这些属于线性结构的数据结构,那么下面我们就要学习我们第一个非线性结构,非线性结构又有哪些值得我们使用的呢?那么接下来我们就将谈谈树的概念了。

1.树的概念与结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

  •  有一个特殊的结点,称为根结点,根节点没有前驱结点。
  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。
  • 树是递归定义的。

 注意:树形结构中,子树之间不能有交集,否则就不是树形结构,那样可能是图了,后续还会学习。

1.2树的相关概念

 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点孩子节点或子节点:个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;

1.3树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既要保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

 typedef int DataType;
struct Node
{
    struct Node* firstchild;   //第一个孩子节点
    struct Node* pnextbrother;  //指向其下一个兄弟节点
    DataType data;                //结点中的数据域
};

 

1.4树在实际中的运用(表示文件系统的目录树结构)

Linux中的文件目录就是按照一种树形结构来实现的。

2.二叉树的概念与结构

2.1概念

一棵二叉树是结点的一个有限集合,该集合:

  • 或者为空
  • 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

 从上图可以明显看出:

  •  二叉树不存在度大于2的结点
  •  二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
  • 注意:对于任意的二叉树都是由以下几种情况复合而成的:

2.2现实中的二叉树

简直是大自然的奇迹,相信当我们程序员看到这样一颗树,呼之欲出的就是二叉树啦。 

2.3特殊的二叉树

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 2^k-1,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

 

2.4二叉树的性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2^(i-1)个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1.
3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2,则有 n0=n2 +1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log2(n+1)
是log以2为底n+1的对数。
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

  • 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
  • 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
  • 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199
2.下列数据结构中,不适合采用顺序存储结构的是( )
A 非完全二叉树
B 堆
C 队列
D 栈
3.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2
4.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12
5.一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386
答案:
1.B
2.A
3.A
4.B
5.B

2.5二叉树的存储结构

二叉树一般可以使用两种存储方式,一种是顺序存储、一种是链式存储。

2.5.1顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。

而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2.5.2链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。

 

 typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
    struct BinTreeNode* pLeft; // 指向当前节点左孩子
    struct BinTreeNode* pRight; // 指向当前节点右孩子
    BTDataType data; // 当前节点值域
};
// 三叉链
struct BinaryTreeNode
{
    struct BinTreeNode* pParent; // 指向当前节点的双亲
    struct BinTreeNode* pLeft; // 指向当前节点左孩子
    struct BinTreeNode* pRight; // 指向当前节点右孩子
    BTDataType data; // 当前节点值域
};

3.二叉树的顺序结构及其实现代码

3.1二叉树的顺序结构

普通的二叉树不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

3.2堆的概念及结构

如果有一个关键码的集合K = { k0,k1 ,k2 ,…,kn-1 },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:Ki <= K2*i+1且 Ki<=K2*i+2  (Ki >= K2*i+1且 Ki>=K2*i+2,K后内容均为下标 ) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

 堆的性质

  • 堆总是一棵完全二叉树。

  • 堆中某个节点的值总是不大于或不小于其父节点的值;

 

 1.下列关键字序列为堆的是:()
A 100,60,70,50,32,65
B 60,70,65,50,32,100
C 65,100,70,32,50,60
D 70,65,100,32,50,60
E 32,50,100,70,65,60
F 50,100,70,65,60,32
2.已知小根堆为8,15,10,21,34,16,12,删除关键字 8 之后需重建堆,在此过程中,关键字之间的比较次数是()。
A 1
B 2
C 3
D 4
3.一组记录排序码为(5 11 7 2 3 17),则利用堆排序方法建立的初始堆为
A(11 5 7 2 3 17)
B(11 5 7 2 17 3)
C(17 11 7 2 3 5)
D(17 11 7 5 3 2)
E(17 7 11 3 5 2)
F(17 7 11 3 2 5)
4.最小堆[0,3,2,5,7,4,6,8],在删除堆顶元素0之后,其结果是()
A[3,2,5,7,4,6,8]
B[2,3,5,7,4,6,8]
C[2,3,4,5,7,8,6]
D[2,3,4,5,6,7,8]


选择题答案


1.A
2.C
3.C
4.C

3.3堆的实现

3.3.1堆的调整算法

向下调整

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

     int array[] = {27,15,19,18,28,34,65,49,25,37};

 

 向下调整算法代码实现

void Swap(HPDatetype* pa, HPDatetype* pb)
{
	HPDatetype tmp = *pa;
	*pa = *pb;
	*pb = tmp;
}
void AdjustDown(HPDatetype* a, int size, int parent)
{
	int child = parent * 2 + 1;
	while (child < size)
	{
		//若假设的左孩子小,若假设是错的,更新一下
		if (child + 1 < size && a[child + 1] < a[child])
		{
			child++;
		}
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = child * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

 向上与向下调整算法类似。

void Swap(HPDatetype* pa, HPDatetype* pb)
{
	HPDatetype tmp = *pa;
	*pa = *pb;
	*pb = tmp;
}
void AdjustUp(HPDatetype* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (parent - 1) / 2;
		}
		else
		{
			break;
		}
	}

}

3.3.2堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

int a[] = {1,5,3,8,7,6}; 

 

3.3.3堆建时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

故建堆的时间复杂度为O(n)。 

3.3.4堆的插入

先插入一个数到数组的尾上,再进行向上调整算法,直到满足堆。

代码实现

void HeapPush(HP* php, int x)
{
	assert(php);
	if (php->capacity == php->size)
	{
		int newcapacity = php->capacity == 0 ? 4 : sizeof(php->a) * 2;
		HPDatetype * tmp = (HPDatetype*)realloc(php->a, newcapacity*sizeof(HPDatetype));
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(-1);
		}
		php->a = tmp;
		php->capacity = newcapacity;
	}
	php->a[php->size] = x;
	php->size++;
	
	AdjustUp(php->a, php->size - 1);
}

3.3.5堆的删除

删除堆是删除堆顶的数据,将堆顶的数据跟最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。

代码实现

void HeapPop(HP* php)
{
	assert(php);
	assert(php->size > 0);

	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}

3.3.6堆的代码实现

Heap.h

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
#include<time.h>

typedef int HPDatetype;

typedef struct Heap
{
	int* a;
	int size;
	int capacity;
}HP;

//堆的初始化
void HeapIint(HP* php);

//堆的销毁
void HeapDestroy(HP* php);

//堆的插入
void HeapPush(HP* php, int child);

//堆的删除
void HeapPop(HP* php);

//取堆顶元素
HPDatetype HeapTop(HP* php);

//堆的数据个数
int HeapSize(HP* php);

//堆的判空
bool HeapEmpty(HP* php);

Heap.c

#define _CRT_SECURE_NO_WARNINGS 1

#include"Heap.h"

void HeapIint(HP* php)
{
	assert(php);
	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}

void HeapDestroy(HP* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->capacity = 0;
	php->size = 0;
}
void Swap(HPDatetype* pa, HPDatetype* pb)
{
	HPDatetype tmp = *pa;
	*pa = *pb;
	*pb = tmp;
}
void AdjustUp(HPDatetype* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (parent - 1) / 2;
		}
		else
		{
			break;
		}
	}

}
void HeapPush(HP* php, int x)
{
	assert(php);
	if (php->capacity == php->size)
	{
		int newcapacity = php->capacity == 0 ? 4 : sizeof(php->a) * 2;
		HPDatetype * tmp = (HPDatetype*)realloc(php->a, newcapacity*sizeof(HPDatetype));
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(-1);
		}
		php->a = tmp;
		php->capacity = newcapacity;
	}
	php->a[php->size] = x;
	php->size++;
	
	AdjustUp(php->a, php->size - 1);
}
void AdjustDown(HPDatetype* a, int size, int parent)
{
	int child = parent * 2 + 1;
	while (child < size)
	{
		//若假设的左孩子小,若假设是错的,更新一下
		if (child + 1 < size && a[child + 1] < a[child])
		{
			child++;
		}
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = child * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
void HeapPop(HP* php)
{
	assert(php);
	assert(php->size > 0);

	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}

HPDatetype HeapTop(HP* php)
{
	assert(php);
	assert(php->size > 0);

	return php->a[0];
}

int HeapSize(HP* php)
{
	assert(php);

	return php->size;
}

bool HeapEmpty(HP* php)
{
	assert(php);

	return php->size == 0;
}

3.4堆的应用

3.4.1 堆排序

1.建堆

根据升序和降序来决定是建大堆还是建小堆,

升序建大堆,反之建小堆。

2.利用堆删除思想来进行排序

 代码实现堆排序

void HeapSort(int* a, int n)
{
	//升序
	//建大堆
	//降序
	//建小堆
	/*for (int i = 1; i < n; i++)
	{
		AdjustUp(a, i);
	}*/
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	//选数
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}

3.4.2 TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

1. 用数据集合中前K个元素来建堆


前k个最大的元素,则建小堆
前k个最小的元素,则建大堆


2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素


将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

代码实现: 

void CreateNDate()
{
	// 造数据
	int n = 10000;
	srand(time(0));
	const char* file = "data.txt";
	FILE* fin = fopen(file, "w");
	if (fin == NULL)
	{
		perror("fopen error");
		return;
	}

	for (size_t i = 0; i < n; ++i)
	{
		int x = rand() % 1000000;
		fprintf(fin, "%d\n", x);
	}

	fclose(fin);
}

void PrintTopK(int k)
{
	FILE* fout = fopen("data.txt", "r");
	if (fout == NULL)
	{
		perror("fopen fail");
		return;
	}
	//建立k个数的小堆
	int* minheap = (int*)malloc(sizeof(int) * k);
	if (minheap == NULL)
	{
		perror("malloc fail");
		return;
	}
	for (int i = 0; i < k; i++)
	{
		fscanf(fout, "%d", &minheap[i]);
		AdjustUp(minheap,i);
	}
	int x = 0;
	while (fscanf(fout, "%d", &x) != EOF)
	{
		if (x > minheap[0])
		{
			minheap[0] = x;
			AdjustDown(minheap, k, 0);
		}
	}
	for (int i = 0; i < k; i++)
	{
		printf("%d ", minheap[i]);
	}
	printf("\n");

	free(minheap);
	minheap = NULL;
	fclose(fout);
}

int main()
{
	int k = 5;
	CreateNDate();
	PrintTopK(k);
	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1363248.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2.C++的编译:命令行、makefile和CMake

1. 命令行编译 命令行编译是指直接在命令行中输入以下指令&#xff1a; 预处理&#xff1a;gcc -E main.c -o main.i 编译&#xff1a;gcc -S main.i -o main.s 汇编&#xff1a;gcc -c main.s -o main.o 链接&#xff1a;gcc main.o -o main 命令汇总&#xff1a;gcc main.c …

【ZooKeeper高手实战】ZAB协议:ZooKeeper分布式一致性的基石

&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308; 欢迎关注公众号&#xff08;通过文章导读关注&#xff1a;【11来了】&#xff09;&#xff0c;及时收到 AI 前沿项目工具及新技术 的推送 发送 资料 可领取 深入理…

第17课 为rtsp流加入移动检测功能

在上节课&#xff0c;我们成功拿到了rtsp视频和音频流&#xff0c;在第13课&#xff0c;我们为普通的usb摄像头加上了移动检测功能&#xff0c;那能不能给rtsp摄像头也加上移动检测功能以实现一些好玩的应用呢&#xff1f;答案是肯定的&#xff0c;在usb摄像头检测中&#xff0…

BetaFlight开源代码之电压校准

BetaFlight开源代码之电压校准 1. 源由2. 分析数据流3. 采样电路3. 原理4. 示例5. 实测&转换数据6. 参考资料 1. 源由 既然复杂的BetaFlight开源代码之电流校准都过了一遍&#xff0c;电压相对来说是比较简单的&#xff0c;一起过一下 2. 分析数据流 电源路径1》采样电路…

【Spring实战】24 使用 Spring Boot Admin 管理和监控应用

文章目录 1. 定义2. 使用场景3. 主要功能4. 示例1&#xff09;[服务端] 添加依赖2&#xff09;[服务端] 相关配置3&#xff09;[服务端] 启动类4&#xff09;[服务端] 启动服务5&#xff09;[服务端] 浏览器访问6&#xff09;[客户端] 添加依赖7&#xff09;[客户端] 相关配置8…

双变量probit模型

1. Probit模型 1.1 模型含义 假设个体只有两种选择&#xff0c;y1或y0。影响选择的变量都包括在向量x中。即线性概率模型为 y值服从两点分布 被认为是连接函数&#xff0c;函数选择具有一定的灵活性。如果为标准正态的累积分布函数&#xff0c;则模型成为Probit模型&#xff…

网络嗅探器的设计与实现(2024)-转载

1.题目描述 参照 raw socket 编程例子&#xff0c;设计一个可以监视网络的状态、数据流动情况以及网络上传输 的信息的网络嗅探器。 2.运行结果 3.导入程序需要的库 请参考下面链接: 导入WinPcap到Clion (2024)-CSDN博客 4.参考代码 #define HAVE_REMOTE #define LINE_LEN …

【数据库原理】(11)SQL数据查询功能

基本格式 SELECT [ALL|DISTINCT]<目标列表达式>[,目标列表达式>]... FROM <表名或视图名>[,<表名或视图名>] ... [ WHERE <条件表达式>] [GROUP BY<列名 1>[HAVING <条件表达式>]] [ORDER BY <列名 2>[ASC DESC]];SELECT: 指定要…

WinForms中的UI卡死

WinForms中的UI卡死 WinForms中的UI卡死通常是由于长时间运行的操作阻塞了UI线程所导致的。在UI线程上执行的操作&#xff0c;例如数据访问、计算、文件读写等&#xff0c;如果耗时较长&#xff0c;会使得UI界面失去响应&#xff0c;甚至出现卡死的情况。 解决方法 为了避免…

061:vue中通过map修改一维数组,增加一些变量

第061个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 &#xff08;1&#xff09;提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使…

系列二、GitHub中的Alpha、Beta、RC、GA、Release等各个版本

一、GitHub中的Alpha、Beta、RC、GA 1.1、概述 1.2、参考 https://www.cnblogs.com/huzhengyu/p/13905129.html

Qt——TCP UDP网络编程

目录 前言正文一、TCP二、UDP1、基本流程2、必备知识 三、代码层级1、UDP服务端 END、总结的知识与问题1、如何获取QByteArray中某一字节的数据&#xff0c;并将其转为十进制&#xff1f;2、如何以本年本月本日为基础&#xff0c;获取时间戳&#xff0c;而不以1970为基础&#…

Ps 滤镜:高反差保留

Ps菜单&#xff1a;滤镜/其它/高反差保留 Filter/Others/High Pass 高反差保留 High Pass滤镜常用于锐化、保护纹理、提取线条等图像编辑工作流程中。它的工作原理是&#xff1a;只保留显示图像中的高频信息&#xff08;即图像中的细节和边缘区域&#xff09;&#xff0c;而图像…

二分查找算法(指定数值的左右边界)

之前一直以为二分查找有什么难的&#xff0c;不就是确定左右边界&#xff0c;然后while循环求mid&#xff0c;大于mid的找右半边&#xff0c;小于mid的找左半边。直到最后相同了就是最后查找的结果了. 后来等真正用到二分查找算法的时候&#xff0c;发现问题远没有这么简单&…

【论文阅读笔记】ISINet: An Instance-Based Approach for Surgical Instrument Segmentation

1. 论文介绍 ISINet: An Instance-Based Approach for Surgical Instrument Segmentation ISINet&#xff1a;一种基于实例的手术器械分割方法 2020 MICCAI 【Paper】 【Code】 2.摘要 我们研究了机器人辅助手术场景中手术器械的语义分割任务。我们提出了基于实例的手术器械…

计算机Java项目|基于Springboot实现患者管理系统

作者主页&#xff1a;编程指南针 作者简介&#xff1a;Java领域优质创作者、CSDN博客专家 、掘金特邀作者、多年架构师设计经验、腾讯课堂常驻讲师 主要内容&#xff1a;Java项目、毕业设计、简历模板、学习资料、面试题库、技术互助 文末获取源码 项目编号&#xff1a;KS-032…

Hello 2024

Hello 2024 A. Wallet Exchange 题意&#xff1a;Alice和Bob各有a和b枚硬币&#xff0c;每次他们可以选择交换硬币或者保留&#xff0c;然后扣除当前一枚手中的硬币&#xff0c;当一方没得扣另一方就赢了。 思路&#xff1a;Alice先手&#xff0c;所以当硬币和为奇数时Alice…

Java面试之并发篇(一)

1、前言 本篇主要总结JAVA面试中关于并发相关的高频面试题。本篇的面试题基于网络整理&#xff0c;和自己编辑。在不断的完善补充哦。 2、简述程序、进程、线程、的基本概念&#xff1f; 2.1、程序 程序&#xff0c;是含有指令和数据的文件&#xff0c;被存储在磁盘或其他的…

基于神经网络的手写汉字提取与书写评分系统研究

相关源码和文档获取请私聊QQ:3106089953 论文目录结构 目 录 摘 要 I Abstract II 目 录 IV 第1章 绪论 1 1.1. 研究背景与意义 1 1.2. 国内外研究现状 2 1.2.1. 文本定位技术研究现状 2 1.2.2. 手写汉字识别研究现状 3 1.2.3. 汉字书写质量评价方法研究现状 4 1.3. 本文所做工…

OS_lab——bochs源码的编译与安装

1. 实验环境VMware station 15 Ubuntu 14.04.6 32位。2. 实验步骤2.1 安装虚拟机&#xff0c;并在虚拟机根目录下编译并安装bochs环境。 2.2 使用bochs自带工具bximage创建虚拟软驱。 2.3 编写引导程序boot.asm并用nasm编译得到引导文件boot.bin和boot.com。 2.4 修改bochs…