前置判断-Detection

news2024/12/27 17:55:27

检测模型回答存在幻觉可以通过检索外部知识进行校验,不过考虑生成式模型覆盖问题的广泛性,Self-Contradictory论文中评估chatgpt生成的回答中38.5%的内容无法通过Wiki等外部知识进行校验

因此这里我们先介绍一种完全基于模型自身,不依赖外部知识的幻觉判断方案自我矛盾。后介绍一种模型直接拒绝回答的方案,和RLHF里面的事实性原则类似,这里是基于SFT的模型自我拒绝方案,不过个人对拒识类的方案持一定的保留意见,但不妨碍学习新思路哈哈~~

自我矛盾

第一种发现模型幻觉的方案是基于模型多次回答的不一致性来判断模型是否在胡说八道。相似的概念在解密Prompt系列9. 模型复杂推理-思维链基础和进阶玩法里面聊Self-Consistency COT时就提到过,该论文是使用多路COT推理来投票出一个最合理的推理路径,从而提高思考的准确率。这里只不过改变了使用的形式,通过模型多次回答的不一致来判断模型是否出现了幻觉。有以下几种生成模型多次回答,并度量一致性的方案

单模型推理

  • SELFCHECKGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models

  • SELF-CONTRADICTORY HALLUCINATIONS OF LLMS: EVALUATION, DETECTION AND MITIGATION

img

对于如何度量模型随机生成的多个回答之间的不一致性,Self-Check尝试了包括Bert相似度计算在内的5种方法,其中效果最好的两种分别是传统NLI和基于大模型prompt的NLI,从推理性价比上传统NLI有优势,效果上LLM更好,以下是使用不同相似度计算方案来衡量模型多次随机解码的不一致性,并用该指标来计算模型回答是否符合事实性的AUC效果

img

传统NLI推理任务,是给定前提(premise)判断假设(hypothesis)是否成立或者矛盾。这里论文就是使用MNLI数据训练的Debarta-v3-Large来判断模型生成的回答r(hypothesis),是否和其他N个采样生成的回答(premise)相矛盾。论文分别尝试了句子级的判断和整个回答粒度的判断,句子级别的效果显著更好。

而基于大模型prompt,同样是NLI任务的思路,只不过改成了自然语言指令,以下context等同于以上的 Sn, sentence就是 ri, 大模型推理返回的Yes/NO会被转化成0/1,并计算均值。

img

SELF-Contradictory的思路很相似,方法更加复杂些,感兴趣的朋友自己去看论文吧~

多模型问答

  • DeepMind LM vs LM: Detecting Factual Errors via Cross Examination

  • Improving Factuality and Reasoning in Language Models through Multiagent Debate

同样是自我矛盾的思路,还可以通过多模型对话的方式来进行。LM VS LM采用了模型B多次反复提问模型A的方式来生成多个回答。类似的方式也用于问卷中问题的设计,出题人会用不同的方式把一个问题问好几遍,如果每次回答都不一样,说明做题人对类似问题的回答是不确定的。如下图

img

第一步模型A先生成回答(claim)。第二步模型B会针对cliam,从多个角度生成提问并让模型A再次进行回答。第三步模型B会基于A的原始回答,和对多个问题的回答来判断原始回答的正确性。以上B提问A回答的步骤,如果B判断需要进行补充提问的话,可能会重复多次。

这里涉及到的三个任务都是通过大模型指令来进行的,三个任务分别是:模型B基于A的cliam进行提问,模型B判断是否继续提问,模型B基于A的所有回答判断claim是否正确。对应的具体prompt如下

img

相比上面SELF-CHECK随机解码生成多个答案的方案,从多角度进行提问,个人感觉更有针对性,但两种方法都会有遗漏和误伤。推理成本上SELF-CHECK更低,LM vs LM更高。

自我拒绝

  • R-Tuning: Teaching Large Language Models to Refuse Unknown Questions

除了通过不一致性判断模型出现幻觉,另一种更干脆直接的方案,是让模型在碰到自己不确定的问题时,直接选择拒绝回答,和RLHF中的事实性原则的是一个思路。但我对这类方案最大的疑惑是拒识能力的泛化性。究竟模型是学到了对于自身parametric knowledge置信度较低,混淆度较高的问题进行拒绝回答,还是模型背下来了对某些知识和上文语义空间进行拒绝回答。这个我也还没想明白哈哈哈~

所以这里我们绕过这个问题,聊一种中间策略,毕竟西医好多疾病也没研究明白,但病还得治不是。R-Tunning提出指令微调可能放大了模型的回答幻觉。因为指令微调的数据集中所有问题都有答案,微调任务就是负责教会模型各种任务范式,以及在不同的任务中如何召回预训练中学习的知识并回答问题。但我们忽略了SFT中很多任务涉及到的知识在模型预训练中可能是没接触过的,但我们依旧选择让模型去进行回答。这种预训练和指令微调间的不一致性,可能会进一步放大模型幻觉。

R-Tunning给出的解决方案是在构建指令微调数据集时,加入模型是否对改答案表示肯定的描述,这样允许模型拒绝自己不确定的问题。分成2个步骤

  1. 找到模型不确定的问题,论文尝试了两种方案

  • R-Tuning:模型回答和标注答案不一致,适用于有标准答案的QA问题

  • R-Tuning-U:模型回答自我矛盾,这里论文计算模型回答包含的所有答案的熵值

  1. 构建允许模型拒绝的指令数据集,论文也尝试了以下两种prompt指令模板

  • R-Tuning:"Q:{Question},A:{Answer}.{Propmt}.",其中prompt是Are you sure you accurately answered the question based on your internal knowledge:对于上面模型确定的问题加上I am sure,不确定的问题加上I am not sure

  • R-Tuning-R: 对于确定给的问题使用"Q:{Question},A:{Answer}",对于不确定的问题用I am not sure 的各种相似表达来直接替换Answer

然后使用以上加入模型不确定性表达的数据集进行指令微调即可。在我们的使用场景中R-Tunning-R这种直接拒绝的方案更加合适,毕竟我倾向于指令微调的核心并不是知识注入,而是任务对齐,所以模型只要学习到对于自己不确定的问题选择拒绝回答即可。在论文验证的MMLU等数据集上这种拒绝微调方案有一定的领域外的泛化效果,不过这些数据集和我们的使用场景相差很大,具体效果要等测试后才知道了。

img

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1362515.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

web学习笔记(十一)

目录 1.数据类型 1.1数据类型分类 (1)简单(基本)数据类型 (2)复杂(特殊)数据类型 1.2判断数据类型的方法 (1)常规判断方法: (2…

jetson AGC orin 配置pytorch和cuda使用、yolov8 TensorRt测试

文章目录 1、安装环境1.1、检查系统环境1.2、下载安装pytorch1.3、下载安装torchvision1.3、测试安装是否成功 2、yolov8测试2.1、官方python脚本测试2.2、tensorrt 模型转换2.3、tensorrt c 测试 1、安装环境 1.1、检查系统环境 检查系统环境、安装jetpack版本,执…

UG装配-子装配

当我们在装配的时候,如果组件非常多,通常我们需要对其他部分零件进行单独的装配,然后在总成中使用,而不是在一个装配文件中对产品约束 我们在子装配中对各部件进行约束,默认状态下是无法在父装配中引用的 我们也可以在…

基于JavaWeb+SSM+Vue四六级词汇微信小程序系统的设计和实现

基于JavaWebSSMVue四六级词汇微信小程序系统的设计和实现 源码获取入口KaiTi 报告Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 KaiTi 报告 (1)课题背景 伴随着社会的快速发展, 现代社…

vim学习记录

目录 历史记录前言相关资料配置windows互换ESC和Caps Lock按键 基本操作替换字符串 历史记录 2024年1月2日, 搭建好框架,开始学习; 前言 vim使用很久了,但是都是一些基本用法,主要是用于配置Linux,进行一些简单的编写文档和程序.没有进行过大型程序开发,没有达到熟练使用的程…

解读 | Mint Blockchain 为何选择 OP Stack 作为 L2 技术方案?

Mint 是一个聚焦在 NFT 领域的创新型 L2 网络。Mint Blockchain 致力于促进 NFT 资产协议标准的创新和现实商业场景中 NFT 资产的大规模采用。今天这篇文章主要介绍一下 Mint Blockchain 开发者团队为什么选择了 OP Stack 技术方案,而不是其他家的 L2 方案。 我们将…

对Git的理解

1.Git介绍 Git 是一个免费的、开源的分布式版本控制系统,可以快速高效地处理从小型到大型的各种 项目。 2.版本控制 简单来说,就是记录文件的内容变化,记录下你每一次对文件的修改的版本,以免你改来改去想要回退到之前的版本的时…

centos用yum安装mysql详细教程

1 查询安装mysql的yum源,命令如下 ls /etc/yum.repos.d/ -l 界面如下图所示,未显示mysql的安装源 2 安装mysql相关的yum源,例如: 例如:rpm -ivh mysql57-community-release-el7.rpm 要注意 mysql的版本和系统的版本匹配 mysql57-communi…

SwiftUI之深入解析如何使用accessibilityChartDescriptor视图修饰符为视图构建音频图表

一、DataPoint 结构体 在 SwiftUI 中构建一个简单的条形图视图开始,该视图使用垂直条形显示一组数据点。如下所示,有一个 DataPoint 结构,用于描述条形图视图中的条形,它具有 id、标签、数值和填充颜色: struct Data…

面试官:String为什么要设计为不可变类

程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一份大厂面试资料《史上最全大厂面试题》,Springboot、微服务、算法、数据结构、Zookeeper、Mybatis、Dubbo、linux、Kafka、Elasticsearch、数据库等等 …

python总结高阶-异常处理机制

文章目录 异常是什么?try和except结构try...一个except结构try...多个except结构try...except...else结构try...except...finally结构return语句和异常处理问题 常见异常常见异常的解决SyntaxError :语法错误NameError :尝试访问一个没有申明…

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-https://blog.csdn.net/alex_starsky/category_12467518.html 如何使用大模型查询助手功能?例如调用工具实现网络查询助手功能。目前只有 ChatGLM3-6B 模型支持工具调用,而 ChatGLM3-6B-Base 和 ChatGLM3-6B-32K 模型不支持。 定义好工具的…

Linux的压缩与解压

一、tar命令 语法:tar [-c -v -x -f -z -C] 参数1 参数2 参数3 ....-c:创建压缩文件,用于压缩模式-v:显示压缩、解压过程,用于查看进度-x:解压模式-f:要创建的文件,或者要解压的文件…

《数字图像处理》 第11章 表示和描述 学习笔记附部分例子代码(c++opencv)

表示和描述 0. 前言1. 表示1.1 边界追踪1.2 链码1.3 使用最小周长多边形的多边形近似 2. 边界描绘子2.1 一些简单的描绘子![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/45dddc76217e4fde93a11e2631b2a71a.png#pic_center 500x)2.2 形状数2.3 傅里叶描绘子2.4 统计…

Ubuntu同步两个剪切板

众所周知,ubuntu系统中有两套剪切板。第一个剪切板是用鼠标操作,鼠标选中则复制,点击鼠标中键则粘贴(这个剪切板通常叫做——选择缓冲区)。第二个剪切板则是真正的剪切板,使用ctrlc(在终端中默认…

智慧地球(AI•Earth)社区成立一周年啦!独家福利与惊喜彩蛋等你来拿!

原文:智慧地球(AI•Earth)社区成立一周年啦! 智慧地球社区 一周年庆典🎊 独家福利🎁与惊喜彩蛋🎉等你来拿! 智慧地球(AI•Earth)社区自2023年1月11日建立以…

HarmonyOS 应用开发学习笔记 stateStyles:多态样式

1、 HarmoryOS Ability页面的生命周期 2、 Component自定义组件 3、HarmonyOS 应用开发学习笔记 ets组件生命周期 4、HarmonyOS 应用开发学习笔记 ets组件样式定义 Styles装饰器:定义组件重用样式 Extend装饰器:定义扩展组件样式 前面记录了ets组件样式…

Java研学-web操作crud

一 思路 1 组件 页面显示:JSP   接受用户请求:Servlet   和数据库交互:MyBatis 2 基础准备 ① 创建 web 项目,导入需要依赖的 jar 包,放入 web/WEB-INF/lib目录中 ② 创建数据库表 CREATE TABLE employee( id bigint(11)…

Guarded Suspension模式--适合等待事件处理

Guarded是被守护、被保卫、被保护的意思, Suspension则是暂停的意思。 如果执行现在的处理会造成问题, 就让执行处理的线程进行等待--- 这就是Guarded Suspension模式。 模式通过让线程等待来保证实例的安全性。 一个线程ClientThread会将请求 Request的…

UE5 给自己的数字人重定向Mixamo动画

1 、准备动画骨格文件,动画文件,下面是Mixamo动画素材下载网站Mixamo动画骨格文件下载网站https://www.mixamo.com/2、下载动画骨格文件,打Mixamo网站,选择Characters骨格菜单,在下面找到对应的骨格。如下图所示&#…