【教学类-43-16】 20240106 推算5-9宫格数独可能出现的不重复题量(N宫格数独模板数量的推算)

news2025/2/26 23:06:29

作品展示:

通过对各种已有结果的人工推算,目前得到两个结论

一、阶乘==基本样式的数量【【123】【321】【231】【132】【312】【312】】6组

结论:阶乘等于出现的基本样式数量

以下N*N格会出现的最大排序数量(比如包含333222111这种不符合数独规律的元素)


'''
目的:测试N宫格可以生成多少组基本样式(乘阶)[1,2,3,4,5][5,4,3,2,1]}
作者:阿夏
时间:2024年1月6日19:00
'''

import random
import math
from itertools import permutations

# 宫格数


gg=[1,2,3,4,5,6,7,8,9]
# gg=[5]
ggg=[]
for hs in gg:
    n=[]
    for nu in range(1,hs+1):
        n.append(nu)
    # lst = ''.join(str(num) for num in n)
    # print(n)

    print('{} 宫格基本数字 "{} "'.format(hs,n))
    # 3宫格,基础数字是'123'

    # 123中间随机抽取3个,不同的3个数字排序方法
    permutations_list = list(permutations(n))
    numbers = [list(permutation) for permutation in permutations_list]
    # numbers = ''.join(str(num) for num in number)
    # print(numbers)
    print('{} 宫格可以组成基本样式(阶乘)" {} "组'.format(hs,len(numbers)))
    # [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]# 6种组合


    # math生成可能的数量
    combinations = math.comb(len(numbers), hs)

    print("math法{} 宫格可以生成 {} 组不同的列表".format(hs ,combinations))
    
    # 在原有基础上乘上基本样式组的数量,如宫格基本样式是6组【123】【132】【213】【231】【312】【321】,通过互相交叉选取3个为一组,会有20种可能
    # 最后需要20*6=120,才是最大的生成数量。因此math计算后,还要乘以基本样式数量
    print("实际法{} 宫格可以生成{} 组不同的列表".format(hs ,combinations*len(numbers)))
    print('---------------')

# 1 宫格基本数字 "[1] "
# 1 宫格可以组成基本样式(阶乘)" 1 "组       
# math法1 宫格可以生成 1 组不同的列表
# 实际法1 宫格可以生成1 组不同的列表
# ---------------
# 2 宫格基本数字 "[1, 2] "
# 2 宫格可以组成基本样式(阶乘)" 2 "组       
# math法2 宫格可以生成 1 组不同的列表
# 实际法2 宫格可以生成2 组不同的列表
# ---------------
# 3 宫格基本数字 "[1, 2, 3] "
# 3 宫格可以组成基本样式(阶乘)" 6 "组       
# math法3 宫格可以生成 20 组不同的列表        
# 实际法3 宫格可以生成120 组不同的列表        
# ---------------
# 4 宫格基本数字 "[1, 2, 3, 4] "
# 4 宫格可以组成基本样式(阶乘)" 24 "组      
# math法4 宫格可以生成 10626 组不同的列表     
# 实际法4 宫格可以生成255024 组不同的列表     
# ---------------
# 5 宫格基本数字 "[1, 2, 3, 4, 5] "
# 5 宫格可以组成基本样式(阶乘)" 120 "组     
# math法5 宫格可以生成 190578024 组不同的列表 
# 实际法5 宫格可以生成22869362880 组不同的列表
# ---------------
# 6 宫格基本数字 "[1, 2, 3, 4, 5, 6] "        
# 6 宫格可以组成基本样式(阶乘)" 720 "组     
# math法6 宫格可以生成 189492294437160 组不同的列表
# 实际法6 宫格可以生成136434451994755200 组不同的列表
# ---------------
# 7 宫格基本数字 "[1, 2, 3, 4, 5, 6, 7] "
# 7 宫格可以组成基本样式(阶乘)" 5040 "组
# math法7 宫格可以生成 16321981448897949868560 组不同的列表
# 实际法7 宫格可以生成82262786502445667337542400 组不同的列表
# ---------------
# 8 宫格基本数字 "[1, 2, 3, 4, 5, 6, 7, 8] "
# 8 宫格可以组成基本样式(阶乘)" 40320 "组
# math法8 宫格可以生成 173117930575796585984663510371920 组不同的列表
# 实际法8 宫格可以生成6980114960816118346901632738195814400 组不同的列表
# ---------------
# 9 宫格基本数字 "[1, 2, 3, 4, 5, 6, 7, 8, 9] "
# 9 宫格可以组成基本样式(阶乘)" 362880 "组
# math法9 宫格可以生成 300649979042426162195454856425990347600496000 组不同的列表
# 实际法9 宫格可以生成109099864394915605737486658299863377337267988480000 组不同的列表
# ---------------

二、用“阶乘结果”倒推,预测5-9宫格数独的不重复最大样式数量

我发现4宫格限制条件后,实际出现576套不重复模板,比阶乘测试的不重复模板288,正好是2倍。288*2=576,而这个2倍恰好是“3宫格中,不重复模板12条和阶乘6的除法结果。(前一条的除差)

用这个思路推算了1-4宫格,发现1宫格无法找前面一条的除法结果,但2宫格、3宫格、4宫格,都是符合这个规律。

------------------------------------------------------------------------------------------------------------

手动推算了5宫格的不重复模板数量

5宫格的阶乘推算不重复模板数量*(4宫格的阶乘模板数/4宫格的阶乘数)=预估数量

                 34460                         *              (288   /    24)                       =414720

代码推算5-9宫格数独题符合标准的不重复题目数量


'''
目的:测试N宫格可以生成多少不重复的数独题,从576=288*12/2推测
作者:阿夏
时间:2024年1月6日19:00
'''

import random
import math
from itertools import permutations

# 宫格数



P=[]
Q=[]
R=[]

hsall=[]
for i in range(1,10):    # 1-9宫格
    hsall.append(i)

# 计算1-9各自的乘阶  

jc=[]

for hs in hsall:    
    j = math.factorial(hs)
    print('{}的阶乘是{}'.format(hs,j))
    jc.append(j)
print(jc)
# [1, 2, 6, 24, 120, 720, 5040, 40320, 362880]
print(len(jc))
# jc 

bs=[]
ds=[]

result = []
product = 1
for num in range(len(jc)):
    product *= jc[num]
    c=int(product/jc[num])    # 除法结果,倍数
    # print(c)
    print('---{}  宫格  乘阶数{}  生成   {}  条不重复模板,除法结果是 {}-----'.format(hsall[num],jc[num],product,c))
    
    
    # 除法的结果(倍数)做成列表
    bs.append(c)
    # 阶乘推算的不重复模板数量
    ds.append(product)
print(bs)
# [1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000]
print(ds)
# [1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000, 1834933472251084800000]

# 因为1宫格无法找到0宫格的生成数量,所以bs前面再加1
bs.insert(0,1)
print(bs)
# [1, 1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000]

# 推算结果
for o in range(len(ds)):
    print('阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估){} 宫格数独不重复模板数量 {} '.format(o+1,int(ds[o])*int(bs[o])))

# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)1 宫格数独不重复模板数量 1
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)2 宫格数独不重复模板数量 2
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)3 宫格数独不重复模板数量 12
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)4 宫格数独不重复模板数量 576
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)5 宫格数独不重复模板数量 414720
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)6 宫格数独不重复模板数量 7166361600
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)7 宫格数独不重复模板数量 4334215495680000
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)8 宫格数独不重复模板数量 125824009525788672000000
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)9 宫格数独不重复模板数量 230121443546659694208614400000000
 



   




说明:

由于现在还无法用代码生成5宫格数独不重复题目,并排除重复(数据千亿次,电脑无法计算 MemoryError),获得正确的结果。

所以以上只是我根据已有的一些数字(3宫格数独12套、4宫格数独576套),按照一定规律推算出来的。不保证正确性。

最后把所有参数都写在一起print


'''
目的:测试N宫格可以生成多少不重复的数独题,从576=288*12/2推测
作者:阿夏
时间:2024年1月6日19:00
'''

import random
import math
from itertools import permutations

# 宫格数



P=[]
Q=[]
R=[]

hsall=[]
for i in range(1,10):    # 1-9宫格
    hsall.append(i)

# 计算1-9各自的乘阶  

jc=[]

for hs in hsall:    
    j = math.factorial(hs)
    print('{}的阶乘是{}'.format(hs,j))
    jc.append(j)
print(jc)
# [1, 2, 6, 24, 120, 720, 5040, 40320, 362880]
print(len(jc))
# jc 

bs=[]
ds=[]
jcs=[]
jcmb=[]

result = []
product = 1
for num in range(len(jc)):
    product *= jc[num]
    c=int(product/jc[num])    # 除法结果,倍数
    # print(c)
    print('---{}  宫格  乘阶数{}  生成   {}  条不重复模板,除法结果是 {}-----'.format(hsall[num],jc[num],product,c))
    
    jcs.append(jc[num])

    jcmb.append(product)
    # 除法的结果(倍数)做成列表
    bs.append(c)
    # 阶乘推算的不重复模板数量
    ds.append(product)
print(bs)
print(jcs)
# [1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000]
print(ds)
# [1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000, 1834933472251084800000]

# 因为1宫格无法找到0宫格的生成数量,所以bs前面再加1
bs.insert(0,1)
print(bs)
# [1, 1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000]

print('阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)')
print('-----------------------------------')
# 推算结果
for o in range(len(ds)):
    
    print('{} 宫格数独不重复模板数量 {} 阶乘 {} 组合模板 {}  '.format(o+1, int(ds[o])*int(bs[o]),jcs[o],jcmb[o]))
    print('-----------------------')

# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)1 宫格数独不重复模板数量 1
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)2 宫格数独不重复模板数量 2
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)3 宫格数独不重复模板数量 12
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)4 宫格数独不重复模板数量 576
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)5 宫格数独不重复模板数量 414720
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)6 宫格数独不重复模板数量 7166361600
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)7 宫格数独不重复模板数量 4334215495680000
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)8 宫格数独不重复模板数量 125824009525788672000000
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)9 宫格数独不重复模板数量 230121443546659694208614400000000
    
# 阶乘推算不重复数量乘以“前宫格除法结果” 最大不重复数量(预估)
# -----------------------------------
# 1 宫格数独不重复模板数量 1 阶乘 1 组合模板 1
# -----------------------
# 2 宫格数独不重复模板数量 2 阶乘 2 组合模板 2
# -----------------------
# 3 宫格数独不重复模板数量 12 阶乘 6 组合模板 12
# -----------------------
# 4 宫格数独不重复模板数量 576 阶乘 24 组合模板 288
# -----------------------
# 5 宫格数独不重复模板数量 414720 阶乘 120 组合模板 34560
# -----------------------
# 6 宫格数独不重复模板数量 7166361600 阶乘 720 组合模板 24883200
# -----------------------
# 7 宫格数独不重复模板数量 4334215495680000 阶乘 5040 组合模板 125411328000
# -----------------------
# 8 宫格数独不重复模板数量 125824009525788672000000 阶乘 40320 组合模板 5056584744960000
# -----------------------
# 9 宫格数独不重复模板数量 230121443546659694208614400000000 阶乘 362880 组合模板 1834933472251084800000
-----------------------
 



   




作为学美术专业的老师,我只有初中数学水平,o(╥﹏╥)o,

很希望有专业的编程员能提供经过验证的5宫格数独不重复模板题目数量 Thanks♪(・ω・)ノ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1361808.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring声明式事务业务bug

Spring 针对 Java Transaction API (JTA)、JDBC、Hibernate 和 Java Persistence API (JPA) 等事务 API,实现了一致的编程模型,而 Spring 的声明式事务功能更是提供了极其方便的事务配置方式,配合 Spring Boot 的自动配置,大多数 …

C++ 二进制图片的读取和blob插入mysql_stmt_init—新年第一课

关于二进制图片的读取和BLOB插入一共包含五步 第一步:初始化 MYSQL_STMT* stmt mysql_stmt_init(&mysql); 第二步:预处理sql语句 mysql_stmt_prepare(stmt,sql,sqllen); 第三步:绑定字段 mysql_stmt_bind_param(stmt,bind); 第四…

用友U8+CRM 逻辑漏洞登录后台漏洞复现

0x01 产品简介 用友U8 CRM客户关系管理系统是一款专业的企业级CRM软件,旨在帮助企业高效管理客户关系、提升销售业绩和提供优质的客户服务。 0x02 漏洞概述 用友 U8 CRM客户关系管理系统 reservationcomplete.php文件存在逻辑漏洞,未授权的攻击者通过…

手把手带你门SpringCloud

目录​​​​​ 1、什么是 SpringCloud? SpringCloud常用组件: 简单介绍组件间作用 2,SpringCloud相关组件:Eureka 3,Spring Cloud核心组件:Feign 4,Spring Cloud核心组件:Zuu…

软件测试|Docker exec命令详细使用指南

简介 Docker exec命令是Docker提供的一个强大工具,用于在正在运行的容器中执行命令。本文将详细介绍Docker exec命令的用法和示例,帮助大家更好地理解和使用这个命令。 Docker是一种流行的容器化平台,允许我们在容器中运行应用程序。有时候…

locust 快速入门--程序调试

背景 对测试的api引入locust后,不在使用requests库进行http请求了,而是通过client属性发送请求,实质是使用HttpSession。 问题:如果对locust程序进行调试 解决方案: 因为locust使用协程,需要开启pych…

微服务-java spi 与 dubbo spi

Java SPI 通过一个案例来看SPI public interface DemoSPI {void echo(); } public class FirstImpl implements DemoSPI{Overridepublic void echo() {System.out.println("first echo");} } public class SecondImpl implements DemoSPI{Overridepublic void ech…

万界星空科技云MES,助力客户快速构建数字工厂

一、MES发展趋势 1、定制化趋势 工业2.0、3.0的技术已较为成熟,部分制造业水平较为发达的国家已经率先进入以网络化、智能化为代表的工业4.0发展阶段,MES作为制造业规划层随着物联网等持续发展,为适应定制化时代,整体技术模块化、服务化将重…

解决Gitee每次push都需要输入用户名和密码

其实很简单,只需要使用命令 git config --global credential.helper store 在你下次push时只需要再输入一次用户名和密码,电脑就会保存下来,之后就无需进行输入了。

TypeScript 从入门到进阶之基础篇(三) 元组类型篇

系列文章目录 TypeScript 从入门到进阶系列 TypeScript 从入门到进阶之基础篇(一) ts基础类型篇TypeScript 从入门到进阶之基础篇(二) ts进阶类型篇 文章目录 系列文章目录TypeScript 从入门到进阶系列前言一、在TypeScript中使用元组二、TypeScript 中元组的使用场景1、让函…

从Spring Cloud Alibaba开始聊架构

作为SpringCloudAlibaba微服务架构实战派上下册和RocketMQ消息中间件实战派上下册的作者胡弦。 另外我的新书RocketMQ消息中间件实战派上下册,在京东已经上架啦,目前都是5折,非常的实惠。 https://item.jd.com/14337086.htmlhttps://item.jd…

【详解】求解迷宫所有路径(递归实现)----直接打穿迷宫

目录 递归的模型: 栈帧: 递归调用深度: ​编辑 用递归算法求解迷宫问题: 小结: 结语: 递归的小小总结,朋友们可以看看,有助于理解后面的递归程序。 递归的模型: …

钡铼技术2023年年度报告来了

不积跬步,无以至千里; 不积小流,无以成江海。 钡铼的2023年 平凡却又意义深远。 在工业自动化及物联网技术发展的道路上,钡铼技术每一个进步都源于不懈的努力和持续的积累。钡铼技术在过去的一年中,稳扎稳打&#xf…

QCharView使用

QChart是 QGraphicsWidget的子类。 QCharView是QGraphicsView的子类 QCharView概念:title、系列、图标Chart、视图 说明: 需要添加Qt组件charts 在使用QChart或者QChartView之前需要添加宏定义QT_CHARTS_USE_NAMESPACE (其实是使用了命名空间)&#xff…

前端uniapp的tab选项卡for循环切换、开通VIP实战案例【带源码/最新】

目录 效果图图1图2 源码最后 这个案例是uniapp&#xff0c;同样也适用Vue项目&#xff0c;语法一样for循环&#xff0c;点击切换 效果图 图1 图2 源码 直接代码复制查看效果 <template><view class"my-helper-service-pass"><view class"tab…

服务号怎么改为订阅号

服务号和订阅号有什么区别&#xff1f;服务号转为订阅号有哪些作用&#xff1f;很多小伙伴想把服务号改为订阅号&#xff0c;但是不知道改了之后具体有什么作用&#xff0c;今天跟大家具体讲解一下。首先我们知道服务号一个月只能发四次文章&#xff0c;但是订阅号每天都可以发…

Windows系统如何使用VNC远程连接Deepin桌面【内网穿透】

文章目录 1. 安装x11vnc2. 本地远程连接测试3. Deepin安装Cpolar4. 配置公网远程地址5. 公网远程连接Deepin桌面6. 固定连接公网地址7. 固定公网地址连接测试 x11vnc是一种在Linux系统中实现远程桌面控制的工具&#xff0c;它的原理是通过X Window系统的协议来实现远程桌面的展…

L1-078:吉老师的回归

题目描述 曾经在天梯赛大杀四方的吉老师决定回归天梯赛赛场啦&#xff01; 为了简化题目&#xff0c;我们不妨假设天梯赛的每道题目可以用一个不超过 500 的、只包括可打印符号的字符串描述出来&#xff0c;如&#xff1a;Problem A: Print "Hello world!"。 众所周知…

jdbc源码研究

JDBC介绍 JDBC&#xff08;Java Data Base Connectivity,java数据库连接&#xff09;是一种用于执行SQL语句的Java API&#xff0c;可以为多种关系数据库提供统一访问&#xff0c;它由一组用Java语言编写的类和接口组成。 开发者不必为每家数据通信协议的不同而疲于奔命&#…

竞赛保研 基于深度学习的人脸专注度检测计算系统 - opencv python cnn

文章目录 1 前言2 相关技术2.1CNN简介2.2 人脸识别算法2.3专注检测原理2.4 OpenCV 3 功能介绍3.1人脸录入功能3.2 人脸识别3.3 人脸专注度检测3.4 识别记录 4 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于深度学习的人脸专注度…