设计模式学习2

news2025/1/12 12:08:43

代理模式:Proxy

  1. 动机

“增加一层间接层”是软件系统中对许多复杂问题的一种常见解决方案。在面向对象系统中,直接食用某些对象会带来很多问题,作为间接层的proxy对象便是解决这一问题的常见手段。

2.伪代码:

class ISubject{
public:
    virtual void process();
};


//Proxy的设计
class SubjectProxy: public ISubject{
    
    
public:
    virtual void process(){
        //对RealSubject的一种间接访问
        //....
    }
};

class ClientApp{
    
    ISubject* subject;
    
public:
    
    ClientApp(){
        subject=new SubjectProxy();
    }
    
    void DoTask(){
        //...
        subject->process();
        
        //....
    }
};

3.理解:

copy on write就是这个思想。看类图以及代码简单,但是它真正的实现可能会很复杂。

4.类图:

适配器:Adapter

  1. 动机

需要将一些现存的对象放在新的环境中应用,但是新环境要求的接口是这些现存对象所不能满足的。如何应对这种迁移的变化?如何既能利用现存对象的良好实现,同时又能满足新的应用环境的要求接口?

2.伪代码:

//目标接口(新接口)
class ITarget{
public:
    virtual void process()=0;
};

//遗留接口(老接口)
class IAdaptee{
public:
    virtual void foo(int data)=0;
    virtual int bar()=0;
};

//遗留类型
class OldClass: public IAdaptee{
    //....
};

//对象适配器
class Adapter: public ITarget{ //继承
protected:
    IAdaptee* pAdaptee;//组合
    
public:
    
    Adapter(IAdaptee* pAdaptee){
        this->pAdaptee=pAdaptee;
    }
    
    virtual void process(){
        int data=pAdaptee->bar();
        pAdaptee->foo(data);
    }
};


//类适配器
class Adapter: public ITarget,
               protected OldClass{ //多继承                            
}


int main(){
    IAdaptee* pAdaptee=new OldClass();
    
    ITarget* pTarget=new Adapter(pAdaptee);
    pTarget->process();
        
}

class stack{
    deqeue container;
    
};

class queue{
    deqeue container;
    
};

3.类图:

中介者模式:Mediator

  1. 动机

会出现多个对象互相交互的情况,对象之间通常会维持一种复杂的引用关系,如果遇到一些需求的更改,这种直接的引用关系将会面临不断变化。

2.伪代码:

与facade相同,思想,无代码

3.理解:

Colleague和Mediator两个类之间相互依赖,Colleague之间不相互依赖,但是会通过Mediator间接依赖。把直接依赖关系变为间接依赖关系。facade用于解耦内部与外部之间的关系,中介者相当于解耦facade内部之间的关系。

4.类图:

状态变化

在组件变化构建过程中,某些对象的状态经常面临变化,如何对这些变化进行有效的管理?同时又维持高层模块的稳定?

状态模式:State

  1. 动机

某些对象的状态如果改变,其行为也会随之改变。如何在运行时根据对象的状态来透明的更改对象的行为?而不会为对象操作和状态转变之间引入紧耦合?

2.伪代码:

class NetworkState{

public:
    NetworkState* pNext;
    virtual void Operation1()=0;
    virtual void Operation2()=0;
    virtual void Operation3()=0;

    virtual ~NetworkState(){}
};


class OpenState :public NetworkState{
    
    static NetworkState* m_instance;
public:
    static NetworkState* getInstance(){
        if (m_instance == nullptr) {
            m_instance = new OpenState();
        }
        return m_instance;
    }

    void Operation1(){
        
        //**********
        pNext = CloseState::getInstance();
    }
    
    void Operation2(){
        
        //..........
        pNext = ConnectState::getInstance();
    }
    
    void Operation3(){
        
        //$$$$$$$$$$
        pNext = OpenState::getInstance();
    }
    
    
};

class CloseState:public NetworkState{ }
//...


class NetworkProcessor{
    
    NetworkState* pState;
    
public:
    
    NetworkProcessor(NetworkState* pState){
        
        this->pState = pState;
    }
    
    void Operation1(){
        //...
        pState->Operation1();
        pState = pState->pNext;
        //...
    }
    
    void Operation2(){
        //...
        pState->Operation2();
        pState = pState->pNext;
        //...
    }
    
    void Operation3(){
        //...
        pState->Operation3();
        pState = pState->pNext;
        //...
    }

};

备忘录模式:Memento

  1. 动机

某些对象的状态在转化过程中,可能有某种需要,要求程序能够回溯到对象之前处于某个点时的状态。如何在不破坏封装性的前提下实现这个任务呢?

2.伪代码:


class Memento
{
    string state;
    //..
public:
    Memento(const string & s) : state(s) {}
    string getState() const { return state; }
    void setState(const string & s) { state = s; }
};



class Originator
{
    string state;
    //....
public:
    Originator() {}
    Memento createMomento() {
        Memento m(state);
        return m;
    }
    void setMomento(const Memento & m) {
        state = m.getState();
    }
};



int main()
{
    Originator orginator;
    
    //捕获对象状态,存储到备忘录
    Memento mem = orginator.createMomento();
    
    //... 改变orginator状态
    
    //从备忘录中恢复
    orginator.setMomento(mem);
}

3.理解:

备忘录就是存储一个类的状态快照,在需要的时候设置为备忘录中的状态。核心是隐藏信息。这个模式有些过时。其实就是对象序列化。

4.类图:

数据结构

一些组件在内部具有特定的数据结构,如果让客户程序依赖于这些特定的数据结构,将破坏组件的复用性。这个时候,将这些数据结构封装在内部,对外提供统一的接口,来实现与特定的数据结构无关的访问。

组合模式:Composite

  1. 动机

如何将客户代码与复杂的对象容器结构解耦?让对象容器自己实现自身的复杂结构,从而使得客户代码就像处理简单对象一样来处理复杂的对象容器?

2.伪代码:

#include <iostream>
#include <list>
#include <string>
#include <algorithm>

using namespace std;

class Component
{
public:
    virtual void process() = 0;
    virtual ~Component(){}
};

//树节点
class Composite : public Component{
    
    string name;
    list<Component*> elements;
public:
    Composite(const string & s) : name(s) {}
    
    void add(Component* element) {
        elements.push_back(element);
    }
    void remove(Component* element){
        elements.remove(element);
    }
    
    void process(){
        
        //1. process current node
        
        
        //2. process leaf nodes
        for (auto &e : elements)
            e->process(); //多态调用
         
    }
};

//叶子节点
class Leaf : public Component{
    string name;
public:
    Leaf(string s) : name(s) {}
            
    void process(){
        //process current node
    }
};


void Invoke(Component & c){
    //...
    c.process();
    //...
}


int main()
{

    Composite root("root");
    Composite treeNode1("treeNode1");
    Composite treeNode2("treeNode2");
    Composite treeNode3("treeNode3");
    Composite treeNode4("treeNode4");
    Leaf leaf1("left1");
    Leaf leaf2("left2");
    
    root.add(&treeNode1);
    treeNode1.add(&treeNode2);
    treeNode2.add(&leaf1);
    
    root.add(&treeNode3);
    treeNode3.add(&treeNode4);
    treeNode4.add(&leaf2);
    
    process(root);
    process(leaf2);
    process(treeNode3);
  
}

3.理解:

对象组合成树形结构。和装饰器有点像,不仅has-a,而且is-a。将一对多的关系替换成一对一的关系。

4.类图:

迭代器:Iterator

  1. 动机

提供一种方法顺序访问一个聚合对象中的各个元素,而又不暴露该对象的内部表示。

2.伪代码:

template<typename T>
class Iterator
{
public:
    virtual void first() = 0;
    virtual void next() = 0;
    virtual bool isDone() const = 0;
    virtual T& current() = 0;
};



template<typename T>
class MyCollection{
    
public:
    
    Iterator<T> GetIterator(){
        //...
    }
    
};

template<typename T>
class CollectionIterator : public Iterator<T>{
    MyCollection<T> mc;
public:
    
    CollectionIterator(const MyCollection<T> & c): mc(c){ }
    
    void first() override {
        
    }
    void next() override {
        
    }
    bool isDone() const override{
        
    }
    T& current() override{
        
    }
};

void MyAlgorithm()
{
    MyCollection<int> mc;
    
    Iterator<int> iter= mc.GetIterator();
    
    for (iter.first(); !iter.isDone(); iter.next()){
        cout << iter.current() << endl;
    }
    
}

3.理解:

对C++来说,面向对象的迭代器已经过时了。STL中的迭代器是泛型编程思想。运行时绑定是没有编译时绑定效率高的。

4.类图:

职责链模式:Chain Of Responsibility

  1. 动机

一个请求可能有多个接收者,但是真正的接受者,也就是去处理这个请求的只有一个。这时,请求发送者与接受者的耦合可能出现变化脆弱的情况。

2.伪代码:

#include <iostream>
#include <string>

using namespace std;

enum class RequestType
{
    REQ_HANDLER1,
    REQ_HANDLER2,
    REQ_HANDLER3
};

class Reqest
{
    string description;
    RequestType reqType;
public:
    Reqest(const string & desc, RequestType type) : description(desc), reqType(type) {}
    RequestType getReqType() const { return reqType; }
    const string& getDescription() const { return description; }
};

class ChainHandler{
    
    ChainHandler *nextChain;
    void sendReqestToNextHandler(const Reqest & req)
    {
        if (nextChain != nullptr)
            nextChain->handle(req);
    }
protected:
    virtual bool canHandleRequest(const Reqest & req) = 0;
    virtual void processRequest(const Reqest & req) = 0;
public:
    ChainHandler() { nextChain = nullptr; }
    void setNextChain(ChainHandler *next) { nextChain = next; }
    
   
    void handle(const Reqest & req)
    {
        if (canHandleRequest(req))
            processRequest(req);
        else
            sendReqestToNextHandler(req);
    }
};


class Handler1 : public ChainHandler{
protected:
    bool canHandleRequest(const Reqest & req) override
    {
        return req.getReqType() == RequestType::REQ_HANDLER1;
    }
    void processRequest(const Reqest & req) override
    {
        cout << "Handler1 is handle reqest: " << req.getDescription() << endl;
    }
};
        
class Handler2 : public ChainHandler{
protected:
    bool canHandleRequest(const Reqest & req) override
    {
        return req.getReqType() == RequestType::REQ_HANDLER2;
    }
    void processRequest(const Reqest & req) override
    {
        cout << "Handler2 is handle reqest: " << req.getDescription() << endl;
    }
};

class Handler3 : public ChainHandler{
protected:
    bool canHandleRequest(const Reqest & req) override
    {
        return req.getReqType() == RequestType::REQ_HANDLER3;
    }
    void processRequest(const Reqest & req) override
    {
        cout << "Handler3 is handle reqest: " << req.getDescription() << endl;
    }
};

int main(){
    Handler1 h1;
    Handler2 h2;
    Handler3 h3;
    h1.setNextChain(&h2);
    h2.setNextChain(&h3);
    
    Reqest req("process task ... ", RequestType::REQ_HANDLER3);
    h1.handle(req);
    return 0;
}

3.理解:

应用的不多。使得多个接收者都有机会处理请求,从而避免请求的发送者和接受者之间的耦合关系。将这些对象连成一条链,并沿着这条链传递请求,直到有一个对象处理请求为止。

4.类图:

行为变化

在组件的构建过程中,组件行为的变化经常导致组件本身的剧烈变化。下面的模式将组件本身和组件的行为进行解耦

命令模式:Command

  1. 动机

如何将行为请求者和行为实现者解耦?

2.伪代码:

#include <iostream>
#include <vector>
#include <string>
using namespace std;


class Command
{
public:
    virtual void execute() = 0;
};

class ConcreteCommand1 : public Command
{
    string arg;
public:
    ConcreteCommand1(const string & a) : arg(a) {}
    void execute() override
    {
        cout<< "#1 process..."<<arg<<endl;
    }
};

class ConcreteCommand2 : public Command
{
    string arg;
public:
    ConcreteCommand2(const string & a) : arg(a) {}
    void execute() override
    {
        cout<< "#2 process..."<<arg<<endl;
    }
};
        
        
class MacroCommand : public Command
{
    vector<Command*> commands;
public:
    void addCommand(Command *c) { commands.push_back(c); }
    void execute() override
    {
        for (auto &c : commands)
        {
            c->execute();
        }
    }
};
        

        
int main()
{

    ConcreteCommand1 command1(receiver, "Arg ###");
    ConcreteCommand2 command2(receiver, "Arg $$$");
    
    MacroCommand macro;
    macro.addCommand(&command1);
    macro.addCommand(&command2);
    
    macro.execute();

}

3.理解:

有点和仿函数思想类似。将一个请求封装成一个对象,从而使你可用不同的请求对客户进行参数化。

4.类图:

访问器模式:Visitor

  1. 动机

在软件构件的过程中,由于需求的改变,某些类层次结构中常常需要增加新的行为,如果直接在基类中作出修改,将会给子类带来繁重的变更负担,甚至破坏原有设计。

2.伪代码:

#include <iostream>
using namespace std;

class Visitor;


class Element
{
public:
    virtual void accept(Visitor& visitor) = 0; //第一次多态辨析

    virtual ~Element(){}
};

class ElementA : public Element
{
public:
    void accept(Visitor &visitor) override {
        visitor.visitElementA(*this);
    }
    

};

class ElementB : public Element
{
public:
    void accept(Visitor &visitor) override {
        visitor.visitElementB(*this); //第二次多态辨析
    }

};


class Visitor{
public:
    virtual void visitElementA(ElementA& element) = 0;
    virtual void visitElementB(ElementB& element) = 0;
    
    virtual ~Visitor(){}
};

//==================================

//扩展1
class Visitor1 : public Visitor{
public:
    void visitElementA(ElementA& element) override{
        cout << "Visitor1 is processing ElementA" << endl;
    }
        
    void visitElementB(ElementB& element) override{
        cout << "Visitor1 is processing ElementB" << endl;
    }
};
     
//扩展2
class Visitor2 : public Visitor{
public:
    void visitElementA(ElementA& element) override{
        cout << "Visitor2 is processing ElementA" << endl;
    }
    
    void visitElementB(ElementB& element) override{
        cout << "Visitor2 is processing ElementB" << endl;
    }
};
        
    

        
int main()
{
    Visitor2 visitor;
    ElementB elementB;
    elementB.accept(visitor);// double dispatch
    
    ElementA elementA;
    elementA.accept(visitor);

    
    return 0;
}

3.理解:

Visitor中要求具体的Element稳定,这个条件通常很难保证,这是这个模式的重大缺点。accept方法表示接受一个visitor,这个visitor能够为该类增添新的方法。一般不用,因为前提条件很苛刻。
Visitor通过双重分发来实现不更改Element层次结构的前提下,在运行时透明的为类层次结构上的各个类添加新的操作。
适用于:Element类层次结构稳定,而其中的操作确实频繁改动的。(设计思想:有动的,有不动的)

4.类图:

领域规则

某些领域,变化虽然频繁,但是可以抽象为某种规则。要给出该领域下的对于变化的一般性解决方案。

解析器模式:Interpreter

  1. 动机

如果特定领域的某一问题比较复杂,类似的结构不断出现,如果使用普通的编程方式来实现将会面临非常频繁的变化。在这种情况下,将特定领域的问题表达为某种语法规则下的句子,然后构建一个解释器来解释这样的句子,从而达到解决问题的目的。

2.伪代码:


#include <iostream>
#include <map>
#include <stack>

using namespace std;

class Expression {
public:
    virtual int interpreter(map<char, int> var)=0;
    virtual ~Expression(){}
};

//变量表达式
class VarExpression: public Expression {
    
    char key;
    
public:
    VarExpression(const char& key)
    {
        this->key = key;
    }
    
    int interpreter(map<char, int> var) override {
        return var[key];
    }
    
};

//符号表达式
class SymbolExpression : public Expression {
    
    // 运算符左右两个参数
protected:
    Expression* left;
    Expression* right;
    
public:
    SymbolExpression( Expression* left,  Expression* right):
        left(left),right(right){
        
    }
    
};

//加法运算
class AddExpression : public SymbolExpression {
    
public:
    AddExpression(Expression* left, Expression* right):
        SymbolExpression(left,right){
        
    }
    int interpreter(map<char, int> var) override {
        return left->interpreter(var) + right->interpreter(var);
    }
    
};

//减法运算
class SubExpression : public SymbolExpression {
    
public:
    SubExpression(Expression* left, Expression* right):
        SymbolExpression(left,right){
        
    }
    int interpreter(map<char, int> var) override {
        return left->interpreter(var) - right->interpreter(var);
    }
    
};



Expression*  analyse(string expStr) {
    
    stack<Expression*> expStack;
    Expression* left = nullptr;
    Expression* right = nullptr;
    for(int i=0; i<expStr.size(); i++)
    {
        switch(expStr[i])
        {
            case '+':
                // 加法运算
                left = expStack.top();
                right = new VarExpression(expStr[++i]);
                expStack.push(new AddExpression(left, right));
                break;
            case '-':
                // 减法运算
                left = expStack.top();
                right = new VarExpression(expStr[++i]);
                expStack.push(new SubExpression(left, right));
                break;
            default:
                // 变量表达式
                expStack.push(new VarExpression(expStr[i]));
        }
    }
   
    Expression* expression = expStack.top();

    return expression;
}

void release(Expression* expression){
    
    //释放表达式树的节点内存...
}

int main(int argc, const char * argv[]) {
    
    
    string expStr = "a+b-c+d-e";
    map<char, int> var;
    var.insert(make_pair('a',5));
    var.insert(make_pair('b',2));
    var.insert(make_pair('c',1));
    var.insert(make_pair('d',6));
    var.insert(make_pair('e',10));

    
    Expression* expression= analyse(expStr);
    
    int result=expression->interpreter(var);
    
    cout<<result<<endl;
    
    release(expression);
    
    return 0;
}

3.理解:

可以理解为四则运算的运算树。使用场景为:业务规则频繁变化,且类似的结构重复出现,并且容易(简单简单,小而简单的问题)抽象为有规则的问题。

4.类图:

总结

  • 模版方法:用于制定一套模板,别人来用的时候按照模板实现
  • 策略模式:方便新增策略,只需新增一个子类
  • 观察者模式:方便通知消息
  • 装饰模式:方便拓展功能
  • 桥模式:用于桥接两个向不同纬度变化的类,这个桥,就是一个类中组合另外一个类
  • 工厂方法:创建对象解耦合
  • 抽象工厂:工厂的工厂,要生产一系列的产品,这一系列产品需要配套
  • 原型方法:有clone方法来完成对象创建
  • 构建者:分步骤构建一个对象,将表示和构建分离
  • 单件模式:保证在内存中一个类只存在一个实例
  • 享元模式:运用共享技术有效地支持大量细粒度的对象,大量大量!线程池
  • 门面模式:不管facade内部怎么变化,对于用户来说,接口都是一样的
  • 代理模式:就像VPN一样,间接控制。
  • 适配器:改变原始类接口,适配新类。比如STL中的stack
  • 中介者模式:把直接依赖关系变为间接依赖关系
  • 状态模式:将策略模式的策略改为状态
  • 备忘录模式:存储一个类的状态快照,在需要的时候设置为备忘录中的状态
  • 组合模式:对象组合成树形结构。将一对多的关系替换成一对一的关系
  • 迭代器:STL中的迭代器思想
  • 职责链:处理请求的对象连成一条链
  • 命令模式:将行为抽象为对象,有点和仿函数类似
  • 访问器模式:使用双重分发的机制,透明的添加新的操作
  • 解释器模式:四则运算树
     

参考文章:侯捷C++八部曲笔记(三、设计模式)_侯捷c++设计模式-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1361627.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Windows 10系统用Xlight FTP搭建SFTP服务器

步骤&#xff1a; 1.安装SFTP服务器 刚开始我使用的是freeSSHd&#xff0c;后面发现由于公司网络原因&#xff0c;打不开这个软件&#xff0c;改成了使用Xlight FTP&#xff0c; 官网下载链接&#xff1a;Xlight FTP 服务器 - 下载免费的windows FTP 服务器 Xlight FTP有30…

【数据结构和算法】字符串解码

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 什么情况会用到栈 2.2 方法一&#xff1a;辅助栈法 三、代码 3.1 方法一&#xff1a;辅助栈法 四…

走出WPF应用程序第一步

了解WPF 体系结构 下图说明了 WPF 的主要组件。 关系图的红色部分&#xff08;PresentationFramework、PresentationCore 和 milcore&#xff09;是 WPF 的主要代码部分。 在这些组件中&#xff0c;只有一个是非托管组件 - milcore。 milcore 是以非托管代码编写的&#xff0c…

【本科生通信原理】【实验报告】【北京航空航天大学】实验四:模拟信号的数字化及编码

目录 一、实验目的二、实验内容三、实验程序四、实验结果五、实验分析六、参考文献 一、实验目的 1、掌握低通信号的抽样及重建过程&#xff1b; 2、掌握PCM的编码及译码过程。 二、实验内容 共2问&#xff1a; 三、实验程序 1、 function q1() dt 0.001; % 时间分辨率…

macOS 老版本系统恢复中出现“MacBook Pro无法与恢复服务器取得联系”

macOS 老版本系统恢复中出现“MacBook Pro无法与恢复服务器取得联系” 网络问题系统时间问题镜像索引问题 网络问题 系统时间问题 镜像索引问题 恢复模式的 “实用工具 > 系统终端” 里执行如下 nvram IASUCatalogURLhttps://swscan.apple.com/content/catalogs/others/i…

Android 13.0 SystemUI状态栏居中显示时间和修改时间显示样式

1.概述 在13.0的系统rom定制化开发中,在systemui状态栏系统时间默认显示在左边和通知显示在一起,但是客户想修改显示位置,想显示在中间,所以就要修改SystemUI 的Clock.java 文件这个就是管理显示时间的,居中显示的话就得修改布局文件了 效果图如下: 2.SystemUI状态栏居中显…

如何配置 VS Code 实现 git 密码免输入

目录 问题描述尝试过的失败方法问题分析最终采用的解决方案&#xff1a;利用 ssh key 提供密码免输入功能安装 git windows 命令工具在windows本地生成 ssh key将公钥安装到 git 服务器第一种方法第二种方法调试方法 参考资料: 问题描述 在 Windows 上&#xff0c;使用 Visual…

西电期末1025.平滑滤波

一.题目 二.分析与思路 别光看公式&#xff0c;读题干&#xff1a;“位置i的输出为距离i最近的三个输入的平均值”&#xff0c;再看示例&#xff0c;输入几个&#xff0c;输出几个&#xff0c;所以就是输出每个位置距离最近的三个输入的平均值&#xff0c;中间没什么问题&…

高可用分布式部署Spark、完整详细部署教程

前言 Spark 是 UC Berkeley AMP Lab 开源的通用分布式并行计算框架。 Spark基于map reduce算法实现的分布式计算&#xff0c;拥有Hadoop MapReduce所具有的优点&#xff1b;但不同于MapReduce的是Job中间输出和结果可以保存在内存中&#xff0c;从而不再需要读写HDFS&#xff…

DoIP学习笔记系列:(八)车厂一般关于DoIP的相关测试分析

文章目录 1. 前言2. 基本项测试2.1 协议版本默认值2.2 车辆标识请求报文格式2.3 带EID的车辆标识请求报文格式2.4 带VIN的车辆标识请求报文格式2.5 否定响应码0x002.6 否定响应码0x012.7 否定响应码0x022.8 否定响应码0x042.9 路由激活应答码0x002.10 路由激活应答码0x012.11 路…

RMAN-03002 RMAN-06059 ORA-19625

有个现场经理反馈&#xff0c;每天的rman备份异常&#xff0c;登录系统查看rman的log日志&#xff0c;报错信息如下 RMAN> run{ 2> backup filesperset 50 archivelog all format /backup/ARCHBAK_%d_%T_%s tag arch_bak delete all input; 3> } 4> Starting …

粒子群优化pso结合bp神经网络优化对csv文件预测matlab(3)

1.csv数据为密西西比数据集&#xff0c;获取数据集可以管我要&#xff0c;数据集内容形式如下图&#xff1a; 2.代码 这里参考的是b站的一位博主。 数据集导入教程在我的另一篇文章bp写过&#xff0c;需要的话可以去看一下 psobp.m close all clc%读取数据 inputX; outputY;…

数字化工厂产品推荐 带OPC UA的分布式IO模块

背景 近年来&#xff0c;为了提升在全球范围内的竞争力&#xff0c;制造企业希望自己工厂的机器之间协同性更强&#xff0c;自动化设备采集到的数据能够发挥更大的价值&#xff0c;越来越多的传统型工业制造企业开始加入数字化工厂建设的行列&#xff0c;实现智能制造。 数字化…

Hierarchical Clusting模型

介绍&#xff1a; Hierarchical Clustering 是一种常用的聚类方法&#xff0c;它通过构建一个层次化的聚类树&#xff08;或者称为聚类图&#xff09;&#xff0c;将数据点逐步合并组成不同的聚类簇。 Hierarchical Clustering 的主要思想是将相似的数据点归为一类&#xff0c…

数字IC后端实现之Innovus TA-152错误解析(分频generated clock定义错误)

**ERROR: (TA-152): A latency path from the ‘Fall’ edge of the master clock at source pin… Error Code TA-152 在数字IC后端实现innovus中我们经常会看到这类Error&#xff0c;具体信息如下所示。 Error Message **ERROR: (TA-152): A latency path from the ‘Fa…

模板模式实现分布式锁实战

前言 分布式锁相信大家都有用过&#xff0c;常见的分布式锁实现方式例如redis、zookeeper、数据库都可以实现&#xff0c;而我们代码中强引用这些分布式锁的代码&#xff0c;那么当我们以后想替换分布式锁的实现方式时&#xff0c;需要修改代码的成本会很高&#xff0c;于是我…

21.串的处理

题目 import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner sc new Scanner(System.in);String str sc.nextLine();char[] c str.toCharArray();int n c.length;StringBuilder st new StringBuilder();int i 0;while(i<n)…

G4周:CGAN,手势生成

本文为&#x1f517;365天深度学习训练营 中的学习记录博客 原作者&#xff1a;K同学啊|接辅导、项目定制 我的环境&#xff1a; 1.语言&#xff1a;python3.7 2.编译器&#xff1a;pycharm 3.深度学习框架Pytorch 1.8.0cu111 一、CGAN介绍 条件生成对抗网络&#xff08;…

【Golang】Json 无法表示 float64 类型的 NaN 以及 Inf 导致的 panic

【Golang】Json 无法表示 float64 类型的 NaN 以及 Inf 导致的 panic 原因 golang 服务出现了 panic&#xff0c;根据 panic 打印出的堆栈找到了问题代码&#xff0c;看上去原因是&#xff1a;json 序列化时&#xff0c;遇到了无法序列化的内容 [panic]: json: unsupported …

微信小程序——调节手机屏幕亮度案例分享

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…