SDRAM小项目——SDRAM初始化配置

news2025/1/16 15:40:35

主要写了SDRAM的初始化模块,注重文档信息的查找,时序图的设计,SDRAM仿真插件的使用。

文档信息:

        根据文档说明,SDRAM在使用之前必须先进行初始化

        初始化之前要进行100us的延迟,在100us内除了INHIBIT和NOP命令,其他命令都不可以执行,

时序图如下:

CLK为系统时钟,根据时序图,在100us的延迟后执行precharge命令,在经过trp时间后进行auto refresh命令 ,经过trc时间后再执行一次auto refresh,再经过trc时间后惊醒寄存器配置命令mode register,到此初始化完成。

阅读手册:

发现Nop模式下 cs_n.ras_n,cas_n.we_n的数据分别为0111/1xxx,同理precharge为0010,auto_ref为0001,

trc的最小时间间隔为63ns,4个周期(80ns——50hz/20ns),

trp的最小时间间隔为20ns,1个周期

配置模式寄存器:选择配置  A0-A11  分别为0100_0110_0000

根据文档说明画出时序图:

为了稳定设置延迟时间为200us,200us后flag200us拉高,命令计数器cnt_cmd开始计数(计时钟周期数),一开始进行precharge(周期0),进行autoref命令(周期1,5),进行mest(周期9)命令。初始化完成。

cmd_reg:用来进行命令的寄存,当cmd_cnt计数到相应周期的时候写入相应的配置。

sdram_addr:选择地址A0-A11

flag_init_end:当初始化任务完成后拉高点评,标志此时初始化完成

根据时序图编写verilog:

module sdram_init(
	input				sclk,
	input				srst,
	output	reg	[3:0]	cmd_reg,	//片选信号
	output	wire [11:0]	sdram_addr,	//A0-A11
	output	wire 		flag_init_end
);

//==========================================================
//=======	define parameter and internal signal	========
//==========================================================
localparam		delay_200us	= 10000;
// sdram command
localparam		nop			=	4'b0111;
localparam		pre			=	4'b0010;
localparam		aref		=	4'b0001;
localparam		mest		=	4'b0000;


reg [13:0]		cnt_200us		;
wire			flag_200us		;
reg [3:0]		cnt_cmd			;

//==========================================================
//====================	main	code	====================
//==========================================================
// cnt_200us
always@(posedge sclk or negedge srst) begin
		if(srst == 1'b0)
			cnt_200us <= 	'd0;
		else if(flag_200us == 1'b0)
			cnt_200us	<=	cnt_200us + 1'b1;
end


//cnt_cmd
always@(posedge sclk or negedge srst) begin
		if(srst == 1'b0)
			cnt_cmd		<=		'd0;
		else if(flag_200us	==	1'b1	&&	flag_init_end == 1'b0)
			cnt_cmd		<=	cnt_cmd + 1'b1;							//最后不需要归零,保持下去也可
end		

//cmd_reg
always@(posedge sclk or negedge srst) begin
		if(srst == 1'b0)
			cmd_reg		<=	nop		;
		else if(flag_200us == 1'b1)
			case(cnt_cmd)
				0:	cmd_reg	<=	pre	;
				1:	cmd_reg	<=	aref;
				5:	cmd_reg	<=	aref;
				9:	cmd_reg	<=	mest;
				default:cmd_reg <= nop;
			endcase
end

assign	flag_init_end	=	(cnt_cmd >= 'd10) ? 1'b1:1'b0;
assign	sdram_addr		=	(cmd_reg == mest) ? 12'b0000_0011_0010:12'b0100_0000_0000;
assign	flag_200us		= 	(cnt_200us	>=	delay_200us)? 1'b1:1'b0;

endmodule

根据文档说明编写SDRAM顶层模块:

  根据文档引脚描述:

clk为系统时钟输入,cke输出时钟使能信号,设置为高电平使SDRAM处于一直工作状态,cs,ras,cas,we,A0-A11,BA0-BA1,dqm(udqm和ldqm)均为输出,D0-D15为输入输出,vss/vdd/vssq/vddq为电源。

顶层模块代码:

module	sdram_top(
		input			sclk,
		input			srst,
		//sdram		interface
		output	wire	sdram_clk,
		output	wire	sdram_cke,
		output	wire	sdram_cs_n,
		output	wire	sdram_cas_n,
		output	wire	sdram_ras_n,
		output	wire	sdram_we_n,
		output	wire	[1:0]	sdram_bank,
		output	wire	[11:0]	sdram_addr,
		output	wire	[1:0]	sdram_dqm,
		inout			[15:0]	sdram_dq
);

//==========================================================
//=======	define parameter and internal signal	========
//==========================================================
wire 			flag_init_end;
wire	[3:0]	init_cmd;
wire	[11:0]	init_addr;


//==========================================================
//====================	main	code	====================
//==========================================================
assign	sdram_cke	=	1'b1;
assign	sdram_addr	=	init_addr;
assign	{sdram_cs_n, sdram_ras_n, sdram_cas_n, sdram_we_n} = init_cmd;
assign 	sdram_dqm	=	2'b00;
assign	sdram_clk	=	~sclk;	//内部时钟上升沿采集命令,命令又是由系统时钟上升沿产生的??(为了保证采样时刻处在数据中间时刻)


sdram_init	sdram_init_inst(
	.sclk				(sclk)	,
	.srst				(srst)	,
	.cmd_reg			(init_cmd)	,	
	.sdram_addr			(init_addr)	,	
	.flag_init_end	    		(flag_init_end)
);	

endmodule

注意在代码中设置了一个sdram_clk,它是系统时钟sclk的反相,sdram_clk连接到SDRAM的clk端口,是为了在中间时刻读取传输过来的数据,因为系统时钟上升沿从FPGA中传输数据到SDRAM,如果SDRAM的clk和系统clk保持一致,则在数据传输的一开始就开始写入SDRAM,可能数据传输仍然处在不稳定状态,反相之后可以保证在数据传输的中间时刻写入,保证稳定性。

测试模块代码:

例化了顶层模块,使用了sdram的插件(模仿SDRAM功能)

`timescale	1ns/1ns

module	tb_sdram_top;

	reg			sclk;
	reg			srst;
//----------------------------------------
	wire	sdram_clk;
	wire	sdram_cke;
	wire	sdram_cs_n;
	wire	sdram_cas_n;
	wire	sdram_ras_n;
	wire	sdram_we_n;
	wire	[1:0]	sdram_bank;
	wire	[11:0]	sdram_addr;
	wire	[1:0]	sdram_dqm;
    wire	[15:0]	sdram_dq;
//----------------------------------------

initial begin
			sclk = 1;
			srst <= 0;
			#100
			srst <=1;
end

always	#10		sclk = ~sclk;

defparam sdram_model_plus_inst.addr_bits =    12;
defparam sdram_model_plus_inst.data_bits =    16;
defparam sdram_model_plus_inst.col_bits  =    9;
defparam sdram_model_plus_inst.mem_sizes =    2*1024*1024;//1 M 


sdram_top		sdram_top_inst(
			.sclk							(sclk		),
			.srst							(srst		),
			.sdram_clk						(sdram_clk	),
			.sdram_cke						(sdram_cke	),
			.sdram_cs_n						(sdram_cs_n	),
			.sdram_cas_n						(sdram_cas_n),
			.sdram_ras_n						(sdram_ras_n),
			.sdram_we_n						(sdram_we_n	),
			.sdram_bank						(sdram_bank	),
			.sdram_addr						(sdram_addr	),
			.sdram_dqm						(sdram_dqm	),
			.sdram_dq						(sdram_dq	)
);


sdram_model_plus sdram_model_plus_inst(
 .Dq				(sdram_dq)	,
 .Addr				(sdram_addr), 
 .Ba				(sdram_bank), 
 .Clk				(sdram_clk), 
 .Cke				(sdram_cke), 
 .Cs_n				(sdram_cs_n), 
 .Ras_n				(sdram_ras_n), 
 .Cas_n				(sdram_cas_n), 
 .We_n				(sdram_we_n), 
 .Dqm				(sdram_dqm),
 .Debug				(1'b1)
 );
 
 
 
endmodule

SDRAM仿真代码:

/***************************************************************************************
 作者:    李晟
 2003-08-27    V0.1    李晟 
  
  添加内存模块倒空功能,在外部需要创建事件:sdram_r ,本SDRAM的内容将会按Bank 顺序damp out 至文件
  sdram_data.txt 中
 ×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××
 //2004-03-04    陈乃奎    修改原程序中将BANK的数据转存入TXT文件的格式
 //2004-03-16    陈乃奎    修改SDRAM 的初始化数据
 //2004/04/06    陈乃奎    将SDRAM的操作命令以字符形式表示,以便用MODELSIM监视
 //2004/04/19    陈乃奎    修改参数 parameter tAC  =   8;
 //2010/09/17    罗瑶    修改sdram的大小,数据位宽,dqm宽度;
 /****************************************************************************************
 *
 *    File Name:  sdram_model.V  
 *      Version:  0.0f
 *         Date:  July 8th, 1999
 *        Model:  BUS Functional
 *    Simulator:  Model Technology (PC version 5.2e PE)
 *
 * Dependencies:  None
 *
 *       Author:  Son P. Huynh
 *        Email:  sphuynh@micron.com
 *        Phone:  (208) 368-3825
 *      Company:  Micron Technology, Inc.
 *        Model:  sdram_model (1Meg x 16 x 4 Banks)
 *
 *  Description:  64Mb SDRAM Verilog model
 *
 *   Limitation:  - Doesn't check for 4096 cycle refresh
 *
 *         Note:  - Set simulator resolution to "ps" accuracy
 *                - Set Debug = 0 to disable $display messages
 *
 *   Disclaimer:  THESE DESIGNS ARE PROVIDED "AS IS" WITH NO WARRANTY 
 *                WHATSOEVER AND MICRON SPECIFICALLY DISCLAIMS ANY 
 *                IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
 *                A PARTICULAR PURPOSE, OR AGAINST INFRINGEMENT.
 *
 *                Copyright ?1998 Micron Semiconductor Products, Inc.
 *                All rights researved
 *
 * Rev   Author          Phone         Date        Changes
 * ----  ----------------------------  ----------  ---------------------------------------
 * 0.0f  Son Huynh       208-368-3825  07/08/1999  - Fix tWR = 1 Clk + 7.5 ns (Auto)
 *       Micron Technology Inc.                    - Fix tWR = 15 ns (Manual)
 *                                                 - Fix tRP (Autoprecharge to AutoRefresh)
 *
 * 0.0a  Son Huynh       208-368-3825  05/13/1998  - First Release (from 64Mb rev 0.0e)
 *       Micron Technology Inc.
 ****************************************************************************************/
 
 `timescale 1ns / 100ps
 
 module sdram_model_plus (Dq, Addr, Ba, Clk, Cke, Cs_n, Ras_n, Cas_n, We_n, Dqm,Debug);
 
     parameter addr_bits =    13;
     parameter data_bits =    16;
     parameter col_bits  =    9;
     parameter mem_sizes =    4*1024*1024 -1;//1 Meg 
 
     inout     [data_bits - 1 : 0] Dq;
     input     [addr_bits - 1 : 0] Addr;
     input                 [1 : 0] Ba;
     input                         Clk;
     input                         Cke;
     input                         Cs_n;
     input                         Ras_n;
     input                         Cas_n;
     input                         We_n;
     input                 [1 : 0] Dqm;          //高低各8bit
     //added by xzli
     input              Debug;
 
     reg       [data_bits - 1 : 0] Bank0 [0 : mem_sizes];//存储器类型数据
     reg       [data_bits - 1 : 0] Bank1 [0 : mem_sizes];
     reg       [data_bits - 1 : 0] Bank2 [0 : mem_sizes];
     reg       [data_bits - 1 : 0] Bank3 [0 : mem_sizes];
 
     reg                   [1 : 0] Bank_addr [0 : 3];                // Bank Address Pipeline
     reg        [col_bits - 1 : 0] Col_addr [0 : 3];                 // Column Address Pipeline
     reg                   [3 : 0] Command [0 : 3];                  // Command Operation Pipeline
     reg                   [3 : 0] Dqm_reg0, Dqm_reg1;               // DQM Operation Pipeline
     reg       [addr_bits - 1 : 0] B0_row_addr, B1_row_addr, B2_row_addr, B3_row_addr;
 
     reg       [addr_bits - 1 : 0] Mode_reg;
     reg       [data_bits - 1 : 0] Dq_reg, Dq_dqm;
     reg       [col_bits - 1 : 0] Col_temp, Burst_counter;
 
     reg                           Act_b0, Act_b1, Act_b2, Act_b3;   // Bank Activate
     reg                           Pc_b0, Pc_b1, Pc_b2, Pc_b3;       // Bank Precharge
 
     reg                   [1 : 0] Bank_precharge     [0 : 3];       // Precharge Command
     reg                           A10_precharge      [0 : 3];       // Addr[10] = 1 (All banks)
     reg                           Auto_precharge     [0 : 3];       // RW AutoPrecharge (Bank)
     reg                           Read_precharge     [0 : 3];       // R  AutoPrecharge
     reg                           Write_precharge    [0 : 3];       //  W AutoPrecharge
     integer                       Count_precharge    [0 : 3];       // RW AutoPrecharge (Counter)
     reg                           RW_interrupt_read  [0 : 3];       // RW Interrupt Read with Auto Precharge
     reg                           RW_interrupt_write [0 : 3];       // RW Interrupt Write with Auto Precharge
 
     reg                           Data_in_enable;
     reg                           Data_out_enable;
 
     reg                   [1 : 0] Bank, Previous_bank;
     reg       [addr_bits - 1 : 0] Row;
     reg        [col_bits - 1 : 0] Col, Col_brst;
 
     // Internal system clock
     reg                           CkeZ, Sys_clk;
 
     reg    [24:0]    dd;
     
     // Commands Decode
     wire      Active_enable    = ~Cs_n & ~Ras_n &  Cas_n &  We_n;
     wire      Aref_enable      = ~Cs_n & ~Ras_n & ~Cas_n &  We_n;
     wire      Burst_term       = ~Cs_n &  Ras_n &  Cas_n & ~We_n;
     wire      Mode_reg_enable  = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n;
     wire      Prech_enable     = ~Cs_n & ~Ras_n &  Cas_n & ~We_n;
     wire      Read_enable      = ~Cs_n &  Ras_n & ~Cas_n &  We_n;
     wire      Write_enable     = ~Cs_n &  Ras_n & ~Cas_n & ~We_n;
 
     // Burst Length Decode
     wire      Burst_length_1   = ~Mode_reg[2] & ~Mode_reg[1] & ~Mode_reg[0];
     wire      Burst_length_2   = ~Mode_reg[2] & ~Mode_reg[1] &  Mode_reg[0];
     wire      Burst_length_4   = ~Mode_reg[2] &  Mode_reg[1] & ~Mode_reg[0];
     wire      Burst_length_8   = ~Mode_reg[2] &  Mode_reg[1] &  Mode_reg[0];
 
     // CAS Latency Decode
     wire      Cas_latency_2    = ~Mode_reg[6] &  Mode_reg[5] & ~Mode_reg[4];
     wire      Cas_latency_3    = ~Mode_reg[6] &  Mode_reg[5] &  Mode_reg[4];
 
     // Write Burst Mode
     wire      Write_burst_mode = Mode_reg[9];
 
     wire      Debug;        // Debug messages : 1 = On; 0 = Off
     wire      Dq_chk           = Sys_clk & Data_in_enable;      // Check setup/hold time for DQ
 
     reg        [31:0]    mem_d;
     
     event    sdram_r,sdram_w,compare;
     
     
    
    
     assign    Dq               = Dq_reg;                        // DQ buffer
 
     // Commands Operation
     `define   ACT       0
     `define   NOP       1
     `define   READ      2
     `define   READ_A    3
     `define   WRITE     4
     `define   WRITE_A   5
     `define   PRECH     6
     `define   A_REF     7
     `define   BST       8
     `define   LMR       9
 
 //    // Timing Parameters for -75 (PC133) and CAS Latency = 2
 //    parameter tAC  =   8;    //test 6.5
 //    parameter tHZ  =   7.0;
 //    parameter tOH  =   2.7;
 //    parameter tMRD =   2.0;     // 2 Clk Cycles
 //    parameter tRAS =  44.0;
 //    parameter tRC  =  66.0;
 //    parameter tRCD =  20.0;
 //    parameter tRP  =  20.0;
 //    parameter tRRD =  15.0;
 //    parameter tWRa =   7.5;     // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
 //    parameter tWRp =  0.0;     // A2 Version - Precharge mode only (15 ns)
 
     // Timing Parameters for -7 (PC143) and CAS Latency = 3
     parameter tAC  =   6.5;    //test 6.5
     parameter tHZ  =   5.5;
     parameter tOH  =   2;
     parameter tMRD =   2.0;     // 2 Clk Cycles
     parameter tRAS =  48.0;
     parameter tRC  =  70.0;
     parameter tRCD =  20.0;
     parameter tRP  =  20.0;
     parameter tRRD =  14.0;
     parameter tWRa =   7.5;     // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
     parameter tWRp =  0.0;     // A2 Version - Precharge mode only (15 ns)
     
     // Timing Check variable
     integer   MRD_chk;
     integer   WR_counter [0 : 3];
     time      WR_chk [0 : 3];
     time      RC_chk, RRD_chk;
     time      RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3;
     time      RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3;
     time      RP_chk0, RP_chk1, RP_chk2, RP_chk3;
 
     integer    test_file;
     
     //*****display the command of the sdram**************************************
     
     parameter    Mode_Reg_Set    =4'b0000;
     parameter    Auto_Refresh    =4'b0001;
     parameter    Row_Active    =4'b0011;
     parameter    Pre_Charge    =4'b0010;
     parameter    PreCharge_All    =4'b0010;
     parameter    Write        =4'b0100;
     parameter    Write_Pre    =4'b0100;
     parameter    Read        =4'b0101;
     parameter    Read_Pre    =4'b0101;
     parameter    Burst_Stop    =4'b0110;
     parameter    Nop        =4'b0111;
     parameter    Dsel        =4'b1111;
 
     wire    [3:0]    sdram_control;
     reg            cke_temp;
     reg        [8*13:1]    sdram_command;
    
     always@(posedge Clk)
     cke_temp<=Cke;
 
     assign    sdram_control={Cs_n,Ras_n,Cas_n,We_n};
 
     always@(sdram_control or cke_temp)
     begin
         case(sdram_control)
             Mode_Reg_Set:    sdram_command<="Mode_Reg_Set";
             Auto_Refresh:    sdram_command<="Auto_Refresh";
             Row_Active:    sdram_command<="Row_Active";
             Pre_Charge:    sdram_command<="Pre_Charge";
             Burst_Stop:    sdram_command<="Burst_Stop";
             Dsel:        sdram_command<="Dsel";
 
             Write:        if(cke_temp==1)
                         sdram_command<="Write";
                     else
                         sdram_command<="Write_suspend";
                         
             Read:        if(cke_temp==1)
                         sdram_command<="Read";
                     else
                         sdram_command<="Read_suspend";
                         
             Nop:        if(cke_temp==1)
                         sdram_command<="Nop";
                     else
                         sdram_command<="Self_refresh";
                         
             default:    sdram_command<="Power_down";
         endcase
     end
 
     //*****************************************************
     
     initial 
         begin
         //test_file=$fopen("test_file.txt");
     end
 
     initial 
         begin
         Dq_reg = {data_bits{1'bz}};
         {Data_in_enable, Data_out_enable} = 0;
         {Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;
         {Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b0000;
         {WR_chk[0], WR_chk[1], WR_chk[2], WR_chk[3]} = 0;
         {WR_counter[0], WR_counter[1], WR_counter[2], WR_counter[3]} = 0;
         {RW_interrupt_read[0], RW_interrupt_read[1], RW_interrupt_read[2], RW_interrupt_read[3]} = 0;
         {RW_interrupt_write[0], RW_interrupt_write[1], RW_interrupt_write[2], RW_interrupt_write[3]} = 0;
         {MRD_chk, RC_chk, RRD_chk} = 0;
         {RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3} = 0;
         {RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3} = 0;
         {RP_chk0, RP_chk1, RP_chk2, RP_chk3} = 0;
         $timeformat (-9, 0, " ns", 12);
         //$readmemh("bank0.txt", Bank0);
         //$readmemh("bank1.txt", Bank1);
         //$readmemh("bank2.txt", Bank2);
         //$readmemh("bank3.txt", Bank3);
 /*      
        for(dd=0;dd<=mem_sizes;dd=dd+1)
             begin
                 Bank0[dd]=dd[data_bits - 1 : 0];
                 Bank1[dd]=dd[data_bits - 1 : 0]+1;
                 Bank2[dd]=dd[data_bits - 1 : 0]+2;
                 Bank3[dd]=dd[data_bits - 1 : 0]+3;
             end
 */            
       initial_sdram(0);
       end
  
         task    initial_sdram; 
  
          input        data_sign;
          reg    [3:0]    data_sign;
           
                for(dd=0;dd<=mem_sizes;dd=dd+1)
             begin
                 mem_d = {data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign};
                 if(data_bits==16)
                     begin
                         Bank0[dd]=mem_d[15:0];
                         Bank1[dd]=mem_d[15:0];
                         Bank2[dd]=mem_d[15:0];
                         Bank3[dd]=mem_d[15:0];
                     end
                 else if(data_bits==32)
                     begin
                         Bank0[dd]=mem_d[31:0];
                         Bank1[dd]=mem_d[31:0];
                         Bank2[dd]=mem_d[31:0];
                         Bank3[dd]=mem_d[31:0];
                     end
             end    
           
                endtask
 
     // System clock generator
     always
         begin
                @(posedge Clk)
                    begin
                         Sys_clk = CkeZ;
                         CkeZ = Cke;
                 end
             @(negedge Clk) 
                 begin
                         Sys_clk = 1'b0;
                 end
         end
 
     always @ (posedge Sys_clk) begin
         // Internal Commamd Pipelined
         Command[0] = Command[1];
         Command[1] = Command[2];
         Command[2] = Command[3];
         Command[3] = `NOP;
 
         Col_addr[0] = Col_addr[1];
         Col_addr[1] = Col_addr[2];
         Col_addr[2] = Col_addr[3];
         Col_addr[3] = {col_bits{1'b0}};
 
         Bank_addr[0] = Bank_addr[1];
         Bank_addr[1] = Bank_addr[2];
         Bank_addr[2] = Bank_addr[3];
         Bank_addr[3] = 2'b0;
 
         Bank_precharge[0] = Bank_precharge[1];
         Bank_precharge[1] = Bank_precharge[2];
         Bank_precharge[2] = Bank_precharge[3];
         Bank_precharge[3] = 2'b0;
 
         A10_precharge[0] = A10_precharge[1];
         A10_precharge[1] = A10_precharge[2];
         A10_precharge[2] = A10_precharge[3];
         A10_precharge[3] = 1'b0;
 
         // Dqm pipeline for Read
         Dqm_reg0 = Dqm_reg1;
         Dqm_reg1 = Dqm;
 
         // Read or Write with Auto Precharge Counter
         if (Auto_precharge[0] == 1'b1) begin
             Count_precharge[0] = Count_precharge[0] + 1;
         end
         if (Auto_precharge[1] == 1'b1) begin
             Count_precharge[1] = Count_precharge[1] + 1;
         end
         if (Auto_precharge[2] == 1'b1) begin
             Count_precharge[2] = Count_precharge[2] + 1;
         end
         if (Auto_precharge[3] == 1'b1) begin
             Count_precharge[3] = Count_precharge[3] + 1;
         end
 
         // tMRD Counter
         MRD_chk = MRD_chk + 1;
 
         // tWR Counter for Write
         WR_counter[0] = WR_counter[0] + 1;
         WR_counter[1] = WR_counter[1] + 1;
         WR_counter[2] = WR_counter[2] + 1;
         WR_counter[3] = WR_counter[3] + 1;
 
         // Auto Refresh
         if (Aref_enable == 1'b1) begin
             if (Debug) $display ("at time %t AREF : Auto Refresh", $time);
             // Auto Refresh to Auto Refresh
             if (($time - RC_chk < tRC)&&Debug) begin
                 $display ("at time %t ERROR: tRC violation during Auto Refresh", $time);
             end
             // Precharge to Auto Refresh
             if (($time - RP_chk0 < tRP || $time - RP_chk1 < tRP || $time - RP_chk2 < tRP || $time - RP_chk3 < tRP)&&Debug) begin
                 $display ("at time %t ERROR: tRP violation during Auto Refresh", $time);
             end
             // Precharge to Refresh
             if (Pc_b0 == 1'b0 || Pc_b1 == 1'b0 || Pc_b2 == 1'b0 || Pc_b3 == 1'b0) begin
                 $display ("at time %t ERROR: All banks must be Precharge before Auto Refresh", $time);
             end
             // Record Current tRC time
             RC_chk = $time;
         end
         
         // Load Mode Register
         if (Mode_reg_enable == 1'b1) begin
             // Decode CAS Latency, Burst Length, Burst Type, and Write Burst Mode
             if (Pc_b0 == 1'b1 && Pc_b1 == 1'b1 && Pc_b2 == 1'b1 && Pc_b3 == 1'b1) begin
                 Mode_reg = Addr;
                 if (Debug) begin
                     $display ("at time %t LMR  : Load Mode Register", $time);
                     // CAS Latency
                     if (Addr[6 : 4] == 3'b010)
                         $display ("                            CAS Latency      = 2");
                     else if (Addr[6 : 4] == 3'b011)
                         $display ("                            CAS Latency      = 3");
                     else
                         $display ("                            CAS Latency      = Reserved");
                     // Burst Length
                     if (Addr[2 : 0] == 3'b000)
                         $display ("                            Burst Length     = 1");
                     else if (Addr[2 : 0] == 3'b001)
                         $display ("                            Burst Length     = 2");
                     else if (Addr[2 : 0] == 3'b010)
                         $display ("                            Burst Length     = 4");
                     else if (Addr[2 : 0] == 3'b011)
                         $display ("                            Burst Length     = 8");
                     else if (Addr[3 : 0] == 4'b0111)
                         $display ("                            Burst Length     = Full");
                     else
                         $display ("                            Burst Length     = Reserved");
                     // Burst Type
                     if (Addr[3] == 1'b0)
                         $display ("                            Burst Type       = Sequential");
                     else if (Addr[3] == 1'b1)
                         $display ("                            Burst Type       = Interleaved");
                     else
                         $display ("                            Burst Type       = Reserved");
                     // Write Burst Mode
                     if (Addr[9] == 1'b0)
                         $display ("                            Write Burst Mode = Programmed Burst Length");
                     else if (Addr[9] == 1'b1)
                         $display ("                            Write Burst Mode = Single Location Access");
                     else
                         $display ("                            Write Burst Mode = Reserved");
                 end
             end else begin
                 $display ("at time %t ERROR: all banks must be Precharge before Load Mode Register", $time);
             end
             // REF to LMR
             if ($time - RC_chk < tRC) begin
                 $display ("at time %t ERROR: tRC violation during Load Mode Register", $time);
             end
             // LMR to LMR
             if (MRD_chk < tMRD) begin
                 $display ("at time %t ERROR: tMRD violation during Load Mode Register", $time);
             end
             MRD_chk = 0;
         end
         
         // Active Block (Latch Bank Address and Row Address)
         if (Active_enable == 1'b1) begin
             if (Ba == 2'b00 && Pc_b0 == 1'b1) begin
                 {Act_b0, Pc_b0} = 2'b10;
                 B0_row_addr = Addr [addr_bits - 1 : 0];
                 RCD_chk0 = $time;
                 RAS_chk0 = $time;
                 if (Debug) $display ("at time %t ACT  : Bank = 0 Row = %d", $time, Addr);
                 // Precharge to Activate Bank 0
                 if ($time - RP_chk0 < tRP) begin
                     $display ("at time %t ERROR: tRP violation during Activate bank 0", $time);
                 end
             end else if (Ba == 2'b01 && Pc_b1 == 1'b1) begin
                 {Act_b1, Pc_b1} = 2'b10;
                 B1_row_addr = Addr [addr_bits - 1 : 0];
                 RCD_chk1 = $time;
                 RAS_chk1 = $time;
                 if (Debug) $display ("at time %t ACT  : Bank = 1 Row = %d", $time, Addr);
                 // Precharge to Activate Bank 1
                 if ($time - RP_chk1 < tRP) begin
                     $display ("at time %t ERROR: tRP violation during Activate bank 1", $time);
                 end
             end else if (Ba == 2'b10 && Pc_b2 == 1'b1) begin
                 {Act_b2, Pc_b2} = 2'b10;
                 B2_row_addr = Addr [addr_bits - 1 : 0];
                 RCD_chk2 = $time;
                 RAS_chk2 = $time;
                 if (Debug) $display ("at time %t ACT  : Bank = 2 Row = %d", $time, Addr);
                 // Precharge to Activate Bank 2
                 if ($time - RP_chk2 < tRP) begin
                     $display ("at time %t ERROR: tRP violation during Activate bank 2", $time);
                 end
             end else if (Ba == 2'b11 && Pc_b3 == 1'b1) begin
                 {Act_b3, Pc_b3} = 2'b10;
                 B3_row_addr = Addr [addr_bits - 1 : 0];
                 RCD_chk3 = $time;
                 RAS_chk3 = $time;
                 if (Debug) $display ("at time %t ACT  : Bank = 3 Row = %d", $time, Addr);
                 // Precharge to Activate Bank 3
                 if ($time - RP_chk3 < tRP) begin
                     $display ("at time %t ERROR: tRP violation during Activate bank 3", $time);
                 end
             end else if (Ba == 2'b00 && Pc_b0 == 1'b0) begin
                 $display ("at time %t ERROR: Bank 0 is not Precharged.", $time);
             end else if (Ba == 2'b01 && Pc_b1 == 1'b0) begin
                 $display ("at time %t ERROR: Bank 1 is not Precharged.", $time);
             end else if (Ba == 2'b10 && Pc_b2 == 1'b0) begin
                 $display ("at time %t ERROR: Bank 2 is not Precharged.", $time);
             end else if (Ba == 2'b11 && Pc_b3 == 1'b0) begin
                 $display ("at time %t ERROR: Bank 3 is not Precharged.", $time);
             end
             // Active Bank A to Active Bank B
             if ((Previous_bank != Ba) && ($time - RRD_chk < tRRD)) begin
                 $display ("at time %t ERROR: tRRD violation during Activate bank = %d", $time, Ba);
             end
             // Load Mode Register to Active
             if (MRD_chk < tMRD ) begin
                 $display ("at time %t ERROR: tMRD violation during Activate bank = %d", $time, Ba);
             end
             // Auto Refresh to Activate
             if (($time - RC_chk < tRC)&&Debug) begin
                 $display ("at time %t ERROR: tRC violation during Activate bank = %d", $time, Ba);
             end
             // Record variables for checking violation
             RRD_chk = $time;
             Previous_bank = Ba;
         end
         
         // Precharge Block
         if (Prech_enable == 1'b1) begin
             if (Addr[10] == 1'b1) begin
                 {Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b1111;
                 {Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;
                 RP_chk0 = $time;
                 RP_chk1 = $time;
                 RP_chk2 = $time;
                 RP_chk3 = $time;
                 if (Debug) $display ("at time %t PRE  : Bank = ALL",$time);
                 // Activate to Precharge all banks
                 if (($time - RAS_chk0 < tRAS) || ($time - RAS_chk1 < tRAS) ||
                     ($time - RAS_chk2 < tRAS) || ($time - RAS_chk3 < tRAS)) begin
                     $display ("at time %t ERROR: tRAS violation during Precharge all bank", $time);
                 end
                 // tWR violation check for write
                 if (($time - WR_chk[0] < tWRp) || ($time - WR_chk[1] < tWRp) ||
                     ($time - WR_chk[2] < tWRp) || ($time - WR_chk[3] < tWRp)) begin
                     $display ("at time %t ERROR: tWR violation during Precharge all bank", $time);
                 end
             end else if (Addr[10] == 1'b0) begin
                 if (Ba == 2'b00) begin
                     {Pc_b0, Act_b0} = 2'b10;
                     RP_chk0 = $time;
                     if (Debug) $display ("at time %t PRE  : Bank = 0",$time);
                     // Activate to Precharge Bank 0
                     if ($time - RAS_chk0 < tRAS) begin
                         $display ("at time %t ERROR: tRAS violation during Precharge bank 0", $time);
                     end
                 end else if (Ba == 2'b01) begin
                     {Pc_b1, Act_b1} = 2'b10;
                     RP_chk1 = $time;
                     if (Debug) $display ("at time %t PRE  : Bank = 1",$time);
                     // Activate to Precharge Bank 1
                     if ($time - RAS_chk1 < tRAS) begin
                         $display ("at time %t ERROR: tRAS violation during Precharge bank 1", $time);
                     end
                 end else if (Ba == 2'b10) begin
                     {Pc_b2, Act_b2} = 2'b10;
                     RP_chk2 = $time;
                     if (Debug) $display ("at time %t PRE  : Bank = 2",$time);
                     // Activate to Precharge Bank 2
                     if ($time - RAS_chk2 < tRAS) begin
                         $display ("at time %t ERROR: tRAS violation during Precharge bank 2", $time);
                     end
                 end else if (Ba == 2'b11) begin
                     {Pc_b3, Act_b3} = 2'b10;
                     RP_chk3 = $time;
                     if (Debug) $display ("at time %t PRE  : Bank = 3",$time);
                     // Activate to Precharge Bank 3
                     if ($time - RAS_chk3 < tRAS) begin
                         $display ("at time %t ERROR: tRAS violation during Precharge bank 3", $time);
                     end
                 end
                 // tWR violation check for write
                 if ($time - WR_chk[Ba] < tWRp) begin
                     $display ("at time %t ERROR: tWR violation during Precharge bank %d", $time, Ba);
                 end
             end
             // Terminate a Write Immediately (if same bank or all banks)
             if (Data_in_enable == 1'b1 && (Bank == Ba || Addr[10] == 1'b1)) begin
                 Data_in_enable = 1'b0;
             end
             // Precharge Command Pipeline for Read
             if (Cas_latency_3 == 1'b1) begin
                 Command[2] = `PRECH;
                 Bank_precharge[2] = Ba;
                 A10_precharge[2] = Addr[10];
             end else if (Cas_latency_2 == 1'b1) begin
                 Command[1] = `PRECH;
                 Bank_precharge[1] = Ba;
                 A10_precharge[1] = Addr[10];
             end
         end
         
         // Burst terminate
         if (Burst_term == 1'b1) begin
             // Terminate a Write Immediately
             if (Data_in_enable == 1'b1) begin
                 Data_in_enable = 1'b0;
             end
             // Terminate a Read Depend on CAS Latency
             if (Cas_latency_3 == 1'b1) begin
                 Command[2] = `BST;
             end else if (Cas_latency_2 == 1'b1) begin
                 Command[1] = `BST;
             end
             if (Debug) $display ("at time %t BST  : Burst Terminate",$time);
         end
         
         // Read, Write, Column Latch
         if (Read_enable == 1'b1 || Write_enable == 1'b1) begin
             // Check to see if bank is open (ACT)
             if ((Ba == 2'b00 && Pc_b0 == 1'b1) || (Ba == 2'b01 && Pc_b1 == 1'b1) ||
                 (Ba == 2'b10 && Pc_b2 == 1'b1) || (Ba == 2'b11 && Pc_b3 == 1'b1)) begin
                 $display("at time %t ERROR: Cannot Read or Write - Bank %d is not Activated", $time, Ba);
             end
             // Activate to Read or Write
             if ((Ba == 2'b00) && ($time - RCD_chk0 < tRCD))
                 $display("at time %t ERROR: tRCD violation during Read or Write to Bank 0", $time);
             if ((Ba == 2'b01) && ($time - RCD_chk1 < tRCD))
                 $display("at time %t ERROR: tRCD violation during Read or Write to Bank 1", $time);
             if ((Ba == 2'b10) && ($time - RCD_chk2 < tRCD))
                 $display("at time %t ERROR: tRCD violation during Read or Write to Bank 2", $time);
             if ((Ba == 2'b11) && ($time - RCD_chk3 < tRCD))
                 $display("at time %t ERROR: tRCD violation during Read or Write to Bank 3", $time);
             // Read Command
             if (Read_enable == 1'b1) begin
                 // CAS Latency pipeline
                 if (Cas_latency_3 == 1'b1) begin
                     if (Addr[10] == 1'b1) begin
                         Command[2] = `READ_A;
                     end else begin
                         Command[2] = `READ;
                     end
                     Col_addr[2] = Addr;
                     Bank_addr[2] = Ba;
                 end else if (Cas_latency_2 == 1'b1) begin
                     if (Addr[10] == 1'b1) begin
                         Command[1] = `READ_A;
                     end else begin
                         Command[1] = `READ;
                     end
                     Col_addr[1] = Addr;
                     Bank_addr[1] = Ba;
                 end
 
                 // Read interrupt Write (terminate Write immediately)
                 if (Data_in_enable == 1'b1) begin
                     Data_in_enable = 1'b0;
                 end
 
             // Write Command
             end else if (Write_enable == 1'b1) begin
                 if (Addr[10] == 1'b1) begin
                     Command[0] = `WRITE_A;
                 end else begin
                     Command[0] = `WRITE;
                 end
                 Col_addr[0] = Addr;
                 Bank_addr[0] = Ba;
 
                 // Write interrupt Write (terminate Write immediately)
                 if (Data_in_enable == 1'b1) begin
                     Data_in_enable = 1'b0;
                 end
 
                 // Write interrupt Read (terminate Read immediately)
                 if (Data_out_enable == 1'b1) begin
                     Data_out_enable = 1'b0;
                 end
             end
 
             // Interrupting a Write with Autoprecharge
             if (Auto_precharge[Bank] == 1'b1 && Write_precharge[Bank] == 1'b1) begin
                 RW_interrupt_write[Bank] = 1'b1;
                 if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Write Bank %d with Autoprecharge", $time, Ba, Bank);
             end
 
             // Interrupting a Read with Autoprecharge
             if (Auto_precharge[Bank] == 1'b1 && Read_precharge[Bank] == 1'b1) begin
                 RW_interrupt_read[Bank] = 1'b1;
                 if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Read Bank %d with Autoprecharge", $time, Ba, Bank);
             end
 
             // Read or Write with Auto Precharge
             if (Addr[10] == 1'b1) begin
                 Auto_precharge[Ba] = 1'b1;
                 Count_precharge[Ba] = 0;
                 if (Read_enable == 1'b1) begin
                     Read_precharge[Ba] = 1'b1;
                 end else if (Write_enable == 1'b1) begin
                     Write_precharge[Ba] = 1'b1;
                 end
             end
         end
 
         //  Read with Auto Precharge Calculation
         //      The device start internal precharge:
         //          1.  CAS Latency - 1 cycles before last burst
         //      and 2.  Meet minimum tRAS requirement
         //       or 3.  Interrupt by a Read or Write (with or without AutoPrecharge)
         if ((Auto_precharge[0] == 1'b1) && (Read_precharge[0] == 1'b1)) begin
             if ((($time - RAS_chk0 >= tRAS) &&                                                      // Case 2
                 ((Burst_length_1 == 1'b1 && Count_precharge[0] >= 1) ||                             // Case 1
                  (Burst_length_2 == 1'b1 && Count_precharge[0] >= 2) ||
                  (Burst_length_4 == 1'b1 && Count_precharge[0] >= 4) ||
                  (Burst_length_8 == 1'b1 && Count_precharge[0] >= 8))) ||
                  (RW_interrupt_read[0] == 1'b1)) begin                                              // Case 3
                     Pc_b0 = 1'b1;
                     Act_b0 = 1'b0;
                     RP_chk0 = $time;
                     Auto_precharge[0] = 1'b0;
                     Read_precharge[0] = 1'b0;
                     RW_interrupt_read[0] = 1'b0;
                     if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
             end
         end
         if ((Auto_precharge[1] == 1'b1) && (Read_precharge[1] == 1'b1)) begin
             if ((($time - RAS_chk1 >= tRAS) &&
                 ((Burst_length_1 == 1'b1 && Count_precharge[1] >= 1) || 
                  (Burst_length_2 == 1'b1 && Count_precharge[1] >= 2) ||
                  (Burst_length_4 == 1'b1 && Count_precharge[1] >= 4) ||
                  (Burst_length_8 == 1'b1 && Count_precharge[1] >= 8))) ||
                  (RW_interrupt_read[1] == 1'b1)) begin
                     Pc_b1 = 1'b1;
                     Act_b1 = 1'b0;
                     RP_chk1 = $time;
                     Auto_precharge[1] = 1'b0;
                     Read_precharge[1] = 1'b0;
                     RW_interrupt_read[1] = 1'b0;
                     if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
             end
         end
         if ((Auto_precharge[2] == 1'b1) && (Read_precharge[2] == 1'b1)) begin
             if ((($time - RAS_chk2 >= tRAS) &&
                 ((Burst_length_1 == 1'b1 && Count_precharge[2] >= 1) || 
                  (Burst_length_2 == 1'b1 && Count_precharge[2] >= 2) ||
                  (Burst_length_4 == 1'b1 && Count_precharge[2] >= 4) ||
                  (Burst_length_8 == 1'b1 && Count_precharge[2] >= 8))) ||
                  (RW_interrupt_read[2] == 1'b1)) begin
                     Pc_b2 = 1'b1;
                     Act_b2 = 1'b0;
                     RP_chk2 = $time;
                     Auto_precharge[2] = 1'b0;
                     Read_precharge[2] = 1'b0;
                     RW_interrupt_read[2] = 1'b0;
                     if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
             end
         end
         if ((Auto_precharge[3] == 1'b1) && (Read_precharge[3] == 1'b1)) begin
             if ((($time - RAS_chk3 >= tRAS) &&
                 ((Burst_length_1 == 1'b1 && Count_precharge[3] >= 1) || 
                  (Burst_length_2 == 1'b1 && Count_precharge[3] >= 2) ||
                  (Burst_length_4 == 1'b1 && Count_precharge[3] >= 4) ||
                  (Burst_length_8 == 1'b1 && Count_precharge[3] >= 8))) ||
                  (RW_interrupt_read[3] == 1'b1)) begin
                     Pc_b3 = 1'b1;
                     Act_b3 = 1'b0;
                     RP_chk3 = $time;
                     Auto_precharge[3] = 1'b0;
                     Read_precharge[3] = 1'b0;
                     RW_interrupt_read[3] = 1'b0;
                     if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
             end
         end
 
         // Internal Precharge or Bst
         if (Command[0] == `PRECH) begin                         // Precharge terminate a read with same bank or all banks
             if (Bank_precharge[0] == Bank || A10_precharge[0] == 1'b1) begin
                 if (Data_out_enable == 1'b1) begin
                     Data_out_enable = 1'b0;
                 end
             end
         end else if (Command[0] == `BST) begin                  // BST terminate a read to current bank
             if (Data_out_enable == 1'b1) begin
                 Data_out_enable = 1'b0;
             end
         end
 
         if (Data_out_enable == 1'b0) begin
             Dq_reg <= #tOH {data_bits{1'bz}};
         end
 
         // Detect Read or Write command
         if (Command[0] == `READ || Command[0] == `READ_A) begin
             Bank = Bank_addr[0];
             Col = Col_addr[0];
             Col_brst = Col_addr[0];
             if (Bank_addr[0] == 2'b00) begin
                 Row = B0_row_addr;
             end else if (Bank_addr[0] == 2'b01) begin
                 Row = B1_row_addr;
             end else if (Bank_addr[0] == 2'b10) begin
                 Row = B2_row_addr;
             end else if (Bank_addr[0] == 2'b11) begin
                 Row = B3_row_addr;
             end
             Burst_counter = 0;
             Data_in_enable = 1'b0;
             Data_out_enable = 1'b1;
         end else if (Command[0] == `WRITE || Command[0] == `WRITE_A) begin
             Bank = Bank_addr[0];
             Col = Col_addr[0];
             Col_brst = Col_addr[0];
             if (Bank_addr[0] == 2'b00) begin
                 Row = B0_row_addr;
             end else if (Bank_addr[0] == 2'b01) begin
                 Row = B1_row_addr;
             end else if (Bank_addr[0] == 2'b10) begin
                 Row = B2_row_addr;
             end else if (Bank_addr[0] == 2'b11) begin
                 Row = B3_row_addr;
             end
             Burst_counter = 0;
             Data_in_enable = 1'b1;
             Data_out_enable = 1'b0;
         end
 
         // DQ buffer (Driver/Receiver)
         if (Data_in_enable == 1'b1) begin                                   // Writing Data to Memory
             // Array buffer
             if (Bank == 2'b00) Dq_dqm [data_bits - 1  : 0] = Bank0 [{Row, Col}];
             if (Bank == 2'b01) Dq_dqm [data_bits - 1  : 0] = Bank1 [{Row, Col}];
             if (Bank == 2'b10) Dq_dqm [data_bits - 1  : 0] = Bank2 [{Row, Col}];
             if (Bank == 2'b11) Dq_dqm [data_bits - 1  : 0] = Bank3 [{Row, Col}];
             // Dqm operation
             if (Dqm[0] == 1'b0) Dq_dqm [ 7 : 0] = Dq [ 7 : 0];
             if (Dqm[1] == 1'b0) Dq_dqm [15 : 8] = Dq [15 : 8];
             //if (Dqm[2] == 1'b0) Dq_dqm [23 : 16] = Dq [23 : 16];
            // if (Dqm[3] == 1'b0) Dq_dqm [31 : 24] = Dq [31 : 24];
             // Write to memory
             if (Bank == 2'b00) Bank0 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
             if (Bank == 2'b01) Bank1 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
             if (Bank == 2'b10) Bank2 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
             if (Bank == 2'b11) Bank3 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
             if (Bank == 2'b11 && Row==10'h3 && Col[7:4]==4'h4)
                 $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
             //$fdisplay(test_file,"bank:%h    row:%h    col:%h    write:%h",Bank,Row,Col,Dq_dqm);
             // Output result
             if (Dqm == 4'b1111) begin
                 if (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
             end else begin
                 if (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_dqm, Dqm);
                 // Record tWR time and reset counter
                 WR_chk [Bank] = $time;
                 WR_counter [Bank] = 0;
             end
             // Advance burst counter subroutine
             #tHZ Burst;
         end else if (Data_out_enable == 1'b1) begin                         // Reading Data from Memory
             //$display("%h    ,    %h,    %h",Bank0,Row,Col);
             // Array buffer
             if (Bank == 2'b00) Dq_dqm [data_bits - 1  : 0] = Bank0 [{Row, Col}];
             if (Bank == 2'b01) Dq_dqm [data_bits - 1  : 0] = Bank1 [{Row, Col}];
             if (Bank == 2'b10) Dq_dqm [data_bits - 1  : 0] = Bank2 [{Row, Col}];
             if (Bank == 2'b11) Dq_dqm [data_bits - 1  : 0] = Bank3 [{Row, Col}];
                 
             // Dqm operation
             if (Dqm_reg0[0] == 1'b1) Dq_dqm [ 7 : 0] = 8'bz;
             if (Dqm_reg0[1] == 1'b1) Dq_dqm [15 : 8] = 8'bz;
             if (Dqm_reg0[2] == 1'b1) Dq_dqm [23 : 16] = 8'bz;
             if (Dqm_reg0[3] == 1'b1) Dq_dqm [31 : 24] = 8'bz;
             // Display result
             Dq_reg [data_bits - 1  : 0] = #tAC Dq_dqm [data_bits - 1  : 0];
             if (Dqm_reg0 == 4'b1111) begin
                 if (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
             end else begin
                 if (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_reg, Dqm_reg0);
             end
             // Advance burst counter subroutine
             Burst;
         end
     end
 
     //  Write with Auto Precharge Calculation
     //      The device start internal precharge:
     //          1.  tWR Clock after last burst
     //      and 2.  Meet minimum tRAS requirement
     //       or 3.  Interrupt by a Read or Write (with or without AutoPrecharge)
     always @ (WR_counter[0]) begin
         if ((Auto_precharge[0] == 1'b1) && (Write_precharge[0] == 1'b1)) begin
             if ((($time - RAS_chk0 >= tRAS) &&                                                          // Case 2
                (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [0] >= 1) ||   // Case 1
                  (Burst_length_2 == 1'b1 && Count_precharge [0] >= 2) ||
                  (Burst_length_4 == 1'b1 && Count_precharge [0] >= 4) ||
                  (Burst_length_8 == 1'b1 && Count_precharge [0] >= 8))) ||
                  (RW_interrupt_write[0] == 1'b1 && WR_counter[0] >= 2)) begin                           // Case 3 (stop count when interrupt)
                     Auto_precharge[0] = 1'b0;
                     Write_precharge[0] = 1'b0;
                     RW_interrupt_write[0] = 1'b0;
                     #tWRa;                          // Wait for tWR
                     Pc_b0 = 1'b1;
                     Act_b0 = 1'b0;
                     RP_chk0 = $time;
                     if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
             end
         end
     end
     always @ (WR_counter[1]) begin
         if ((Auto_precharge[1] == 1'b1) && (Write_precharge[1] == 1'b1)) begin
             if ((($time - RAS_chk1 >= tRAS) &&
                (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [1] >= 1) || 
                  (Burst_length_2 == 1'b1 && Count_precharge [1] >= 2) ||
                  (Burst_length_4 == 1'b1 && Count_precharge [1] >= 4) ||
                  (Burst_length_8 == 1'b1 && Count_precharge [1] >= 8))) ||
                  (RW_interrupt_write[1] == 1'b1 && WR_counter[1] >= 2)) begin
                     Auto_precharge[1] = 1'b0;
                     Write_precharge[1] = 1'b0;
                     RW_interrupt_write[1] = 1'b0;
                     #tWRa;                          // Wait for tWR
                     Pc_b1 = 1'b1;
                     Act_b1 = 1'b0;
                     RP_chk1 = $time;
                     if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
             end
         end
     end
     always @ (WR_counter[2]) begin
         if ((Auto_precharge[2] == 1'b1) && (Write_precharge[2] == 1'b1)) begin
             if ((($time - RAS_chk2 >= tRAS) &&
                (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [2] >= 1) || 
                  (Burst_length_2 == 1'b1 && Count_precharge [2] >= 2) ||
                  (Burst_length_4 == 1'b1 && Count_precharge [2] >= 4) ||
                  (Burst_length_8 == 1'b1 && Count_precharge [2] >= 8))) ||
                  (RW_interrupt_write[2] == 1'b1 && WR_counter[2] >= 2)) begin
                     Auto_precharge[2] = 1'b0;
                     Write_precharge[2] = 1'b0;
                     RW_interrupt_write[2] = 1'b0;
                     #tWRa;                          // Wait for tWR
                     Pc_b2 = 1'b1;
                     Act_b2 = 1'b0;
                     RP_chk2 = $time;
                     if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
             end
         end
     end
     always @ (WR_counter[3]) begin
         if ((Auto_precharge[3] == 1'b1) && (Write_precharge[3] == 1'b1)) begin
             if ((($time - RAS_chk3 >= tRAS) &&
                (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [3] >= 1) || 
                  (Burst_length_2 == 1'b1 && Count_precharge [3] >= 2) ||
                  (Burst_length_4 == 1'b1 && Count_precharge [3] >= 4) ||
                  (Burst_length_8 == 1'b1 && Count_precharge [3] >= 8))) ||
                  (RW_interrupt_write[3] == 1'b1 && WR_counter[3] >= 2)) begin
                     Auto_precharge[3] = 1'b0;
                     Write_precharge[3] = 1'b0;
                     RW_interrupt_write[3] = 1'b0;
                     #tWRa;                          // Wait for tWR
                     Pc_b3 = 1'b1;
                     Act_b3 = 1'b0;
                     RP_chk3 = $time;
                     if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
             end
         end
     end
 
     task Burst;
         begin
             // Advance Burst Counter
             Burst_counter = Burst_counter + 1;
 
             // Burst Type
             if (Mode_reg[3] == 1'b0) begin                                  // Sequential Burst
                 Col_temp = Col + 1;
             end else if (Mode_reg[3] == 1'b1) begin                         // Interleaved Burst
                 Col_temp[2] =  Burst_counter[2] ^  Col_brst[2];
                 Col_temp[1] =  Burst_counter[1] ^  Col_brst[1];
                 Col_temp[0] =  Burst_counter[0] ^  Col_brst[0];
             end
 
             // Burst Length
             if (Burst_length_2) begin                                       // Burst Length = 2
                 Col [0] = Col_temp [0];
             end else if (Burst_length_4) begin                              // Burst Length = 4
                 Col [1 : 0] = Col_temp [1 : 0];
             end else if (Burst_length_8) begin                              // Burst Length = 8
                 Col [2 : 0] = Col_temp [2 : 0];
             end else begin                                                  // Burst Length = FULL
                 Col = Col_temp;
             end
 
             // Burst Read Single Write            
             if (Write_burst_mode == 1'b1) begin
                 Data_in_enable = 1'b0;
             end
 
             // Data Counter
             if (Burst_length_1 == 1'b1) begin
                 if (Burst_counter >= 1) begin
                     Data_in_enable = 1'b0;
                     Data_out_enable = 1'b0;
                 end
             end else if (Burst_length_2 == 1'b1) begin
                 if (Burst_counter >= 2) begin
                     Data_in_enable = 1'b0;
                     Data_out_enable = 1'b0;
                 end
             end else if (Burst_length_4 == 1'b1) begin
                 if (Burst_counter >= 4) begin
                     Data_in_enable = 1'b0;
                     Data_out_enable = 1'b0;
                 end
             end else if (Burst_length_8 == 1'b1) begin
                 if (Burst_counter >= 8) begin
                     Data_in_enable = 1'b0;
                     Data_out_enable = 1'b0;
                 end
             end
         end
     endtask
     
     //**********************将SDRAM内的数据直接输出到外部文件*******************************//
 
 /*    
    integer    sdram_data,ind;
 
 
     always@(sdram_r)
     begin
            sdram_data=$fopen("sdram_data.txt");
            $display("Sdram dampout begin ",sdram_data);
 //           $fdisplay(sdram_data,"Bank0:");
            for(ind=0;ind<=mem_sizes;ind=ind+1)
                     $fdisplay(sdram_data,"%h    %b",ind,Bank0[ind]);
 //           $fdisplay(sdram_data,"Bank1:");
            for(ind=0;ind<=mem_sizes;ind=ind+1)
                     $fdisplay(sdram_data,"%h    %b",ind,Bank1[ind]);
 //           $fdisplay(sdram_data,"Bank2:");
            for(ind=0;ind<=mem_sizes;ind=ind+1)
                     $fdisplay(sdram_data,"%h    %b",ind,Bank2[ind]);
 //               $fdisplay(sdram_data,"Bank3:");
            for(ind=0;ind<=mem_sizes;ind=ind+1)
                     $fdisplay(sdram_data,"%h    %b",ind,Bank3[ind]);
                                       
           $fclose("sdram_data.txt");        
       //->compare;
       end        
 */
     integer    sdram_data,sdram_mem;
     reg    [24:0]    aa,cc;
     reg    [24:0]    bb,ee;
     
     always@(sdram_r)
     begin
            $display("Sdram dampout begin ",$realtime);
            sdram_data=$fopen("sdram_data.txt");
            for(aa=0;aa<4*(mem_sizes+1);aa=aa+1)
                begin
                bb=aa[18:0];
             if(aa<=mem_sizes)
                 $fdisplay(sdram_data,"%0d    %0h",aa,Bank0[bb]);
             else if(aa<=2*mem_sizes+1)
                         $fdisplay(sdram_data,"%0d    %0h",aa,Bank1[bb]);
             else if(aa<=3*mem_sizes+2)
                 $fdisplay(sdram_data,"%0d    %0h",aa,Bank2[bb]);
             else
                 $fdisplay(sdram_data,"%0d    %0h",aa,Bank3[bb]);
               end                        
           $fclose("sdram_data.txt"); 
           
           sdram_mem=$fopen("sdram_mem.txt");
           for(cc=0;cc<4*(mem_sizes+1);cc=cc+1)
               begin
                ee=cc[18:0];
             if(cc<=mem_sizes)
                 $fdisplay(sdram_mem,"%0h",Bank0[ee]);
             else if(cc<=2*mem_sizes+1)
                         $fdisplay(sdram_mem,"%0h",Bank1[ee]);
             else if(cc<=3*mem_sizes+2)
                 $fdisplay(sdram_mem,"%0h",Bank2[ee]);
             else
                 $fdisplay(sdram_mem,"%0h",Bank3[ee]);
               end                        
           $fclose("sdram_mem.txt");        
      
       end        
 
 
 
 //    // Timing Parameters for -75 (PC133) and CAS Latency = 2
 //    specify
 //        specparam
                     tAH  =  0.8,                                        // Addr, Ba Hold Time
                     tAS  =  1.5,                                        // Addr, Ba Setup Time
                     tCH  =  2.5,                                        // Clock High-Level Width
                     tCL  =  2.5,                                        // Clock Low-Level Width
 //                    tCK  = 10.0,                                       // Clock Cycle Time  100mhz
 //                    tCK  = 7.5,                        // Clock Cycle Time  133mhz
                     tCK  =  7,                                // Clock Cycle Time  143mhz
                     tDH  =  0.8,                                        // Data-in Hold Time
                     tDS  =  1.5,                                        // Data-in Setup Time
                     tCKH =  0.8,                                        // CKE Hold  Time
                     tCKS =  1.5,                                        // CKE Setup Time
                     tCMH =  0.8,                                        // CS#, RAS#, CAS#, WE#, DQM# Hold  Time
                     tCMS =  1.5;                                        // CS#, RAS#, CAS#, WE#, DQM# Setup Time
 //                    tAH  =  1,                                        // Addr, Ba Hold Time
 //                    tAS  =  1.5,                                        // Addr, Ba Setup Time
 //                    tCH  =  1,                                        // Clock High-Level Width
 //                    tCL  =  3,                                        // Clock Low-Level Width
                     tCK  = 10.0,                                       // Clock Cycle Time  100mhz
                     tCK  = 7.5,                        // Clock Cycle Time  133mhz
 //                    tCK  =  7,                                // Clock Cycle Time  143mhz
 //                    tDH  =  1,                                        // Data-in Hold Time
 //                    tDS  =  2,                                        // Data-in Setup Time
 //                    tCKH =  1,                                        // CKE Hold  Time
 //                    tCKS =  2,                                        // CKE Setup Time
 //                    tCMH =  0.8,                                        // CS#, RAS#, CAS#, WE#, DQM# Hold  Time
 //                    tCMS =  1.5;                                        // CS#, RAS#, CAS#, WE#, DQM# Setup Time
 //        $width    (posedge Clk,           tCH);
 //        $width    (negedge Clk,           tCL);
 //        $period   (negedge Clk,           tCK);
 //        $period   (posedge Clk,           tCK);
 //        $setuphold(posedge Clk,    Cke,   tCKS, tCKH);
 //        $setuphold(posedge Clk,    Cs_n,  tCMS, tCMH);
 //        $setuphold(posedge Clk,    Cas_n, tCMS, tCMH);
 //        $setuphold(posedge Clk,    Ras_n, tCMS, tCMH);
 //        $setuphold(posedge Clk,    We_n,  tCMS, tCMH);
 //        $setuphold(posedge Clk,    Addr,  tAS,  tAH);
 //        $setuphold(posedge Clk,    Ba,    tAS,  tAH);
 //        $setuphold(posedge Clk,    Dqm,   tCMS, tCMH);
 //        $setuphold(posedge Dq_chk, Dq,    tDS,  tDH);
 //    endspecify
 
 endmodule

收获:1.理解了vereilog代码是用在FPGA当中,将FPGA当做控制器,发送SDRAM的控制信号,需要按照SDRAM的文档设计FPGA的发送数据和控制信号;2.器件内部时钟和FPGA系统时钟并不一定一致。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1358253.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数据分析实战】冰雪大世界携程景区评价信息情感分析采集词云

文章目录 引言数据采集数据集展示数据预处理 数据分析评价总体情况分析本人浅薄分析 各游客人群占比分析本人浅薄分析 各评分雷达图本人浅薄分析 差评词云-可视化本人浅薄分析 好评词云-可视化本人浅薄分析 综合分析写在最后 今年冬天&#xff0c;哈尔滨冰雪旅游"杀疯了&q…

炫酷的倒计时引导页

文章目录 文件分布介绍效果预览代码css样式Locationplayer.css js样式player.js 文件分布介绍 效果预览 代码 css样式 Location html {height: 100%;}body {font-family: "Helvetica Neue", "Luxi Sans", "DejaVu Sans", Tahoma, "Hirag…

SwiftUI 打造一款收缩自如的 HStack(三):“魔镜魔镜,我爱你”

概览 在前两篇博文中,我们分别讨论了用 HStack 和 对齐+ZStack 来实现收缩自如“HStack”的方法。 虽然看起来“各有千秋”,但实际上它们都拖着一坨厚重的 datas,这不禁为其“减分不少”。 而从上图演示中可以看到:我们完全摆脱了 datas 数据的桎梏,现在我们可以按照轻松…

【Java EE初阶九】多线程案例(线程池)

一、线程池的引入 引入池---->主要是为了提高效率&#xff1b; 最开始&#xff0c;进程可以解决并发编程的问题&#xff0c;但是代价有点大了&#xff0c;于是引入了 “轻量级进程” ---->线程 线程也能解决并发编程的问题&#xff0c;而且线程的开销比进程要小的多&…

JS新手入门笔记整理:条件判断

判断语句&#xff1a;IF 单向判断&#xff1a;if... 语法 if&#xff08;条件&#xff09; {…… } 如果“条件”返回结果为true&#xff0c;则会执行大括号{}内部的程序&#xff1b;如果“条件”返回结果为false&#xff0c;则会直接跳过大括号{}内部的程序&#xff0c;然后…

Python中User-Agent的重要作用及实际应用

摘要&#xff1a; User-Agent是HTTP协议中的一个重要字段&#xff0c;用于标识发送请求的客户端信息。在Python中&#xff0c;User-Agent的作用至关重要&#xff0c;它可以影响网络请求的结果和服务器端的响应。将介绍User-Agent在Python中的重要作用&#xff0c;并结合实际案…

编码器原理详解

编码器 什么是编码器 编码器可以用来将信息编码成为二进制代码&#xff0c;有点类似于取代号&#xff0c;人为的将二进制代码与对应的信息联系起来。 如下图所示&#xff1a; 假设有这三种情况会发生&#xff0c;且每次只发生一种情况 为了给这三种情况做一个区分&#xff…

FPGA - 240102 - FPGA期末速成

TAG - F P G A 、期末、速成 FPGA、期末、速成 FPGA、期末、速成 // – 习题1 – //CPLD&#xff08;Complex Programmable Logic Device&#xff09;是 Complex PLD 的简称&#xff0c;一种较 PLD 为复杂的逻辑元件。CPLD 逻辑资源多寄存器少&#xff0c;FPGA 逻辑弱而寄存器…

TemporalKit的纯手动安装

最近在用本地SD安装temporalkit插件 本地安装插件最常见的问题就是&#xff0c;GitCommandError:… 原因就是&#xff0c;没有科学上网&#xff0c;而且即使搭了ladder&#xff0c;在SD的“从网址上安装”或是“插件安装”都不行&#xff0c;都不行&#xff01;&#xff01;&am…

PMP考试的通过标准是什么?

PMP 新考纲一共是 180道题&#xff0c;答对 108道就通过了&#xff0c;具体怎么看&#xff1f; 登录网站查询&#xff1a; 第一步&#xff1a;登录PMI网站&#xff1a;www.pmi.org 第二步&#xff1a;进入Dashboard&#xff1a; 第三步&#xff1a;点击菜单Certifications - …

C#自动删除20天前文件夹图片

资料夹如下&#xff0c;需求为自动删除20天前保存的图片 如下为该方法函数&#xff0c;保留天数可以自定义 public static void CleanFile(){string path $"{SvMaster.DataPath}\\Image";\\文件夹路径DirectoryInfo dir new DirectoryInfo(path);FileSystemInfo[] …

XD6500S一款串口SiP模块 射频LoRa芯片 内置sx1262

1.1产品介绍 XD6500S是一款集射频前端和LoRa射频于一体的LoRa SIP模块系列收发器SX1262 senies&#xff0c;支持LoRa⑧和FSK调制。LoRa技术是一种扩频协议优化低数据速率&#xff0c;超长距离和超低功耗用于LPWAN应用的通信。 XD6500S设计具有4.2 mA的有效接收电流消耗&#…

一创聚宽停止服务,散户可以选择它!

第一创业和聚宽停止合作&#xff01;还有什么量化平台可选&#xff1f; 先了解背景&#xff1a; 从2023年9月25日起&#xff0c;一创聚宽的量化交易平台暂停开通交易权限&#xff0c;到2023年12月29日&#xff0c;一创聚宽量化交易平台将停止提供所有服务。这一消息对于之前使…

IPv6有状态地址自动配置(DHCPv6)

IPv6有状态地址自动配置 IPv6实现了对无状态地址自动配置的支持。这种不需要特殊服务器的地址自动配置方式有着极大的好处。使用起来也很方便,而在IPv4时代曾经是地址自动分配的首选方式的DHCP好像显得有些没落了。但是,DHCP作为有状态地址自动配置的方式之一,依旧有着无状…

echarts实现点击不同的柱子实现类目的不同名字

实现效果如下图: 首先实现echarts堆叠柱状图数据为0的不占用x轴空间 option {tooltip: {trigger: axis,axisPointer: {type: shadow},},legend: {},grid: {left: 3%,right: 4%,bottom: 3%,containLabel: true},xAxis: [{type: category,position: bottom,data: [园区内, 园区…

3C电子制造:智慧物流引领产业升级

在当今科技飞速发展的时代&#xff0c;3C电子制造行业正面临着一系列挑战和机遇。市场需求的多变和技术革新的加速&#xff0c;使得企业必须不断创新和升级。在这个过程中&#xff0c;智慧物流成为了一个关键的环节&#xff0c;它能够有效地提高生产效率、降低成本并增强企业的…

无心剑小诗《银婚颂》

银婚颂 二十五个春秋共一轮 你是岁月赠予我最亮的星辰 从青春燃烧到岁月沉稳 你的笑颜,我永恒的晨昏 春花烂漫是你眼里的璀璨 夏日蝉鸣是彼此故事的和弦 秋叶纷飞诉说漫天情缘 冬雪纯洁见证温暖的牵绊 月光洒满每段共享小径 星光点染每个深情的夜晚 风雨同舟铸就铜墙铁壁 携…

专属定制适合个人的知识付费平台,打造个性化品牌与自主管理体验

明理信息科技知识付费saas租户平台 在当今数字化时代&#xff0c;知识付费平台已经成为人们获取专业知识、提升自身素质的重要渠道。然而&#xff0c;公共知识付费平台虽然内容丰富&#xff0c;但难以满足个人或企业个性化的需求和品牌打造。因此&#xff0c;我们提出了专属定…

易基因:ChIP-seq等揭示Runx2通过转录调控Itgav表达激活肝星状细胞以促进肝纤维化|科研进展

这里是专注表观组学十余年&#xff0c;领跑多组学科研服务的易基因。 肌成纤维细胞&#xff08;myofibroblasts&#xff09;主要由肝脏中活化的肝星状细胞(hepatic stellate cells HSC)组成&#xff0c;在肝纤维化进展中发挥着核心作用。由于肌成纤维细胞主要负责细胞外基质蛋…

neo4j图数据库安装和测试

neo4j图数据库安装和测试 1. 下载合适的neo4j软件版本。 https://we-yun.com/doc/neo4j/ https://neo4j.com/deployment-center/#enterprise 2. 下载JAVAJDK 由于neo4j是一个用Java编写的图形数据库&#xff0c;因此在安装和运行Neo4j之前&#xff0c;需要先安装Java Developm…