K-最近邻算法(KNN)是什么算法?

news2025/1/19 11:26:29

K-最近邻算法(K-Nearest Neighbor,KNN)是一种经典的有监督学习方法,也可以被归为懒惰学习(Lazy Learning)方法。它基于“物以类聚”的原理,假设样本之间的类别距离越近则它们越有可能是同一类别。
KNN算法的工作原理简单且直观,当需要将一个测试样本分类时,它首先会计算测试样本与所有训练样本之间的距离,然后根据距离的递增关系进行排序。接着,它会选择距离最小的前K个样本,并统计这K个最近邻样本中每个样本出现的次数。最后,它会选择出现频率最高的类标号作为未知样本的类标号。
在KNN算法中,K值的选择是关键。如果K值较小,只有当需要进行预测的样本和训练的样本较接近时,才能有较好的效果。如果K值较大,则算法分类的近似误差增大,与输入样本距离较远的样本也会对结果产生作用。

在这里插入图片描述
KNN算法的工作过程如下:
1.计算待分类样本与训练集中所有样本之间的距离,常用的距离度量方法包括欧氏距离、曼哈顿距离等。
2.选择K个距离最近的样本,即K个最近邻。
3.对于分类问题,统计K个最近邻中不同类别的样本数量,并将待分类样本归为数量最多的那个类别。
4.对于回归问题,计算K个最近邻的平均值或加权平均值,并将其作为待分类样本的预测值。
KNN算法的优点是简单易理解、实现容易,并且对于非线性问题具有较好的表现。此外,KNN算法可以适应新的训练数据,不需要重新训练模型。KNN算法既能够用来解决分类问题,也能够用来解决回归问题。在处理分类问题时,KNN通过扫描训练样本集找到与测试样本最相似的训练样本,并依据该样本的类别进行投票确定测试样本的类别。在处理回归问题时,KNN则通过计算训练样本与测试样本的相似程度进行加权投票。
然而,KNN算法的缺点包括计算复杂度高,需要存储全部训练样本,对于大规模数据集会消耗较多的内存和时间。此外,KNN算法对于样本分布不平衡的情况可能产生偏见,并且对于高维数据和噪声数据的处理能力相对较弱。
需要注意的是,由于KNN算法需要计算所有训练样本与测试样本之间的距离,因此当训练样本集较大时,其计算成本会较高。为了解决这个问题,可以考虑使用一些优化的距离计算方法,如树结构算法等。同时,KNN算法的方差(Variance)往往较高,容易受到训练集大小和噪声的影响,因此在使用时需要注意过拟合和欠拟合的问题。
在应用方面,KNN算法常用于推荐系统、图像识别、医学诊断等领域。
喜欢点赞收藏,如有疑问,点击链接加入群聊【信创技术交流群】:http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=EjDhISXNgJlMMemn85viUFgIqzkDY3OC&authKey=2SKLwlmvTpbqlaQtJ%2FtFXJgHVgltewcfvbIpzdA7BMjIjt2YM1h71qlJoIuWxp7K&noverify=0&group_code=721096495

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1357772.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MT9284-28J 高效率升压白光LED驱动器IC SOT23-6 航天民芯

描述 MT9284是一个升压转换器,设计用于从单电池锂离子电池中驱动多达7个系列的白色led。MT9284使用电流模式,固定频率结构来调节LED电流,它通过外部电流感应电阻来测量。MT9284包括低电压锁定、限流和热过载保护,以防止在输出过载…

【MIT 6.S081】2020, 实验记录(1),Lab: Xv6 and Unix utilities

目录 实验准备TasksTask 1: Boot xv6Task 2: sleepTask 3: pingpongTask 4: primesTask 5: find 实验准备 这个 lab 用来学习尝试如何通过 system call 来实现常见的 shell 命令行程序,比如 ls、sleep、xargs 等。 实验官网 可以使用 docker 搭建实验环境&#x…

全志R128 SDK架构与目录结构

R128 S2 是全志提供的一款 M33(ARM)C906(RISCV-64)HIFI5(Xtensa) 三核异构 SoC,同时芯片内部 SIP 有 1M SRAM、8M LSPSRAM、8M HSPSRAM 以及 16M NORFLASH。本文档作为 R128 FreeRTOS SDK 开发指南,旨在帮助软件开发工程师、技术支持工程师快速上手&…

MathType2024MAC苹果电脑版本下载安装图文教程

在数学和科学的世界里,表达精确的方程式和化学公式是至关重要的。MathType作为一款及其优秀且有全球影响力的数学公式编辑器,让这一切变得触手可及。MathType Mac版已全新升级,作为Microsoft Word和PowerPoint的Add-In插件,为您的…

项目使用PowerJob

新一代的定时任务框架——PowerJob 简介 PowerJob是基于java开发的企业级的分布式任务调度平台,与xxl-job一样,基于web页面实现任务调度配置与记录,使用简单,上手快速,其主要功能特性如下: 使用简单&…

CEC2017(Python):七种算法(PSO、RFO、DBO、HHO、SSA、DE、GWO)求解CEC2017

一、7种算法简介 1、粒子群优化算法PSO 2、红狐优化算法RFO 3、蜣螂优化算法DBO 4、哈里斯鹰优化算法HHO 5、麻雀搜索算法SSA 6、差分进化算法DE 7、灰狼优化算法GWO 二、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., &am…

华为云Stack 8.X流量模型分析(六)

八、基础云专线流量模型分析 ​ 华为官方对云专线定义是:用户数据中心通过运营商的物理专线(MPLS/VPN,以太专线)访问云内资源,云内资源呈现真实IP,通过设置的专线路由实现三层互通。 ​ 通过云专线直接访…

LeetCode(36)有效的数独 ⭐⭐

请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图) 注…

ssm基于web的网络游戏交易平台信息管理系统的设计与实现论文

摘 要 传统办法管理信息首先需要花费的时间比较多,其次数据出错率比较高,而且对错误的数据进行更改也比较困难,最后,检索数据费事费力。因此,在计算机上安装网络游戏交易平台软件来发挥其高效地信息处理的作用&#x…

SecOC中新鲜度值和MAC都按照完整的值来生成,但是在发送和认证的时候只会截取一部分。这边截取的部分一般取多长?由什么参数设定?

新鲜度值(Freshness Value, FV)和消息验证码(Message Authentication Code, MAC)是SecOC协议中用于保证数据的真实性和新鲜度的重要信息。它们的长度取决于不同的因素,如加密算法、安全级别、通信带宽等。 一般来说,FV和MAC的长度越长,安全性越高,但也会占用更多的通信…

Kibana 自定义索引连接器告警

一、 创建索引 PUT ipu-cbs-warning-info{"settings" : {"number_of_shards" : 1},"mappings" : {"properties" : {"timestamp": {"type": "date"},"rule_id" : { "type" : "…

面试官:CSS3新增了哪些新特性?

面试官:CSS3新增了哪些新特性? 一、是什么 css,即层叠样式表(Cascading Style Sheets)的简称,是一种标记语言,由浏览器解释执行用来使页面变得更美观 css3是css的最新标准,是向后兼…

十、基本对话框大集合(Qt5 GUI系列)

目录 一、设计需求 二、实现代码 三、代码解析 四、总结 一、设计需求 Qt提供了很多标准的对话框。例如标准文件对话框(QFileDialog)、标准颜色对话框(QColorDialog)、标准字体对话框 (QFontDialog)、标准输入对话框 (QInputDialog) 及消息对话框 (QMessageBox)。本文展示各…

编写.NET的Dockerfile文件构建镜像

创建一个WebApi项目,并且创建一个Dockerfile空文件,添加以下代码,7.0代表的你项目使用的SDK的版本,构建的时候也需要选择好指定的镜像tag FROM mcr.microsoft.com/dotnet/aspnet:7.0 AS base WORKDIR /app EXPOSE 80 EXPOSE 443F…

[论文笔记] Megtron_LM 0、报错:vscode调试无法传进去参数 launch.json文件获取args参数

解决方法: 配置好launch.json文件后,应该点运行和调试里面的运行按钮。而不是直接点文件右上角的debug。 可以看到terminal中,如果没有正常加载launch.json,则参数中没有args的参数。 如果正常加载,可以看到args的很多…

docker镜像仓库详解(Docker Registry)

本片文章主要是对docker的镜像仓库进行了详解。其中包含了一些常用了 docker 指令,通过举例进行详解。也详细解释了镜像仓库的工作机制和常见的镜像仓库。也实际拉去和运行了一些镜像。希望本篇文章会对你有所帮助! 文章目录 一、什么是Docker Registry …

Python Selenium如何下载网页中的图片到本地?(Base64编码的图片下载)

前言: 在网页上,图片有时会以Base64编码的形式嵌入在HTML中,而不是作为单独的文件提供。这种方式的优点是可以减少HTTP请求的数量,因为图片数据直接包含在HTML中,不需要额外的请求来获取图片文件。这对于小图片…

如何解决vscode中文路径的问题

首先我们进入设备 搜索“区域”,选择“区域设置” 点击管理语言设置 点击更改系统区域设置,勾选“Beta 版: 使用 Unicode UTF-8 提供全球语言支持(U)”,电脑会叫你重启,你重启就行了

mysql四大引擎、账号管理以及建库

目录 一.数据库存储引擎1.1存储引擎的查看1.2InnoDB1.3MyISAM1.4 MEMORY1.5 Archive 二.数据库管理2.1元数据库分类2.2 操作2.3 MySQL库 三.数据表管理3.1三大范式3.2 整形3.3 实数3.4 字符串3.5 text&blob3.6 日期类型3.7 选中标识符 四.数据库账号管理4.1 查询用户4.2查看…

某音关键词搜索商品接口,某音关键词搜索商品列表接口,宝贝详情页接口,某音商品比价接口接入方案

要接入API接口以采集电商平台上的商品数据,可以按照以下步骤进行: 1、找到可用的API接口:首先,需要找到支持查询商品信息的API接口。这些信息通常可以在电商平台的官方文档或开发者门户网站上找到。 2、注册并获取API密钥&#x…