LLM Agent之再谈RAG的召回信息密度和质量

news2024/11/28 10:45:00

话接上文的召回多样性优化,多路索引的召回方案可以提供更多的潜在候选内容。但候选越多,如何对这些内容进行筛选和排序就变得更加重要。这一章我们唠唠召回的信息密度和质量。同样参考经典搜索和推荐框架,这一章对应排序+重排环节,考虑排序中粗排和精排的区分主要是针对低延时的工程优化,这里不再进一步区分,统一算作排序模块。让我们先对比下重排和排序模块在经典框架和RAG中的异同

  • 排序模块

    • 经典框架:pointwise建模,局部单一item价值最大化,这里的价值可以是搜索推荐中的内容点击率,或者广告中的ecpm,价值由后面使用的用户来决定

    • RAG:基本和经典框架相同,不过价值是大模型使用上文多大程度可以回答问题,价值的定义先由背后的大模型给出,再进一步才能触达用户。更具体的定义是,排序模块承担着最大化信息密度的功能,也就是在更少的TopK内筛选出尽可能多的高质量内容,并过滤噪声信息。

  • 重排模块

    • 经典框架:Listwise建模,通过对item进行排列组合,使得全局价值最大化,进而使得用户多次行为带来的整体体验感更好。这里的整体可以是一个搜索列表页,一屏推荐信息流,也可以是更长的一整个session内用户体验的整体指标,以及背后的商业价值。常见的做法是打散,提高连续内容的多样性,以及前后内容的逻辑连贯性,不过打散只是手段,全局价值才是终极目标

    • RAG:概念相似,通过重排优化模型对整体上文的使用效率。优化模型对上文的使用,提升信息连贯性和多样性,最小化信息不一致性和冲突。不过当前大模型对话式的交互方式更难拿到用户体验的反馈信号,想要优化用户体验难度更高。

下面我们分别说两这两个模块有哪些实现方案

1. 排序模块

上一章提到使用query改写,多路索引,包括bm25离散索引,多种embedding连续索引进行多路内容召回。这种方案会提供更丰富的内容候选,但也显著增加了上文长度。而很多论文都评估过,过长的上文,以及过长上文中更大比例的噪声信息,都会影响模型推理的效果,如下图

img

因此如何从这些召回内容中排序筛选出更出质量更高的内容,过滤噪声信息就是排序模块需要做的。考虑不同索引之间对于相似度的计算打分相互不可比,更不可加,因此需要统一的打分维度来对候选内容进行排序,这里提供两个无监督的混合排序打分方案

1.1 RRF混排

  • Hybrid search scoring (RRF) - Azure AI Search | Microsoft Learn

  • Ensemble Retriever | 🦜️🔗 Langchain

多路召回混合排序较常见的就是Reciprocal Rank Fusion(RRF),把所有打分维度都转化成排名,每个文档的最终得分是多路打分的排名之和的倒数。通过排名来解决不同打分之间scale的差异性。公式如下,其中r(d)是单一打分维度中的文档排名,K是常数起到平滑的作用,微软实验后给的取值是60。

img

以下是微软搜索中使用RRF类合并文本检索和向量检索的一个示意图,使用RRF分别对文本检索和向量检索的多路召回内容进行混合排序

img

1.2 信息熵打分

除了使用排名来对各路召回的内容质量进行归一化,当然也可以使用统一的模型打分来对内容质量进行衡量,比如可以使用Bert Cross-Encoder BGE-Reranker来对所有候选文档来进行打分排序,利用cross模型比embedding模型更精准的特点来进一步对召回内容进行过滤。

这里我想聊聊除了相关性之外的另一个内容质量评估维度 - Information-Entropy。Information-Entropy是从文本信息熵的角度对内容有效性和质量进行打分筛选,有以下几种不同的信息熵度量方式

1.2.1 Selective-Context

Unlocking Context Constraints of LLMs: Enhancing Context Efficiency of LLMs with Self-Information-Based Content Filtering

img

Selective-Context使用自信息对内容质量进行评估。上一次碰到自信息,还是在做新词挖掘的算法。放在内容质量筛选也是同样的道理,熵值越低(不确定性越低),自信息越低的token带给语言模型的信息量就越低,例如停用词,同义词等等。因此自信息更低的内容本身的价值更低。不过自信息的计算是token粒度的,想要对短语,句子,段落进行计算可以近似采用token求和的方式,也就是假设token之间是相互独立。但是越大粒度的信息合并,简单求和的自信息误差越大,因为token并非真正独立。因此单纯使用内容自信息的计算方式更适合短语粒度的上文内容压缩,似乎不完全适合对RAG召回的段落内容进行打分,不过不要着急接着往后看哟~

以下是Selective-Context通过自信息对Context进行压缩的效果,至于压缩幅度和压缩后对模型推理的影响我们放到最后一起对比

img

1.2.2 LLMLingua

LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models

LLMLingua同样是使用token熵值来对内容质量进行打分,不过进一步放松了token独立性的假设。 计算公式如下,先把整个上文context分段,论文使用100个token为一段。以下Sj,i��,�为第j个段落中第i个字,~Sj�~�是第j个段落前所有段落经过压缩后的内容。也就是在计算当前段落每个字的熵值时,会把之前已经压缩过的内容拼接在前面,使得对更大粒度的段落熵值估计更加准确。

img

1.2.3 LongLLMLingua

LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression

LongLLMLingua进一步把完全基于内容的信息熵,优化成了基于内容回答问题的条件熵,更完美的适配RAG框架中排序模块对召回内容整体打分的要求。

以上LLMLinugua和Selective-Context单纯对上文内容的熵值进行计算,但很有可能熵值高的内容虽然包含大量信息但都和问题无关,只是单纯的信息噪声。因此LongLLMLingua在熵值计算中引入了问题,那无非就是两种计算方案,要么给定问题计算内容的熵值,要么给定内容计算问题的熵值。论文考虑内容中可能是有效信息和噪声信息的混合,因此选用了后者。也就是给定每段召回内容,计算问题的熵值。

这里论文还在问题前加了一段指令,"Xrestrict=���������=we can get the answer to this question in the given documents",通过增加内容到问题的关联程度,来优化条件熵的计算。

img

论文对比了不同打分排序方案,包括BM25,各种向量embedding,以及LLMLingua,其中LongLLMLinuga在TopK文档的召回率上显著更优,如下图。具体的压缩率和推理效果对比,我们放到后面的重排模块一起来说。

img

LongLLMLingua在以上的段落打分之外,还加入了对段落内部token级别的内容压缩。也就是先筛选TopN段落,再在段落内筛选有效Token。不过看论文效果感觉段落排序的重要性>>内容压缩,这部分就不再赘述,感兴趣的朋友去看论文吧~

重排模块

针对排序模块筛选出的TopK上文候选,重排模块需要通过对内容进一步排列组合,最大化模型整体推理效果。和排序模块最大的差异在于它的整体性,不再针对每个Doc进行独立打分,而是优化整个Context上文的效果。主要有以下两个优化方向:一个是文档位置的优化,一个是文档之间关联性的优化

文档位置

  • LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression

  • Lost in the Middle: How Language Models Use Long Contexts

  • https://api.python.langchain.com/en/latest/document_transformers/langchain.document_transformers.long_context_reorder.LongContextReorder.html#

img

针对文档位置的最优化就是Lost in the Middle(上图),相信大家可能都比较熟悉。简单说就是大模型在使用上文推理时,倾向于使用最前面和最后面的内容,而对中间的内容爱搭不理。因此可以基于内容的质量,把重要的内容放在Context的前面和后面。

LongLLMLingua也做了类似的尝试,并且认为前面的位置比后面更加重要,因此直接使用上面排序模块对段落的打分,对排序后保留的候选内容,进行重新排列,按照分数由高到低依次从前往后排列。

img

最后来一起看下效果,在LongLLMLingua中,论文对比了各种相似度排序方案保留TopN文档,并使用该排序方案进一步重排内容的效果。在2倍和4倍的压缩率下LongLLMLingua的效果都是显著最好的,不过可以发现只使用LongLLMLingua进行排序(Retrieval-base Methods)并做重排(Reorder列)的效果其实就已经不差了,而段落内部的token压缩更多是锦上添花。

img

文档关联性

  • LOTR (Merger Retriever) | 🦜️🔗 Langchain

  • MetaInsight: Automatic Discovery of Structured Knowledge for Exploratory Data Analysis

以上排序和重排的逻辑,都是考虑问题和召回内容之间的关联性,但都没有引入Context内部不同召回内容之间的关联性。

langchain的LOTR (Merger Retriever)实现了部分类似的功能,包括使用embedding对多路召回的内容进行消重,以及对内容进行聚类,每个聚类中筛选最靠近中心的一条内容。这一步可以放在排序中去做,也可以放在排序后的重排模块。

之前解密Prompt系列19. LLM Agent之数据分析领域的应用章节提到的微软的MetaInsight也引入了类似的打散逻辑。其中

  • 内容的整体价值=每条内容的价值之和-内容之间重合的价值

  • 两两内容重合价值=两条内容打分的最小值*内容重合率

那放到RAG框架可能就可以使用以上的信息熵来作为打分,相似度来作为重合率

img

img

这块我们也在尝试中,所以没有结论性的内容,这里只抛出几个问题,有试验过效果的有缘人可以在评论区回复

  • 信息连贯性:把内容相似的多个召回连续排列,会比散落在Context各处效果更好么

  • 信息多样性:对召回内容进行聚类,把内容相似观的多个召回进行消重,或者只使用每个cluster内距离类中心最新的一条或TopN条内容,会提升推理效果么

  • 信息一致性:观点或内容冲突的多个召回内容,对推理的影响有多大

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1356853.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

听GPT 讲Rust源代码--compiler(8)

File: rust/compiler/rustc_trait_selection/src/solve/weak_types.rs 在Rust编译器的源代码中,rust/compiler/rustc_trait_selection/src/solve/weak_types.rs文件的作用是处理弱类型化解决方案。 在编译器中,当我们在代码中使用一个未经完全指定的泛型…

javascript 常见工具函数(二)

11.数组等分切片&#xff1a; this.newMapList []; for (var i 0; i < this.mapDataList.length; i 2) {this.newMapList.push(this.mapDataList.slice(i, i 2)); } 12.js做奇偶判断&#xff1a; if (this.mapDataList.length ! 0) {this.mapDataList.length % 2 0 ?…

python包chromadb安装失败总结

1&#xff0c;背景&#xff1a; 最近在学习langchain的课程&#xff0c;里面创建自己的知识库的Retrieval模块中&#xff0c;需要用到向量数据库。 所以按照官方的教程&#xff08;vectorstores&#xff09;&#xff0c;准备使用chroma的向量数据库。图片来源 2&#xff0c;问…

14.两数之和

题目 class Solution {public int[] twoSum(int[] nums, int target) {int[] ret {-1,-1};for(int i0;i<nums.length;i) {for(int ji1;j<nums.length;j) {if(nums[i] nums[j] target) {ret[0] i;ret[1] j;}}}return ret;} }

java实现大文件分片上传

背景&#xff1a; 公司后台管理系统有个需求&#xff0c;需要上传体积比较大的文件&#xff1a;500M&#xff0d;1024M&#xff1b;此时普通的文件上传显然有些吃力了&#xff0c;加上我司服务器配置本就不高&#xff0c;带宽也不大&#xff0c;所以必须考虑多线程异步上传来提…

Flink 维表关联方案

Flink 维表关联方案 1、Flink DataStream 关联维表 1&#xff09;概述 1.分类 实时数据库查找关联&#xff08;Per-Record Reference Data Lookup&#xff09; 预加载维表关联&#xff08;Pre-Loading of Reference Data&#xff09; 维表变更日志关联&#xff08;Refere…

SpringBoot从配置文件中获取属性的方法

方式一&#xff1a;Value 基本类型属性注入&#xff0c;直接在字段上添加Value("\${xxx.xxx}")即可&#xff0e;注意这里用的是$&#xff0c;而不是&#xff03;&#xff0c;Value注入的属性&#xff0c;一般其他属性没有关联关系。 配置文件 user:name: Manaphya…

代码随想录算法训练营day6|242.有效的字母异位词、349.两个数组的交集、202.快乐数

哈希表理论基础 建议&#xff1a;大家要了解哈希表的内部实现原理&#xff0c;哈希函数&#xff0c;哈希碰撞&#xff0c;以及常见哈希表的区别&#xff0c;数组&#xff0c;set 和map。 什么时候想到用哈希法&#xff0c;当我们遇到了要快速判断一个元素是否出现集合里的时…

C#用StringBuilder高效处理字符串

目录 一、背景 二、使用StringBuilder便捷、高效地操作字符串 三、实例 1.源码 2.生成效果 四、实例中知识点 1.StringBuilder类 一、背景 符串是不可改变的对象&#xff0c;字符串在创建以后&#xff0c;就不会被改变&#xff0c;当使用字符串对象的Replace、split或Re…

提供电商Api接口-100种接口,淘宝,1688,抖音商品详情数据安全,稳定,支持高并发

Java是一种高级编程语言&#xff0c;由Sun Microsystems公司于1995年推出&#xff0c;现在属于Oracle公司开发和维护。Java以平台无关性、面向对象、安全性、可移植性和高性能著称&#xff0c;广泛用于桌面应用程序、嵌入式系统、企业级服务、Android移动应用程序等。 接口是Ja…

JS运行机制、Event Loop

1、JS运行机制 JS最大的特点就是单线程&#xff0c;所以他同一时间只能做一件事情。使单线程不阻塞&#xff0c;就是事件循环。 在JS当中分为两种任务&#xff1a; 同步任务&#xff1a;立即执行的任务&#xff0c;一般放在主线程中&#xff08;主执行栈&#xff09;。异步任…

Python消消乐小游戏(PyGame)

文章目录 写在前面喜羊羊与灰太狼PyGame入门消消乐注意事项写在后面 写在前面 本期内容&#xff1a;基于pygame实现喜羊羊与灰太狼版消消乐小游戏 实验环境 python3.11及以上pycharmpygame 安装pygame的命令&#xff1a; pip install -i https://pypi.tuna.tsinghua.edu.c…

前端基础:Vue搞笑白话文(工作之余瞎写)

1、data:{}与data(){return{}}这两个是个什么鬼&#xff1f; vue实例 new Vue({el:#app,data:{name:李四}}) 组件实例 const aaa Vue.extent({data(){return {name:}} }) 为什么Vue实例可以那么写而组件实例就不行了&#xff1f;原因就是因为在底层原理上&#xff0c;组件…

【KingbaseES】实现MySql函数Space

CREATE OR REPLACE FUNCTION SPACE(input_length integer) RETURNS text AS $$ BEGIN RETURN REPEAT( , input_length) AS SPACES; END; $$ LANGUAGE plpgsql;

Windows 下用 C++ 调用 Python

文章目录 Part.I IntroductionChap.I InformationChap.II 预备知识 Part.II 语法Chap.I PyRun_SimpleStringChap.II C / Python 变量之间的相互转换 Part.III 实例Chap.I 文件内容Chap.II 基于 Visual Studio IDEChap.III 基于 cmakeChap.IV 运行结果 Part.IV 可能出现的问题Ch…

从零开始使用Konva,画图并绑定节点。

实战可行&#xff0c;vue3vitets实现 实现电子地图&#xff0c;左侧列表可拖拽绑定 地图可绑定点设备坐标 安装 npm install konva 插件引入 import Konva from konva import Konva from konva import { getImgUrl } from /utils export class konvaManager {public stage…

视频怎么配上音乐?视频软件轻松配乐

视频怎么配上音乐&#xff1f;视频配乐已经成为了一种重要的表达方式。它能够为视频增添情感&#xff0c;营造氛围&#xff0c;让观众更加深入地理解视频的内容。那么&#xff0c;哪些软件可以给视频配上音乐呢&#xff1f;本文将为你介绍几款优秀软件。 一、清爽视频编辑 清爽…

福利来袭,.NET Core开发5大案例,30w字PDF文档大放送!!!

千里之行&#xff0c;始于足下&#xff0c;若想提高软件编程能力&#xff0c;最最重要的是实践&#xff0c;所谓纸上得来终觉浅&#xff0c;绝知此事要躬行。根据相关【艾宾浩斯遗忘曲线】研究表明&#xff0c;如果不动手实践&#xff0c;记住的东西会很快忘记。 为了便于大家查…

虚幻UE 增强输入-第三人称模板增强输入分析与扩展

本篇是增强输入模块&#xff0c;作为UE5.0新增加的模块。 其展现出来的功能异常地强大&#xff01; 让我们先来学习学习一下第三人称模板里面的增强输入吧&#xff01; 文章目录 前言一、增强输入四大概念二、使用步骤1、打开增强输入模块2、添加IA输入动作2、添加IMC输入映射内…

SAFe大规模敏捷企业级实训

课程简介 SAFe – Scaled Agile Framework是目前全球运用最广泛的大规模敏捷框架&#xff0c;也是成长最快、最被认可、最有价值的规模化敏捷框架&#xff0c;目前全球SAFe认证专业人士已达80万人&#xff0c;福布斯100强的70%都在实施SAFe。本课程是一个2天的 SAFe权威培训课…