Hadoop入门学习笔记——八、数据分析综合案例

news2024/11/29 2:54:08

视频课程地址:https://www.bilibili.com/video/BV1WY4y197g7
课程资料链接:https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd=5ay8

Hadoop入门学习笔记(汇总)

目录

  • 八、数据分析综合案例
    • 8.1. 需求分析
      • 8.1.1. 背景介绍
      • 8.1.2. 目标
      • 8.1.3. 需求
      • 8.1.4. 数据内容
    • 8.2. 加载数据
    • 8.3. ETL数据清洗转换
    • 8.4. 指标统计
    • 8.5. FineBI安装&配置
      • 8.5.1. FineBI的下载和安装
      • 8.5.2. 配置FineBI与Hive的连接
    • 8.6. 可视化展示

八、数据分析综合案例

8.1. 需求分析

8.1.1. 背景介绍

聊天平台每天都会有大量的用户在线,会出现大量的聊天数据,通过对聊天数据的统计分析,可以更好的对用户构建精准的用户画像,为用户提供更好的服务以及实现高ROI的平台运营推广,给公司的发展决策提供精确的数据支撑。
我们将基于一个社交平台App的用户数据,完成相关指标的统计分析并结合BI工具对指标进行可视化展现。

8.1.2. 目标

基于Hadoop和Hive实现聊天数据统计分析,构建聊天数据分析报表
在这里插入图片描述

8.1.3. 需求

  • 统计今日总消息量
  • 统计今日每小时消息量、发送和接收用户数
  • 统计今日各地区发送消息数据量
  • 统计今日发送消息和接收消息的用户数
  • 统计今日发送消息最多的Top10用户
  • 统计今日接收消息最多的Top10用户
  • 统计发送人的手机型号分布情况
  • 统计发送人的设备操作系统分布情况

8.1.4. 数据内容

  • 数据大小:30万条数据
  • 列分隔符:Hive默认分隔符‘\001’
  • 数据字典及样例数据

在这里插入图片描述

8.2. 加载数据

1、创建库表

-- 如果数据库已存在就删除
drop database if exists db_msg cascade;

-- 创建数据库
CREATE database db_msg;

-- 选择数据库
use db_msg;

--如果表已存在就删除
drop table if exists db_msg.tb_msg_source;

-- 建表
create table db_msg.tb_msg_source(
msg_time string comment "消息发送时间",
sender_name string comment "发送人昵称",
sender_account string comment "发送人账号",
sender_sex string comment "发送人性别",
sender_ip string comment "发送人ip地址",
sender_os string comment "发送人操作系统",
sender_phonetype string comment "发送人手机型号",
sender_network string comment "发送人网络类型",
sender_gps string comment "发送人的GPS定位",
receiver_name string comment "接收人昵称",
receiver_ip string comment "接收人IP",
receiver_account string comment "接收人账号",
receiver_os string comment "接收人操作系统",
receiver_phonetype string comment "接收人手机型号",
receiver_network string comment "接收人网络类型",
receiver_gps string comment "接收人的GPS定位",
receiver_sex string comment "接收人性别",
msg_type string comment "消息类型",
distance string comment "双方距离",
message string comment "消息内容"
);

2、数据导入
将课程资料中的chat_data-30W.csv文件上传到node1服务器的/home/hadoop目录下;

在Linux系统内执行以下命令:

# 切换工作目录
cd /home/hadoop

# 在HDFS系统中创建/chatdemo/data目录
hadoop fs -mkdir -p /chatdemo/data

# 将chat_data-30W.csv文件从Linux上传到HDFS系统中
hadoop fs -put chat_data-30W.csv /chatdemo/data

在DBeaver中执行以下命令:

-- 从HDFS系统中加载数据到Hive表
load data inpath '/chatdemo/data/chat_data-30W.csv' into table tb_msg_source;

-- 验证数据加载
SELECT * FROM tb_msg_source tablesample(100 rows);

-- 验证表中的数据条数
SELECT COUNT(*) from tb_msg_source tms ; 

8.3. ETL数据清洗转换

由于原始数据中存在部分不合规的数据,所以需要对数据进行清洗。
1、原始数据存在的问题

  • 问题1:当前数据中,有一些数据的字段(如sender_gps)为空,不是合法数据;
  • 问题2:需求中,需要统计每天、每个小时的消息量,但是数据中没有天和小时字段,只有整体时间字段,不好处理;
  • 问题3:需求中,需要对经度和维度构建地区的可视化地图,但是数据中GPS经纬度为一个字段,不好处理;

2、数据清洗需求

  • 需求1:对字段为空的不合法数据进行过滤;
  • 需求2:通过时间字段构建天和小时字段;
  • 需求3:从GPS的经纬度中提取经度和维度;
  • 需求4:将ETL以后的结果保存到一张新的Hive表中。
-- 创建存储清洗后数据的表
create table db_msg.tb_msg_etl(
msg_time string comment "消息发送时间",
sender_name string comment "发送人昵称",
sender_account string comment "发送人账号",
sender_sex string comment "发送人性别",
sender_ip string comment "发送人ip地址",
sender_os string comment "发送人操作系统",
sender_phonetype string comment "发送人手机型号",
sender_network string comment "发送人网络类型",
sender_gps string comment "发送人的GPS定位",
receiver_name string comment "接收人昵称",
receiver_ip string comment "接收人IP",
receiver_account string comment "接收人账号",
receiver_os string comment "接收人操作系统",
receiver_phonetype string comment "接收人手机型号",
receiver_network string comment "接收人网络类型",
receiver_gps string comment "接收人的GPS定位",
receiver_sex string comment "接收人性别",
msg_type string comment "消息类型",
distance string comment "双方距离",
message string comment "消息内容",
msg_day string comment "消息日",
msg_hour string comment "消息小时",
sender_lng double comment "经度",
sender_lat double comment "纬度"
);


-- 按照需求对原始数据表中的数据进行过滤,然后插入新建的表中
INSERT OVERWRITE TABLE db_msg.tb_msg_etl
SELECT 
	*,
	DATE(msg_time) as msg_day,
	HOUR(msg_time) as msg_hour,
	SPLIT(sender_gps, ',')[0] as sender_lng,
	SPLIT(sender_gps, ',')[0] as sender_lat
FROM db_msg.tb_msg_source
WHERE LENGTH(sender_gps) > 0;

执行完毕后,打开tb_msg_etl表,可以看到以下数据
在这里插入图片描述

扩展知识:ETL
从表tb_msg_source 查询数据进行数据过滤和转换,并将结果写入到:tb_msg_etl表中的操作。这种操作,本质上是一种简单的ETL行为。
ETL:

  • E,Extract,抽取
  • T,Transform,转换
  • L,Load,加载

从A抽取数据(E),进行数据转换过滤(T),将结果加载到B(L),就是ETL。

8.4. 指标统计

1、指标1:统计每日发送的消息总量

-- 统计每日消息总量
CREATE table db_msg.tb_rs_total_msg_cnt comment '每日消息总量' as
SELECT msg_day, COUNT(*) as total_msg_cnt  FROM db_msg.tb_msg_etl GROUP BY msg_day;

2、指标2:统计每小时消息量、发送和接收用户数

-- 统计每小时消息量、发送和接收用户数
CREATE table db_msg.tb_rs_hour_msg_cnt comment '每小时消息量情况' as
SELECT
	msg_hour,
	COUNT(*) as total_msg_cnt,
	COUNT(DISTINCT sender_account) as sender_user_cnt,
	COUNT(DISTINCT receiver_account) as receiver_user_cnt
FROM
	db_msg.tb_msg_etl
GROUP BY
	msg_hour;

3、指标3:统计每日各地区发送消息总量

-- 每日各地区发送消息总量
CREATE table db_msg.tb_rs_loc_cnt comment '每日各地区发送消息总量' as
SELECT
	msg_day,
	sender_lng,
	sender_lat,
	COUNT(*) as total_msg_cnt
FROM db_msg.tb_msg_etl 
GROUP BY msg_day, sender_lng, sender_lat;

4、指标4:统计每日发送和接收用户数

-- 每日发送和接收用户数
CREATE table db_msg.tb_rs_user_cnt comment '每日发送消息和接收消息人数' as
SELECT 
	msg_day,
	COUNT(DISTINCT sender_account) as sender_user_cnt,
	COUNT(DISTINCT receiver_account) as receiver_user_cnt 
FROM db_msg.tb_msg_etl
GROUP BY msg_day;

5、指标5:统计发送消息条数最多的TOP10用户

-- 发送消息条数最多的前10个用户
CREATE table db_msg.tb_rs_sneder_user_top10 comment '发送消息条数最多的10个用户' as
SELECT 
	sender_name,
	COUNT(*) as sender_msg_cnt 
FROM db_msg.tb_msg_etl
GROUP BY sender_name
SORT BY sender_msg_cnt DESC 
LIMIT 10;

6、指标6:统计接收消息条数最多的TOP10用户

-- 接收消息条数最多的10个用户
CREATE table db_msg.tb_rs_receiver_user_top10 comment '接收消息条数最多的10个用户' as
SELECT 
	receiver_name,
	COUNT(*) as receiver_msg_cnt 
FROM db_msg.tb_msg_etl
GROUP BY receiver_name 
SORT BY receiver_msg_cnt DESC 
LIMIT 10;

7、指标7:统计发送人的手机型号

-- 统计发送人的手机型号
CREATE table db_msg.tb_rs_sender_phone comment '发送人手机型号分布' as
SELECT 
	sender_phonetype,
	COUNT(*) as cnt
FROM db_msg.tb_msg_etl
GROUP BY sender_phonetype;

8、指标8:统计发送人的设备操作系统分布情况

-- 统计发送人的设备操作系统分布情况
CREATE table db_msg.tb_rs_sender_os comment '发送人设备操作系统分布' as
SELECT 
	sender_os,
	COUNT(*) as cnt
FROM db_msg.tb_msg_etl tme 
GROUP BY sender_os;

8.5. FineBI安装&配置

8.5.1. FineBI的下载和安装

1、打开FineBI官方https://www.finebi.com/,注册并下载FineBI个人试用版本客户端;
在这里插入图片描述
在这里插入图片描述

2、在本地物理机上安装刚才下载的客户端(和安装其他软件一样的操作),安装完成之后,启动FineBI客户端;
在这里插入图片描述

3、启动之后,输入FineBI官网提供的激活码,然后点击“使用BI”按钮,此时FineBI客户端开始启动(这个过程可能较长,需要耐心等待,过程中可能会弹出openJDK请求防火墙的权限,需要同意);
在这里插入图片描述
在这里插入图片描述
4、FineBI客户端启动成功后,会自动打开浏览器,并打开http://localhost:37799/webroot/decision/login/initialization网页,进入配置页面,此时可以配置BI软件的管理员账号、密码;
在这里插入图片描述
5、账号设置完毕后,需要配置FineBI的数据库,FineBI类似于Hive也有元数据需要管理,对于个人使用来说,可以使用FineBI的内置数据库,若是生产环境使用,则建议使用外接数据库;
在这里插入图片描述
6、点击“直接登录”之后,BI系统会自动跳转到登录界面,输入刚才设置的管理员账号和密码进行登录;
在这里插入图片描述
7、登录FineBI系统后,可以在其目录内发现一些内置的模板和样例数据,以及新手入门指引等,可以作为配置个人所需模板的参考;
在这里插入图片描述
至此,FineBI客户端已安装完毕。

8.5.2. 配置FineBI与Hive的连接

1、接下来需要配置FineBI连接Hive的隔离插件。进入FineBI系统中,在“管理系统-插件管理-我的插件-从本地安装”,然后选择课程资料中,FineBI文件夹中的fr-plugin-hive-driver-loader-3.0.zip,然后系统会安装Hive隔离插件;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2、然后,使用记事本打开FineBI安装目录下webapps\webroot\WEB-INF\embed\finedb目录下的db.script文件,将其中的INSERT INTO FINE_CONF_ENTITY VALUES('SystemConfig.driverUpload','false')修改为INSERT INTO FINE_CONF_ENTITY VALUES('SystemConfig.driverUpload','true')。这样才能安装Hive驱动。
在这里插入图片描述

3、然后,重启FineBI客户端,先关闭FineBI客户端,然后再在桌面重新打开FineBI的客户端;
在这里插入图片描述
在这里插入图片描述
4、重新登录系统后,需要先安装Hive驱动,打开FineBI官方帮助手册,Hadoop Hive数据连接章节:https://help.fanruan.com/finebi/doc-view-301.html,根据其指示下载对应版本的驱动包和日志jar包;
在这里插入图片描述
5、下载完成后,将两个压缩包里的所有jar文件解压到一个文件夹中;
在这里插入图片描述
6、在系统中,依次点击“管理系统-数据连接-数据连接管理-驱动管理”,进入驱动管理界面;
在这里插入图片描述
7、在驱动管理界面点击“新建驱动”按钮,填写驱动名称,然后点击“确定”按钮;
在这里插入图片描述
8、然后点击“上传文件”按钮,将刚才解压的所有jar文件选中上传;
在这里插入图片描述
9、上传完成后,在“驱动”栏选择Hive驱动,然后点击右上角的“保存”按钮,完成Hive驱动的添加。添加成功后,点击左上角的“退出驱动管理”按钮;
在这里插入图片描述
10、点击数据连接管理界面的“新建数据连接”按钮,打开新建数据连接界面;
在这里插入图片描述
11、在打开的页面中选择“所有”选项卡,然后点击“Hadoop Hive”;
在这里插入图片描述
12、在Hadoop Hive页面填写虚拟机Hive服务(即hiveserver2服务)的相关信息,填写完毕后,点击右上角的“测试连接”按钮,看到“连接成功”提示代表配置成功,然后点击右上角的“保存”按钮,Hive连接创建完毕。

在这里插入图片描述
在这里插入图片描述
至此,FineBI到Hive的数据连接配置完成。后续将进行可视化面板的配置。

8.6. 可视化展示

本节的目标是使用FineBI配置出如下的可视化看板。
在这里插入图片描述
1、创建报表。登录系统后,依次点击“公共数据-新建文件夹”,创建本案例中所使用的文件夹,然后给文件夹命名为“Hive数据分析”。
在这里插入图片描述
2、选择刚才新建的“Hive数据分析”文件夹,然后点击上方的“新建数据集”按钮,选择“数据库表”。
在这里插入图片描述
3、然后将前面章节所创建的8个指标的数据表选中,然后点击右上角的“确定”按钮;
在这里插入图片描述
4、点击“确定”后,可以看到在“Hive数据分析”文件夹下出现了前面选中的表(以表注释命名);
在这里插入图片描述
5、依次点开每张表,然后点击“更新数据”按钮,将Hive中的数据拉取过来;
在这里插入图片描述
6、依次点击“我的分析-新建文件夹”,将新建的文件夹命名为“Hive数据分析”;
在这里插入图片描述
7、选择“Hive数据分析”,然后点击“新建分析主题”,会在另一个浏览器窗口打开分析主题页面;
在这里插入图片描述
8、在分析主题页面选择“公共数据”-刚才新建的Hive数据分析数据集中的“每日发送消息和接收消息人数”,然后点击“确定”按钮,将该数据构建进来;
在这里插入图片描述
9、构建好后,点击下方的“组件”Tab,进入组件配置中,选择“KPI指标卡”,然后将左侧的“sender_user_cnt”字段拖动到“文本”栏中,然后点击文本栏的配置按钮;
在这里插入图片描述
10、在弹出的文本栏配置中,取消“固定字体大小”,然后编辑内容,将内容的前缀改为“发送消息人数:”即可;
在这里插入图片描述
在这里插入图片描述
11、对组件Tab进行重命名,改为“发送消息人数”,然后点击页面下部的“添加仪表板”按钮,添加一个仪表板;
在这里插入图片描述
12、然后在仪表板中,将刚才配置好的“发送消息人数”组件拖动到仪表板上,并调整好位置和大小,点击组件旁边的下拉按钮,取消“显示标题”的勾选;
在这里插入图片描述
13、然后点击右上角的“仪表板样式”,选择“默认暗黑”就可以修改整个数据看板的背景;
在这里插入图片描述
14、然后相同的方式,新建“接收消息人数”的组件,并摆放在该仪表板上;
在这里插入图片描述
15、选择“数据”Tab,然后点上面的“+”按钮,然后选择“公共数据-Hive数据分析-每日消息总量”,然后点击确定;
在这里插入图片描述
16、然后添加“总消息数”组件,参考上面完成组件配置,并摆放在仪表板上;
在这里插入图片描述
在这里插入图片描述
17、按照类似方法创建“发送消息最多的用户TOP10”组件;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1356593.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Python实现二手房整体情况可视化分析+房价预测【500010099】

项目描述 通过房天下兰州二手房信息,对数据进行进一步清洗处理,分析各维度的数据,筛选对房价有显著影响的特征变量,探索兰州二手房整体情况、价格情况和价格的影响因素,建立房价预测模型。 提出问题 探究单价、数量…

SVN服务端的下载、安装

地址 : Apache Subversion Binary Packages 下载 点击 VisualSVN 安装 都是点击 next 点击next ,即可安装成功

代码随想录算法训练营第五十七天|647. 回文子串、516.最长回文子序列、动态规划总结篇

代码随想录 (programmercarl.com) 647. 回文子串 1.dp数组及下标含义 我们在判断字符串S是否是回文,那么如果我们知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话&…

矩阵式键盘按键音

#include<reg51.h> //包含51单片机寄存器定义的头文件 sbit soundP3^7; //将sound位定义为P3.7 /************************************************************** 函数功能&#xff1a;蜂鸣器发声延时约120ms *************************************************…

Linux 内核调试

文章目录 一、方法论 一、方法论 qemu 虚拟机 Linux内核学习 Linux 内核调试 一&#xff1a;概述 Linux 内核调试 二&#xff1a;ubuntu20.04安装qemu Linux 内核调试 三&#xff1a;《QEMU ARM guest support》翻译 Linux 内核调试 四&#xff1a;qemu-system-arm功能选项整…

大数据毕业设计:租房推荐系统 python 租房大数据 爬虫+可视化大屏 计算机毕业设计(附源码+文档)✅

毕业设计&#xff1a;2023-2024年计算机专业毕业设计选题汇总&#xff08;建议收藏&#xff09; 毕业设计&#xff1a;2023-2024年最新最全计算机专业毕设选题推荐汇总 &#x1f345;感兴趣的可以先收藏起来&#xff0c;点赞、关注不迷路&#xff0c;大家在毕设选题&#xff…

年度征文|回顾2023我的CSDN

一年转眼而逝&#xff0c;回顾这一年在csdn的创作&#xff0c;学习&#xff0c;记录历程。回顾过去&#xff0c;才能展望未来&#xff0c;首先看图说话。 今年在csdn的访问量已由年初的2万到年末的50w。粉丝有年初的300个左右&#xff0c;增加到4000个左右。我年初的目标是粉丝…

Dockerfile语法和简单镜像构建

Dockerfile是一个用于定义Docker镜像的文本文件&#xff0c;包含了一系列的指令和参数&#xff0c;用于指示Docker在构建镜像时应该执行哪些操作&#xff0c;例如基于哪个基础镜像、复制哪些文件到镜像中、运行哪些命令等。 Dockerfile文件的内容主要有几个部分组成&#xff0c…

算法——BFS解决FloodFill算法

什么是FloodFill算法 中文&#xff1a;洪水灌溉。假设这一块4*4的方格是一块土地&#xff0c;有凸起的地方&#xff0c;也有凹陷的地方&#xff08;凹陷的地方用负数表示&#xff09;。此时下大雨发洪水&#xff0c;会把凹陷的地方填满。绿色圈起来的属于一块区域&#xff08;…

caj转换成pdf有哪些方法?

caj转换成pdf有哪些方法&#xff1f;PDF是一个被广泛支持的文件格式&#xff0c;这种格式基本上在所有的操作系统和设备上都是支持使用的&#xff0c;也能够将PDF文件打开和查看的&#xff0c;相比于caj文件&#xff0c;它就只能通过一下特定的软件或者是插件才能够将caj打开或…

3.2.1CURRENT 、3.2.2-SNAPSHOT、3.1.7GA 这三者的springboot版本之前有什么区别

在Spring Boot中&#xff0c;版本号通常遵循主要版本.次要版本.修补版本的格式&#xff0c;有时后面会跟着一个额外的标签来表示版本的特殊性质。根据您提供的版本号 “3.2.1CURRENT”、“3.2.2-SNAPSHOT” 和 “3.1.7GA”&#xff0c;我们可以解释这些版本的含义和它们之间的区…

用贪心算法编程求解任务安排问题

题目&#xff1a;用贪心算法编程求解以下任务安排问题 一个单位时间任务是恰好需要一个单位时间完成的任务。给定一个单位时间任务的有限集S。关于S的一个时间表用于描述S中单位时间任务的执行次序。时间表中第1个任务从时间0 开始执行直至时间1 结束&#xff0c;第2 个任务从时…

react-router-dom5升级到6

前言 升级前版本为5.1.2 下载与运行 下载 npm install react-router-dom6运行 运行发现报错: 将node_modules删除&#xff0c;重新执行npm i即可 运行发现如下报错 这是因为之前有引用react-router-dom.min&#xff0c;v6中取消了该文件&#xff0c;所以未找到文件导致报错。…

鸿蒙4.0开发实战(ArkTS)-闹钟制作

闹钟功能要求 展示指针表盘或数字时间。添加、修改和删除闹钟。展示闹钟列表&#xff0c;并可打开和关闭单个闹钟。闹钟到设定的时间后弹出提醒。将闹钟的定时数据保存到轻量级数据库。 闹钟主界面 闹钟界面包括当前时间、闹钟列表、添加闹钟子组件&#xff0c;具体包括以下…

游戏缺少emp.dll详细修复教程,快速解决游戏无法启动问题

在现代游戏中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中之一就是“emp.dll丢失”。emp.dll是一个动态链接库文件&#xff0c;它包含了许多程序运行所需的函数和数据。当一个程序需要调用这些函数时&#xff0c;系统会从emp.dll文件中加载相应的内容。因此&#x…

智邦国际ERP系统 SQL注入漏洞复现

0x01 产品简介 北京智邦国际软件技术有限公司的ERP系统是一种集成化的企业资源计划&#xff08;Enterprise Resource Planning&#xff0c;简称ERP&#xff09;解决方案&#xff0c;旨在帮助企业实现高效的运营管理和资源优化。 0x02 漏洞概述 智邦国际ERP系统 GetPersonalS…

Spring中基于注解的IOC配置项目举例详解

文章目录 Spring中基于注解的IOC配置项目举例详解1、创建如下结构的Spring项目pom.xmldao层service层application.xmllog4j.properties 2、用于创建对象的常用注解2.1、Controller或Controller("user")声明bean,且id"user"2.2、Service或用Service("u…

关键字:instanceof关键字

在 Java 中&#xff0c;instanceof关键字用于检查一个对象是否是某个特定类或其子类的实例。它的语法如下&#xff1a; 其中&#xff0c;Object是要检查的对象&#xff0c;Class是要检查的类或接口。 instanceof关键字的返回值是一个布尔值&#xff0c;如果对象Object是类Cla…

【MySQL】数据库之MHA高可用

目录 一、MHA 1、什么是MHA 2、MHA 的组成 3、MHA的特点 4、MHA的工作原理 二、有哪些数据库集群高可用方案 三、实操&#xff1a;一主两从部署MHA 1、完成主从复制 步骤一&#xff1a;完成所有MySQL的配置文件修改 步骤二&#xff1a;完成所有MySQL的主从授权&#x…

技术学习|CDA level I 多维数据透视分析

对基于多源表的结构数据进行商业智能分析&#xff0c;可以帮助决策者从多个不同业务角度对业务行为结果进行观测&#xff0c;进而帮助决策者全面、精确地定位业务问题&#xff0c;实现商业洞察的相关内容。通过商业智能分析产出的分析成果被统称为商业智能报表&#xff0c;简称…