分享10篇优秀论文,涉及图神经网络、大模型优化、表格分析

news2025/4/8 10:48:39

引言

第38届AAAI人工智能年度会议将于2024年2月在加拿大温哥华举行。今天给大家分享十篇AAAI2024论文,主要涉及图神经网络,大模型幻觉、中文书法文字生成、表格数据分析、KGs错误检测、多模态Prompt、思维图生成等。 

论文获取方式,回复:AAAI2024

AAAI是由国际人工智能促进协会主办的年会,是人工智能领域中历史最悠久、涵盖内容最广泛的国际顶级学术会议之一,也是中国计算机学会(CCF)推荐的A类国际学术会议。更多AAAI介绍可以参考这篇文章:一文了解AAAI国际会议--附: 各年论文列表连接

图神经网络微调

图片

https://arxiv.org/pdf/2312.13583.pdf

本文研究解决预训练和微调图神经网络在图挖掘任务中的结构一致性问题。作者发现预训练图与微调图之间的结构差异主要源于生成模式的不一致。为此,本文作者提出了G-TUNING方法,通过调整预训练图神经网络,有效地保持了微调图的生成模式。

图片

通过理论分析证明了存在一组替代图谱基,利用它们的线性组合可以高效地近似微调图的生成模式。在迁移学习实验中,与现有算法相比,G-TUNING在领域内和领域外分别提升了0.5%和2.6%

中文书法字体生成

图片

https://arxiv.org/pdf/2312.10314.pdf

本文研究主要针对少样本中文书法字体生成的问题。本文提出了一种新颖的模型,DeepCalliFont,通过集成双模生成模型实现少样本中文书法字体合成。

图片

具体而言,该模型包括图像合成和序列生成两个分支,通过双模态表示学习策略生成一致的结果。两种模态(即字形图像和书写序列)通过特征重组模块和光栅化损失函数进行合理集成。此外,采用新的预训练策略,通过利用大量的单模态数据来提高性能。定性和定量实验证明了本文方法在少样本中文书法字体生成任务上优于其他最先进的方法。

RAG减少LLM幻觉研究

图片

https://arxiv.org/pdf/2309.01431.pdf

本文研究主要针对检索增强生成(RAG)在缓解大型语言模型(LLMs)产生幻觉方面的问题。现有研究缺乏对检索增强生成对不同大型语言模型的影响进行严格评估,这使得难以确定RAG在不同LLMs能力中的潜在瓶颈。本文系统地调查了检索增强生成对大型语言模型的影响。

图片

本文分析了不同大型语言模型在RAG所需的4个基本能力方面的性能,包括噪声鲁棒性、负例拒绝、信息整合和反事实鲁棒性。为此,本文建立了检索增强生成基准(RGB),这是一个用于在英语和中文中评估RAG的新语料库。RGB根据解决案例所需的上述基本能力将基准中的实例划分为4个独立的测试集。然后,我们在RGB上评估了6个代表性的LLMs,以诊断当前LLMs在应用RAG时的挑战。评估表明,虽然LLMs在一定程度上具有噪声鲁棒性,但在负例拒绝、信息整合和处理虚假信息方面仍然存在显著困难。结果表明,在将RAG有效应用于LLMs方面仍有相当的挑战。

表格数据分析

图片

https://arxiv.org/pdf/2312.13671.pdf

本文研究主要针对表格数据分析领域存在的问题,当前研究主要集中在Text2SQL和TableQA等基础任务,忽略了像预测和图表生成这样的高级分析。

图片

为填补这一空白,本文提出了Text2Analysis基准,涵盖了超越SQL兼容操作的高级分析任务。本文还开发了五种创新有效的注释方法,充分利用大型语言模型的能力,提高数据的质量和数量。此外引入了类似真实用户问题的不确定查询,测试模型对此类挑战的理解和解决能力。

最终,本文收集了2249个查询-结果对和347个表格,使用三种不同的评估指标对五个最先进的模型进行评估,结果显示本文的基准在表格数据分析领域提出了相当大的挑战。

零样本认知诊断

图片

https://arxiv.org/pdf/2312.13434.pdf

本文研究主要针对领域级零样本认知诊断(DZCD),该问题源于新启动领域中缺乏学生练习日志。近期的跨领域诊断模型被证明是解决DZCD的一种策略,但这些方法主要关注如何在领域之间转移学生状态。然而,它们可能会无意中将不可转移的信息纳入学生表示中,从而限制知识转移的效果。

图片

为了解决这个问题,本文提出了Zero-1-to-3,通过早期学生实现领域共享认知信号传递和虚拟数据生成,有效处理新领域中缺乏学生练习日志的情况。共享的认知信号可以传递到目标领域,丰富新领域的认知先验,确保认知状态传播的目标。在六个真实世界数据集上的广泛实验证明了本文模型在DZCD及其在问题推荐中的实际应用方面的有效性。

动态网络方法

图片

https://arxiv.org/pdf/2312.13068.pdf

本文研究主要针对动态网络方法在处理时间上连续变化的网络时存在的局限性。本文提出了一种基于生存函数的新型随机过程,用于建模链接在时间上的持续和缺失。这形成了一种通用的新似然规范,明确考虑了间歇性的边持续网络,即GRASP:Graph Representation with Sequential Survival Process。

本文将该框架应用于最近的连续时间动态潜在距离模型,以节点在潜在空间中的分段线性移动序列来刻画网络动态。本文在诸如链接预测和网络完成等各种下游任务中进行了定量评估,结果表明本文的建模框架能够有效跟踪潜在空间中节点的内在轨迹,捕捉不断演变的网络结构的基本特征。

KGs错误检测

图片

https://arxiv.org/pdf/2312.12108.pdf

本文研究主要针对知识图谱(KGs)中存在的各种错误问题。本文提出了一种KG错误检测模型CCA,通过三元组重建整合文本和图结构信息,更好地区分语义。

图片

本文采用交互对比学习捕捉文本和结构模式之间的差异。此外,本文构建了包含语义相似噪声和对抗性噪声的真实数据集。实验结果表明,CCA在检测语义相似噪声和对抗性噪声方面优于最先进的基线方法。

思维图生成

图片

https://arxiv.org/pdf/2312.11997.pdf

本文研究主要针对思维图生成中存在的问题,即现有方法虽然能够并行生成思维图,但主要侧重于顺序特征,难以捕捉结构信息,尤其在建模长程语义关系方面存在困难。

图片

本文提出了一种基于指代的思维图生成网络(CMGN),以引入外部结构知识。具体而言,本文基于指代语义关系构建指代图,引入图结构信息。然后,采用指代图编码器挖掘句子之间的潜在关系。

为了排除噪声并更好地利用指代图的信息,本文采用对比学习方式中的图增强模块。实验结果表明,本文模型优于所有现有方法。案例研究进一步证明,本文模型能够更准确、简洁地揭示文档的结构和语义。

多模态对齐Prompt

图片

https://arxiv.org/pdf/2312.08636.pdf

本文研究主要针对多任务学习中解码器随任务增加而复杂的问题。本文提出了一种集成无解码器的视觉-语言模型CLIP的方法,该模型表现出强大的零样本泛化能力。

图片

本文首先提出了多模态对齐提示(MmAP)方法,用于在微调过程中对齐文本和视觉模态。在MmAP的基础上,本文开发了一种创新的多任务提示学习框架。一方面,为了最大化相似任务的互补性;另一方面,为了保留每个任务的独特特征,为每个任务分配一个特定的MmAP。

在两个大型多任务学习数据集上的综合实验证明,本文方法相较于完全微调实现了显著的性能提升,同时仅利用约0.09%的可训练参数。

多模型标签对齐

图片

https://arxiv.org/pdf/2312.08212.pdf

本文研究主要针对在视觉-语言(VL)领域中,将预训练模型成功迁移到下游任务的问题。先前的方法主要集中于构建文本和视觉输入的提示模板,忽略了VL模型和下游任务之间类别标签表示的差距。

图片

为解决这一挑战,本文引入了一种名为LAMM的创新标签对齐方法,通过端到端训练动态调整下游数据集的类别嵌入。此外,为了获得更合适的标签分布,本文提出了一个分层损失,包括参数空间、特征空间和logits空间的对齐。我们在11个下游视觉数据集上进行了实验证明,本文方法在少样本场景中显著提高了现有多模态提示学习模型的性能,相较于16张图像的最先进方法,平均准确率提升了2.31%。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1356234.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Win32 TEXT()宏学习

之前学习了_T()宏&#xff1b; _T()是MFC的&#xff1b; TEXT()是win32的&#xff1b; _T("")定义于tchar.h&#xff1b; TEXT宏是windows程序设计中经常遇到的宏&#xff0c;定义在 <winnt.h>中&#xff1b; 如果使用UNICODE字符集&#xff0c;则TEXT&…

小兔鲜儿 uniapp - 项目打包

目录 微信小程序端​ 核心步骤​ 步骤图示​ 条件编译​ 条件编译语法​ 打包为 H5 端​ 核心步骤​ 路由基础路径​ 打包为 APP 端​ 微信小程序端​ 把当前 uni-app 项目打包成微信小程序端&#xff0c;并发布上线。 核心步骤​ 运行打包命令 pnpm build:mp-weix…

RK3399平台入门到精通系列讲解(实验篇)IO 多路复用实验之poll实验

🚀返回总目录 文章目录 一、IO 多路复用:poll介绍二、实验源码2.1、Makefile2.2、poll 实验驱动2.3、poll 驱动测试应用程序一、IO 多路复用:poll介绍 IO 多路复用是一种同步的 IO 模型。IO 多路复用可以实现一个进程监视多个文件描述符。 一旦某个文件描述符准备就绪,就通…

三款推荐的 FTP 工具

&#x1f947; 版权: 本文由【墨理学AI】原创、在CSDN首发、各位大佬、敬请查阅&#x1f389; 声明: 作为全网 AI 领域 干货最多的博主之一&#xff0c;❤️ 不负光阴不负卿 ❤️ 文章目录 三款推荐的 FTP 工具filezillawinscpFinalShell SSHXftp❤️ 人生苦短&#xff0c; 欢迎…

Excelize 入选“2023开源创新榜”优秀开源项目

近日&#xff0c;由中国科协科学技术传播中心、中国计算机学会、中国通信学会、中国科学院软件研究所共同主办&#xff0c;CSDN 承办的 2023 开源创新榜专家评审会在国家科技传播中心成功举办。Excelize 电子表格文档开源基础库入选“2023开源创新榜”优秀开源项目。 评审委员…

Javaweb之Mybatis的基础操作之删除的详细解析

1.3 删除 1.3.1 功能实现 页面原型&#xff1a; 当我们点击后面的"删除"按钮时&#xff0c;前端页面会给服务端传递一个参数&#xff0c;也就是该行数据的ID。 我们接收到ID后&#xff0c;根据ID删除数据即可。 功能&#xff1a;根据主键删除数据 SQL语句 -- 删除…

java每日一题——输出星星塔(答案及编程思路)

前言&#xff1a; 打好基础&#xff0c;daydayup! 题目&#xff1a;请编写输出如下图的星星塔 编程思路&#xff1a;1&#xff0c;计算要输入几行&#xff1b;2&#xff0c;计算每行的⭐数量&#xff0c;及空格的数量&#xff1b;计算相应的关系&#xff1b; 如图&#xff1a;假…

SpringBoot项目处理 多数据源问题(把本地库数据 推送 到另外一个平台的库)

一、需求梳理 把我方数据库的表中数据 ----------> 推送到第三方的数据库 相当于库对库的数据插入, 但是需要的是用代码的方式实现; 二、解决思维 (1) 首先,平台与平台之间的数据库对接; 处理点1: 字段转换 (库表之间的数据字段不一致问题) 解决方式: 挨个字段的对应,如…

软件测试基础理论学习-软件测试方法论

软件测试方法论 软件测试的方法应该建立在不同的软件测试类型上&#xff0c;不同的测试类型会存在不同的方法。本文以软件测试中常见的黑盒测试为例&#xff0c;简述常见软件测试方法。 黑盒测试用例设计方法包括等价类划分法、边界值分析法、因果图法、判定表驱动法、正交试…

(NeRF学习)NeRF复现 win11

目录 一、获取源码二、环境三、准备数据集方法一&#xff1a;官方命令方法二&#xff1a;官网下载数据集 四、开始训练1.更改迭代次数2.开始训练方法一&#xff1a;方法二&#xff1a; 3.使用预训练模型 五、NeRF源码学习 一、获取源码 git clone https://github.com/bmild/ne…

LeetCode-141环形链表 LeetCode-142环形链表二

一、前言 本篇文章在我之前讲完的链表、链表与递归的基础上进行讲解&#xff0c;本次我们以leetcode为例&#xff0c;讲解链表的其他题型&#xff0c;今天我们先了解一下环形链表&#xff0c;这里我们以leetCode141和leetCode142为例。 二、LeetCode141 首先关于这道题&#…

【MongoDB】关于MongoDB更新文档update的操作,十分详细,建议收藏!!!

&#x1f601; 作者简介&#xff1a;一名大四的学生&#xff0c;致力学习前端开发技术 ⭐️个人主页&#xff1a;夜宵饽饽的主页 ❔ 系列专栏&#xff1a;MongoDB数据库学习 &#x1f450;学习格言&#xff1a;成功不是终点&#xff0c;失败也并非末日&#xff0c;最重要的是继…

IPv6邻居发现协议(NDP)---路由发现

IPv6路由发现(前缀公告) 邻居发现 邻居发现协议NDP(Neighbor Discovery Protocol)是IPv6协议体系中一个重要的基础协议。邻居发现协议替代了IPv4的ARP(Address Resolution Protocol)和ICMP路由器发现(Router Discovery),它定义了使用ICMPv6报文实现地址解析,跟踪邻…

60.网游逆向分析与插件开发-游戏增加自动化助手接口-游戏公告功能的逆向分析与测试

内容来源于&#xff1a;易道云信息技术研究院VIP课 上一个内容&#xff1a;文字资源读取类的C还原-CSDN博客 码云地址&#xff08;master分支&#xff09;&#xff1a;https://gitee.com/dye_your_fingers/sro_-ex.git 码云版本号&#xff1a;878db7708de09b448010ef54526fe…

手把手教你如何使用SpringBoot3打造一个个性化的代码生成器

自定义代码生成器 代码基于SpringBoot3、Vue3、highlight实现自定义代码生成功能 SpringBoot3.x、MySQL8、MyBatisPlus3.5.x、velocity2.x、SpringSecurity6.x、Vue3、TypeScript、highlight demo所需要的依赖及其对应版本号 pom <?xml version"1.0" encoding&…

运用Jmeter进行登录测试

开始了解Jmeter,写篇关于Jmeter的博客做备忘,这里以苏宁易购网站的登录请求为例实战来说明测试计划元件,创建一个 Web 测试计划。 今天简单介绍Jemeter的入门,Jmeter 的安装这边就跳过,直接讲述如何使用JMETER,如何运用Jmeter进行测试。 a.下载jmeter软件 b.安装…

一起offsetLeft值引发的样式错乱问题

问题描述&#xff1a; 首先我们来看一下正常样式和异常样式&#xff0c;正常样式的左侧菜单会正常显示出来&#xff0c;而异常样式的左侧菜单会被覆盖&#xff1b; 正常的样式&#xff1a; 异常的样式&#xff1a; 问题探索&#xff1a; 左边的间距其实跟通过读取最外层元素…

mysql(三) 索引-普通索引、复合索引、索引规则等

上文我们学习了索引基础知识、所以我画了一个查询语句简单的执行流程、希望可以帮助大家一起学习。 目录 mysql select语句执行流程 普通索引 复合索引 创建索引&#xff08;三种&#xff09; 1、使用INDEX建表的时候创建索引 (创建表时建索引) INDEX的语法&#xff1a; …

osg-材质 (osg::Material)

1.材质类 材质类 (osg::Material)继承自osg::StateAttribute 类。osg::Material 封装了 OpenGL的 glMaterial()和glColorMaterial()指令的函数功能&#xff0c;其继承关系图如图5-27 所示。 图 5-27 osg::Material 的继承关系图 在场景中设置节点的材质属性&#xff0c;首先要…

VS2017 CMake编译Opencv

先下载opencv4.2.0源码以及opencv_contrib-4.2.0 地址链接&#xff1a;https://pan.baidu.com/s/1AgFsiH4uMqTRJftNXAqmTw?pwd3663 提取码&#xff1a;3663 先建立一个opencv_debug和opencv_release文件夹这两个都是为了后续存放编译好的debug版本和release版本opencv的&#…