竞赛保研 基于机器视觉的手势检测和识别算法

news2024/11/25 20:54:06

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的手势检测与识别算法

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 实现效果

废话不多说,先看看学长实现的效果吧
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 技术原理

2.1 手部检测

主流的手势分割方法主要分为静态手势分割和动态手势分割两大类方法。

  • 静态手势分割方法: 单张图片利用手和背景的差异进行分割,

  • 动态手势分割方法: 利用了视频帧序列的信息来分割。

2.1.1 基于肤色空间的手势检测方法

肤色是手和其他背景最明显的区分特征,手的颜色范围较统一并且有聚类性,基于肤色的分割方法还有处理速度快,对旋转、局部遮挡、姿势变换具有不变性,因此利用不同的颜色空间来进行手势分割是现在最常用的方法。

肤色分割的方法主要有以下几种:基于参数、非参数的显式肤色聚类方法。参数模型使用高斯颜色分布,非参数模型则是从训练数据中获得肤色直方图来对肤色区间进行估计。肤色聚类显式地在某个特定的颜色空间中定义了肤色的边界,广义上看是一种静态的肤色滤波器,如Khan根据检测到的脸部提出了一种自适应的肤色模型。

肤色是一种低级的特征,对计算的消耗很少,感知上均匀的颜色空间如CIELAB,CIELUV等已经被用于进行肤色检测。正交的颜色空间如,YCbCr,YCgCr,YIQ,YUV等也被用与肤色分割,如Julilian等使用YCrCb颜色空间,利用其中的CrCb分量来建立高斯模型进行分割。使用肤色分割的问题是误检率非常高,所以需要通过颜色校正,图像归一化等操作来降低外界的干扰,提高分割的准确率。

基于YCrCb颜色空间Cr, Cb范围筛选法手部检测,实现代码如下:


# 肤色检测之二: YCrCb中 140<=Cr<=175 100<=Cb<=120
img = cv2.imread(imname, cv2.IMREAD_COLOR)
ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) # 把图像转换到YUV色域
(y, cr, cb) = cv2.split(ycrcb) # 图像分割, 分别获取y, cr, br通道分量图像

skin2 = np.zeros(cr.shape, dtype=np.uint8) # 根据源图像的大小创建一个全0的矩阵,用于保存图像数据
(x, y) = cr.shape # 获取源图像数据的长和宽

# 遍历图像, 判断Cr和Br通道的数值, 如果在指定范围中, 则置把新图像的点设为255,否则设为0
for i in  range(0, x): 
	for j in  range(0, y):
		if (cr[i][j] >  140) and (cr[i][j] <  175) and (cb[i][j] >  100) and (cb[i][j] <  120):
			skin2[i][j] =  255
		else:
			skin2[i][j] =  0

cv2.imshow(imname, img)
cv2.imshow(imname +  " Skin2 Cr+Cb", skin2)

检测效果:

在这里插入图片描述
在这里插入图片描述

2.1.2 基于运动的手势检测方法

基于运动的手势分割方法将运动的前景和静止的背景分割开,主要有背景差分法、帧间差分法、光流法等。

帧间差分选取视频流中前后相邻的帧进行差分,设定一定的阈值来区分前景和后景,从而提取目标物体。帧差法原理简单,计算方便且迅速,但是当前后景颜色相同时检测目标会不完整,静止目标则无法检测。

背景差分需要建立背景图,利用当前帧和背景图做差分,从而分离出前后景。背景差分在进行目标检测中使用较多。有基于单高斯模型,双高斯模型的背景差分,核密度估计法等。景差分能很好的提取完整的目标,但是受环境变化的影响比较大,因此需要建立稳定可靠的背景模型和有效的背景更新方法。


1, 读取摄像头
2, 背景减除
fgbg1 = cv.createBackgroundSubtractorMOG2(detectShadows=True)
fgbg2 = cv.createBackgroundSubtractorKNN(detectShadows=True)
# fgmask = fgbg1.apply(frame)
fgmask = fgbg2.apply(frame) # 两种方法
3, 将没帧图像转化为灰度图像 在高斯去噪 最后图像二值化
gray = cv.cvtColor(res, cv.COLOR_BGR2GRAY)
blur = cv.GaussianBlur(gray, (11, 11), 0)
ret, binary = cv.threshold(blur, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
4, 选取手部的 ROI 区域 绘制轮廓
gesture = dst[50:600, 400:700]
contours, heriachy = cv.findContours(gesture, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # 获取轮廓本身
for i, contour in enumerate(contours): # 获取轮廓
cv.drawContours(frame, contours, i, (0, 0, 255), -1) # 绘制轮廓
print(i)

在这里插入图片描述

2.1.3 基于边缘的手势检测方法

基于边缘的手势分割方法利用边缘检测算子在图像中计算出图像的轮廓,常用来进行边缘检测的一阶算子有(Roberts算子,Prewitt算子,Sobel算子,Canny算子等),二阶算子则有(Marr-
Hildreth算子,Laplacian算子等),这些算子在图像中找到手的边缘。但是边缘检测对噪声比较敏感,因此精确度往往不高。

边缘检测代码示例:


import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import scipy.signal as signal # 导入sicpy的signal模块

# Laplace算子
suanzi1 = np.array([[0, 1, 0],  
                    [1,-4, 1],
                    [0, 1, 0]])

# Laplace扩展算子
suanzi2 = np.array([[1, 1, 1],
                    [1,-8, 1],
                    [1, 1, 1]])

# 打开图像并转化成灰度图像
image = Image.open("pika.jpg").convert("L")
image_array = np.array(image)

# 利用signal的convolve计算卷积
image_suanzi1 = signal.convolve2d(image_array,suanzi1,mode="same")
image_suanzi2 = signal.convolve2d(image_array,suanzi2,mode="same")

# 将卷积结果转化成0~255
image_suanzi1 = (image_suanzi1/float(image_suanzi1.max()))*255
image_suanzi2 = (image_suanzi2/float(image_suanzi2.max()))*255

# 为了使看清边缘检测结果,将大于灰度平均值的灰度变成255(白色)
image_suanzi1[image_suanzi1>image_suanzi1.mean()] = 255
image_suanzi2[image_suanzi2>image_suanzi2.mean()] = 255

# 显示图像
plt.subplot(2,1,1)
plt.imshow(image_array,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,3)
plt.imshow(image_suanzi1,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,4)
plt.imshow(image_suanzi2,cmap=cm.gray)
plt.axis("off")
plt.show()

2.1.4 基于模板的手势检测方法

基于模版的手势分割方法需要建立手势模版数据库,数据库记录了不同手势不同场景下的手势模版。计算某个图像块和数据库中各个手势的距离,然后使用滑动窗遍历整幅图像进行相同的计算,从而在图像正确的位置找到数据库中的最佳匹配。模版匹配对环境和噪声鲁棒,但是数据库需要涵盖各种手型、大小、位置、角度的手势,并且因为需要遍历整个图像进行相同的计算,实时性较差。

2.1.5 基于机器学习的手势检测方法

贝叶斯网络,聚类分析,高斯分类器等等也被用来做基于肤色的分割。随机森林是一种集成的分类器,易于训练并且准确率较高,被用在分割和手势识别上。建立肤色分类的模型,并且使用随机森林对像素进行分类,发现随机森林得到的分割结果比上述的方法都要准确.

3 手部识别

毫无疑问,深度学习做图像识别在准确度上拥有天然的优势,对手势的识别使用深度学习卷积网络算法效果是非常优秀的。

3.1 SSD网络

SSD网络是2016年提出的卷积神经网络,其在物体检测上取得了很好的效果。SSD网络和FCN网络一样,最终的预测结果利用了不同尺度的特征图信息,在不同尺度的特征图上进行检测,大的特征图可以检测小物体,小特征图检测大物体,使用金字塔结构的特征图,从而实现多尺度的检测。网络会对每个检测到物体的检测框进行打分,得到框中物体所属的类别,并且调整边框的比例和位置以适应对象的形状。

在这里插入图片描述

3.2 数据集

我们实验室自己采集的数据集:

数据集包含了48个手势视频,这些视频是由谷歌眼镜拍摄的,视频中以第一人称视角拍摄了室内室外的多人互动。数据集中包含4个类别的手势:自己的左右手,其他人的左右手。数据集中包含了高质量、像素级别标注的分割数据集和检测框标注数据集,视频中手不受到任何约束,包括了搭积木,下棋,猜谜等活动。

在这里插入图片描述

需要数据集的同学可以联系学长获取

3.3 最终改进的网络结构

在这里插入图片描述
在这里插入图片描述

最后整体实现效果还是不错的:
在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1354799.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Swift并发的结构化编程

并发&#xff08;concurrency&#xff09; 早期的计算机 CPU 都是单核的&#xff0c;操作系统为了达到同时完成多个任务的效果&#xff0c;会将 CPU 的执行时间分片&#xff0c;多个任务在同一个 CPU 核上按时间先后交替执行。由于 CPU 执行速度足够地快&#xff0c;给人的错觉…

TDengine 荣获 2023 Frost Sullivan 客户价值领导力奖

近日&#xff0c;TDengine 被国际知名咨询公司沙利文&#xff08;Frost & Sullivan&#xff09;评为全球最佳工业数据管理解决方案&#xff0c;赢得了 2023 年客户价值领导力奖&#xff08;Frost & Sullivan duoxie&#xff09;&#xff0c;该奖项重点关注引领行业创新…

S32K312软件看门狗之Software Watchdog Timer (SWT)

S32DS的SDK中提供了Wdg&#xff0c;是属于MCAL层的&#xff0c;配置有点复杂&#xff0c;还需要以来Gpt、Mcu和Platform框架里的东西&#xff0c;配置到已经开发好的工程中还容易出现配置问题。本文主要讲解Software Watchdog Timer (SWT)的软件看门狗配置和使用示例&#xff0…

易点易动固定资产管理系统:集成飞书,助力企业全生命周期固定资产管理

易点易动固定资产管理系统&#xff1a;集成飞书&#xff0c;助力企业全生命周期固定资产管理 在现代商业环境中&#xff0c;固定资产管理对企业的运营和发展至关重要。为了提高管理效率和降低成本&#xff0c;我们引入了易点易动固定资产管理系统&#xff0c;该系统集成了飞书&…

技术学习|CDA level I 描述性统计分析(数据的描述性统计分析)

技术学习|CDA level I 描述性统计分析&#xff08;数据的描述性统计分析&#xff09; 数据的描述性统计分析常从数据的集中趋势、离散程度和分布形态3个方面进行。 一、集中趋势 集中趋势是指数据向其中心值靠拢的趋势。测量数据的集中趋势&#xff0c;主要是寻找其中心值。…

聚“工匠”建“双城”,《天府工匠》第二季如何为“双城经济圈”助力?

文&#xff5c;新熔财经 作者&#xff5c;和花 被火烧过破损不堪&#xff0c;还受了潮粘连在一起的古籍书页&#xff0c;如何快速被修复&#xff1f;直径只有0.05—0.07毫米的头发丝上&#xff0c;如何清晰不粘连雕刻出“心无旁骛”&#xff0c;还要确保头发丝不断裂&#xf…

Sectigo泛域名https证书有什么用

Sectigo旗下有泛域名https证书实现了同时为多个域名网站提供安全加密服务&#xff0c;虽然将域名网站的类型限制在了域名以及域名旗下的二级子域名中。Sectigo旗下的泛域名https证书分为DV基础型和OV企业型&#xff0c;提高了https证书对各个场景的适配。今天就随SSL盾小编了解…

主流桌面浏览器Chrome,FireFox和Edge等如何禁用弹出式窗口阻止程序,这里有详细步骤

为什么你想知道如何禁用浏览器中的弹出式窗口阻止程序?毕竟,弹出式窗口是网络的祸害:显示烦人的广告、虚假的安全消息和其他刺激,会分散你的浏览注意力,甚至可能包含恶意代码。 所有主要的桌面浏览器现在都默认阻止弹出式窗口,那么你到底为什么要取消阻止这些害虫呢?事…

自制数据库空洞率清理工具-C版-02-EasyClean-V1.1(支持南大通用数据库Gbase8a)

一、环境信息 名称值CPUIntel(R) Core(TM) i5-1035G1 CPU 1.00GHz操作系统CentOS Linux release 7.9.2009 (Core)内存3G逻辑核数2Gbase8a版本8.6.2-R43.34.27468a27EasyClean版本V1.1 二、简述 工作和兴趣相结合的产物&#xff0c;既能更好的完成工作&#xff0c;也能看看自…

springCould中的Hystrix【上】-从小白开始【7】

目录 1.简单介绍❤️❤️❤️ 2.主要功能 ❤️❤️❤️ 3.正确案例❤️❤️❤️ 4.使用jmeter压测 ❤️❤️❤️ 5.建模块 80❤️❤️❤️ 6.如何解决上面问题 ❤️❤️❤️ 7.对8001进行服务降级❤️❤️❤️ 8.对80进行服务降级 ❤️❤️❤️ 9.通用降级方法❤️❤️…

win10提示“KBDSF.DLL文件缺失”,游戏或软件无法启动运行,快速修复方法

很多用户在日常使用电脑的时候&#xff0c;或多或少都遇到过&#xff0c;在启动游戏或软件的时候&#xff0c;Windows桌面会弹出错误提示框“KBDSF.DLL文件缺失&#xff0c;造成软件无法启动或运行&#xff0c;请尝试重新安装解决”。 首先&#xff0c;先来了解DLL文件是什么&a…

【计算机毕业设计】SSM场地预订管理系统

项目介绍 本项目分为前后台&#xff0c;前台为普通用户登录&#xff0c;后台为管理员登录&#xff1b; 用户角色包含以下功能&#xff1a; 按分类查看场地,用户登录,查看网站公告,按分类查看器材,查看商品详情,加入购物车,提交订单,查看订单,修改个人信息等功能。 管理员角…

急急急!直接从压缩包打开文件,保存后再打开却找不到了怎么办???

这是我今天发生的蠢事&#xff0c;好险&#xff0c;改了一个上午的word文档&#xff0c;因为word突然未响应&#xff0c;强制关闭后再打开word文档找不到了才想起来自己没有解压缩就。。。。 &#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#…

绿色环保之选:探索智慧公厕公司厂家的可持续发展策略

随着城市化的不断推进&#xff0c;如何在城市中创造更为宜居的环境成为了当今社会亟待解决的问题。在这个背景下&#xff0c;智慧公厕公司厂家应运而生&#xff0c;不仅通过引入创新技术提升了公共卫生水平&#xff0c;更以其独特的可持续发展策略成为了绿色环保之选。 符合智慧…

未来十年不变的AI是什么?吴恩达等专家关于2024年AI发展趋势的预测

随着2024年的到来&#xff0c;人工智能领域正迎来前所未有的变革和发展。从深度学习到自然语言处理&#xff0c;AI技术的每一个分支都在经历着快速的进步。在这个关键的时刻&#xff0c;业界专家们提出了对未来趋势的深刻洞察&#xff0c;预测了将形成AI发展主流的关键方向。智…

DolphinScheduler实际应用

前言 最近公司新启动了一个项目&#xff0c;然后领导想用一下新技术&#xff0c;并且为公司提供多个大数据调度解决方案&#xff0c;我呢就根据领导要求调研了下当前的开源调度工具&#xff0c;最终决定采用DolphinScheduler&#xff0c; 因此研究了一下DolphinScheduler &…

JSON网络令牌JWT

1.什么是身份验证 日常生活中的身份验证的场景: 比如进入公司的大楼时&#xff0c;需要携带工牌&#xff1b;打卡上班时&#xff0c;需要指纹识别&#xff1b;打开工作电脑时&#xff0c;需要输入密码。 2. 什么是 JSON 网络令牌&#xff1f; JSON Web Token (JWT) 是一个开…

大数据技术在民生资金专项审计中的应用

一、应用背景 目前&#xff0c;针对审计行业&#xff0c;关于大数据技术的相关研究与应用一般包括大数据智能采集数据技术、大数据智能分析技术、大数据可视化分析技术以及大数据多数据源综合分析技术。其中&#xff0c;大数据智能采集数据技术是通过网络爬虫或者WebService接…

【数据结构和算法】小行星碰撞

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 什么情况会用到栈 2.2 方法一&#xff1a;模拟 栈 三、代码 3.1 方法一&#xff1a;模拟 栈 四…

单轴PSO视觉飞拍与精准输出:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(七)

XPCIE1032H功能简介 XPCIE1032H是一款基于PCI Express的EtherCAT总线运动控制卡&#xff0c;可选6-64轴运动控制&#xff0c;支持多路高速数字输入输出&#xff0c;可轻松实现多轴同步控制和高速数据传输。 XPCIE1032H集成了强大的运动控制功能&#xff0c;结合MotionRT7运动…