逻辑回归(LR)----机器学习

news2024/9/21 0:30:46

基本原理
逻辑回归(Logistic Regression,LR)也称为"对数几率回归",又称为"逻辑斯谛"回归。

logistic回归又称logistic 回归分析 ,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。 逻辑回归根据给定的自变量数据集来估计事件的发生概率,由于结果是一个概率,因此因变量的范围在 0 和 1 之间。
在这里插入图片描述

知识点提炼
分类,经典的二分类算法!
逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。
Logistic 回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别)
回归模型中,y 是一个定性变量,比如 y = 0 或 1,logistic 方法主要应用于研究某些事件发生的概率。
逻辑回归的本质:极大似然估计
逻辑回归的激活函数:Sigmoid
逻辑回归的代价函数:交叉熵
逻辑回归的优缺点
优点:
1)速度快,适合二分类问题
2)简单易于理解,直接看到各个特征的权重
3)能容易地更新模型吸收新的数据
缺点:
对数据和场景的适应能力有局限性,不如决策树算法适应性那么强

逻辑回归中最核心的概念是 Sigmoid 函数,Sigmoid函数可以看成逻辑回归的激活函数。

下图是逻辑回归网络:

在这里插入图片描述

对数几率函数(Sigmoid):
y = σ ( z ) = 1 1 + e − z y = \sigma (z) = \frac{1}{1+e^{-z}} y=σ(z)=1+ez1

通过对数几率函数的作用,我们可以将输出的值限制在区间[0,1]上,p(x) 则可以用来表示概率 p(y=1|x),即当一个x发生时,y被分到1那一组的概率。可是,等等,我们上面说 y 只有两种取值,但是这里却出现了一个区间[0, 1],这是什么鬼??其实在真实情况下,我们最终得到的y的值是在 [0, 1] 这个区间上的一个数,然后我们可以选择一个阈值,通常是 0.5,当 y > 0.5 时,就将这个 x 归到 1 这一类,如果 y< 0.5 就将 x 归到 0 这一类。但是阈值是可以调整的,比如说一个比较保守的人,可能将阈值设为 0.9,也就是说有超过90%的把握,才相信这个x属于 1这一类。了解一个算法,最好的办法就是自己从头实现一次。下面是逻辑回归的具体实现。

Regression 常规步骤

1、寻找h函数(即预测函数)
2、构造J函数(损失函数)
3、想办法(迭代)使得J函数最小并求得回归参数(θ)
函数h(x)的值有特殊的含义,它表示结果取1的概率,于是可以看成类1的后验估计。因此对于输入x分类结果为类别1和类别0的概率分别为:
P(y=1│x;θ)=hθ (x)
P(y=0│x;θ)=1-hθ (x)

代价函数
逻辑回归一般使用交叉熵作为代价函数。关于代价函数的具体细节,请参考代价函数。

神经元的目标是去计算函数 y, 且 y = y(x)。但是我们让它取而代之计算函数 a, 且 a = a(x) 。假设我们把 a 当作 y 等于 1 的概率,1−a 是 y 等于 0 的概率。那么,交叉熵衡量的是我们在知道 y 的真实值时的平均「出乎意料」程度。当输出是我们期望的值,我们的「出乎意料」程度比较低;当输出不是我们期望的,我们的「出乎意料」程度就比较高。

交叉熵代价函数如下所示:
在这里插入图片描述

注:为什么要使用交叉熵函数作为代价函数,而不是平方误差函数?请参考:逻辑回归算法之交叉熵函数理解

逻辑回归伪代码

初始化线性函数参数为1
构造sigmoid函数
重复循环I次
	计算数据集梯度
	更新线性函数参数
确定最终的sigmoid函数
输入训练(测试)数据集
运用最终sigmoid函数求解分类

极大似然估计(Maximum Likelihood Estimation,MLE)

极大似然估计法(the Principle of Maximum Likelihood )由高斯和费希尔(R.A.Figher)先后提出,是被使用最广泛的一种参数估计方法,该方法建立的依据是直观的最大似然原理。
在这里插入图片描述

简介:

极大似然估计是一种用于估计概率分布参数的统计方法。其核心思想是通过最大化似然函数,选择使得观测数据出现的概率最大的参数值。在统计学中,似然函数度量了在给定参数下观察到某一组数据的概率。

总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。


原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。


极大似然估计可以拆成三个词,分别是“极大”、“似然”、“估计”,分别的意思如下:
极大:最大的概率
似然:看起来是这个样子的
估计:就是这个样子的

连起来就是,最大的概率看起来是这个样子的那就是这个样子的。


举个例子:
有两个妈妈带着一个小孩到了你的面前,妈妈A和小孩长得很像,妈妈B和小孩一点都不像,问你谁是孩子的妈妈,你说是妈妈A。好的,那这种时候你所采取的方式就是极大似然估计:妈妈A和小孩长得像,所以妈妈A是小孩的妈妈的概率大,这样妈妈A看来就是小孩的妈妈,妈妈A就是小孩的妈妈。
总结:极大似然估计就是在只有概率的情况下,忽略低概率事件直接将高概率事件认为是真实事件的思想。


基本概念:

  1. 似然函数: 对于参数 ( θ \theta θ ) 和观测数据集 ( X X X ),似然函数 ( L( θ \theta θ | X ) X) X) ) 表示在给定参数 ( θ \theta θ ) 下观察到数据 ( X X X) 的概率。

  L ( θ ∣ X ) = P ( X ∣ θ ) \ L(\theta | X) = P(X | \theta)  L(θX)=P(Xθ)

  1. 极大似然估计: 极大似然估计的目标是找到能最大化似然函数的参数值。通常采用对数似然函数(对数似然估计)进行求解,因为对数函数的增减性与原函数一致,方便求导。

    Log-Likelihood ( θ ∣ X ) = log ⁡ L ( θ ∣ X ) \text{Log-Likelihood}(\theta | X) = \log L(\theta | X) Log-Likelihood(θX)=logL(θX)

    极大似然估计问题可以形式化为:

    θ ^ MLE = arg ⁡ max ⁡ θ log ⁡ L ( θ ∣ X ) \hat{\theta}_{\text{MLE}} = \arg\max_\theta \log L(\theta | X) θ^MLE=argmaxθlogL(θX)

举例:

考虑一个简单的二项分布(二分类问题):假设观测到了 ( n n n) 次独立的二元实验,其中有 ( k k k) 次成功。成功的概率为 ( p p p),失败的概率为 ( 1 − p 1-p 1p)。则似然函数为:

L ( p ∣ k , n ) = ( n k ) p k ( 1 − p ) n − k L(p | k, n) = \binom{n}{k} p^k (1-p)^{n-k} L(pk,n)=(kn)pk(1p)nk

对数似然函数为:

Log-Likelihood ( p ∣ k , n ) = k log ⁡ ( p ) + ( n − k ) log ⁡ ( 1 − p ) \text{Log-Likelihood}(p | k, n) = k \log(p) + (n-k) \log(1-p) Log-Likelihood(pk,n)=klog(p)+(nk)log(1p)

最大化对数似然函数,可以得到 ( p p p) 的极大似然估计。

面试考点:

  1. 理解似然函数: 能够解释似然函数的含义,即在给定参数下观测到当前数据的可能性。

  2. 极大似然估计的求解: 理解如何通过最大化似然函数或对数似然函数来估计参数,以及这一过程的数学推导。

  3. 应用场景: 理解极大似然估计在不同概率分布、机器学习模型参数估计等方面的应用。

  4. 性质与假设: 了解极大似然估计的一些性质,以及估计中的一些假设条件。

  5. 比较: 能够与贝叶斯估计等其他参数估计方法进行比较,理解它们之间的异同。

  6. 实际问题: 在实际问题中能够应用极大似然估计,例如在统计学、机器学习中的具体场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1354456.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

『年度总结』逐梦编程之始:我的2023学习回顾与展望

目录 这篇博客&#xff0c;我将回顾2023年编程之旅的起点&#xff0c;同时展望2024年的新征程。 前言 我与Python 我与C语言 第一篇正式博客&#xff1a; 第二篇正式博客&#xff08;扫雷&#xff09;&#xff1a; 指针学习笔记: C语言学习笔记&#xff1a; 我与数据结构…

SCT52A40——120V,4A,高频高压侧和低压侧栅极驱动器,替代UCC27200/UCC27201/MIC4604YM等

• 8-24V宽供电电压 • 驱动高侧和低侧N通道MOSFET • 4A峰值输出源电流和汇电流 • 升压电源电压范围可达120V • 集成阴极负载二极管 • TTL兼容输入&#xff0c;-10V输入 • 45ns传输延迟 • 1000pF负载下7ns上升和4.5ns下降时间 • 2ns延迟匹配时间 • 静态电流252uA • 15…

JDK、JRE、JVM的联系与区别

JDK、JRE、JVM的联系与区别 一、JDK,JRE,JVM定义 JDK(Java Development Kit),包含JRE,以及增加编译器和调试器等用于程序开发的文件。 JRE(Java Runtime Environment)&#xff0c;包含Java虚拟机、库函数、运行Java应用程序所必须的文件。 JVM(Java Virtual Machine)是一个虚…

Vue中的选项式 API 和组合式 API,两者有什么区别

Vue中的选项式 API&#xff08;Option API&#xff09;和组合式 API&#xff08;Composition API&#xff09;是两种不同的组件编写方式&#xff0c;它们各有特点和适用场景&#xff1a; 选项式 API&#xff08;Option API&#xff09;: 传统方法&#xff1a;Vue最初的编程范式…

LeetCode 热题 100——42. 接雨水

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1] 输出&#xff1a;6 解释&#xff1a;上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表…

一起玩儿物联网人工智能小车(ESP32)——25. 利用超声波传感器测量距离

摘要&#xff1a;本文介绍如何利用超声波传感器测量障碍物的距离 测量距离是智能小车经常要用到的功能&#xff0c;今天就来介绍一个最常用的测量距离的传感器——超声波传感器。 超声波传感器的测距原理是利用超声波发射器向某个方向发射超声波&#xff0c;与此同时&#xff…

Health System Pro - Plug Play Solution

Health System为您提供了可重复使用的健康组件、健康条和碰撞块组件&#xff0c;可以轻松定制和扩展&#xff0c;以满足任何项目的需求。通过使用Health System&#xff0c;您可以节省时间和精力&#xff0c;避免为每个项目或游戏实体重写健康逻辑&#xff0c;从而带来更高效的…

计算机网络(9):无线网络

无线局域网 WLAN 无线局域网常简写为 WLAN (Wireless Local Area Network)。 无线局域网的组成 无线局域网可分为两大类。第一类是有固定基础设施的&#xff0c;第二类是无固定基础设施的。所谓“固定基础设施”是指预先建立起来的、能够覆盖一定地理范围的一批固定基站。 …

Python----matplotlib库

目录 plt库的字体&#xff1a; plt的操作绘图函数&#xff1a; plt.figure(figsizeNone, facecolorNone): plt.subplot(nrows, ncols, plot_number)&#xff1a; plt.axes(rect)&#xff1a; plt.subplots_adjust(): plt的读取和显示相关函数&#xff1a; plt库的基础图…

Day22 二叉树part08 235.二叉搜索树的最近公共祖先 701.二叉搜索树中的插入操作 450.删除二叉搜索树中的节点

二叉树part08 235.二叉搜索树的最近公共祖先 701.二叉搜索树中的插入操作 450.删除二叉搜索树中的节点 235. 二叉搜索树的最近公共祖先 方法一&#xff1a;递归法&#xff08;利用二叉搜索树性质&#xff09; class Solution { public:TreeNode* lowestCommonAncestor(TreeN…

74HC595驱动数码管程序

数码管的驱动分静态扫描和动态扫描两种&#xff0c;使用最多的是动态扫描&#xff0c;优点是使用较少的MCU的IO口就能驱动较多位数的数码管。数码管动态扫描驱动电路很多&#xff0c;其中最常见的是74HC164驱动数码管&#xff0c;这种电路一般用三极管作位选信号&#xff0c;用…

管理组件状态

概述 在应用中&#xff0c;界面通常都是动态的。如图1所示&#xff0c;在子目标列表中&#xff0c;当用户点击目标一&#xff0c;目标一会呈现展开状态&#xff0c;再次点击目标一&#xff0c;目标一呈现收起状态。界面会根据不同的状态展示不一样的效果。 图1 展开/收起目标…

50、实战 - 利用 conv + bn + relu + add 写一个残差结构

上一节介绍了残差结构&#xff0c;还不清楚的同学可以返回上一节继续阅读。 到了这里&#xff0c;一个残差结构需要的算法基本都介绍完了&#xff0c;至少在 Resnet 这种神经网络中的残差结构是这样的。 本节我们做一个实战&#xff0c;基于之前几节中手写的 conv / bn 算法&…

python封装接口自动化测试套件 !

在Python中&#xff0c;我们可以使用requests库来实现接口自动化测试&#xff0c;并使用unittest或pytest等测试框架来组织和运行测试套件。以下是一个基本的接口自动化测试套件封装示例&#xff1a; 首先&#xff0c;我们需要安装所需的库&#xff1a; pip install requests …

ssm基于web的志愿者管理系统的设计与实现+vue论文

摘 要 使用旧方法对志愿者管理系统的信息进行系统化管理已经不再让人们信赖了&#xff0c;把现在的网络信息技术运用在志愿者管理系统的管理上面可以解决许多信息管理上面的难题&#xff0c;比如处理数据时间很长&#xff0c;数据存在错误不能及时纠正等问题。这次开发的志愿者…

大数据毕业设计:旅游景点数据爬虫大屏实时监控系统✅

毕业设计&#xff1a;2023-2024年计算机专业毕业设计选题汇总&#xff08;建议收藏&#xff09; 毕业设计&#xff1a;2023-2024年最新最全计算机专业毕设选题推荐汇总 &#x1f345;感兴趣的可以先收藏起来&#xff0c;点赞、关注不迷路&#xff0c;大家在毕设选题&#xff…

山海鲸可视化软件的优势:数据整合、可视化与个性化定制

随着科技的快速发展&#xff0c;企业数字化转型已成为必然趋势。而对于一些本身没有开发优势或非技术型企业&#xff0c;数字化产品的选择就成为重中之重。作为山海鲸可视化软件的开发者&#xff0c;我们深知这一点&#xff0c;对于企业来说&#xff0c;能选择一个产品一定要有…

电脑软件:CoolUtils Total Excel Converter:解决Excel格式转换难题,提升办公效率

大家在日常办公当中经常会遇到需要把Excel转换为其他文档格式的场景。今天小编给大家介绍一款强大的文件转换工具——Total Excel Converter&#xff0c;有了它&#xff0c;再也不会因为Excel文档格式转换的问题而烦恼了。 一、软件简介 CoolUtils Total Excel Converter官方版…

钡铼工控机BL302+PLC,助力酿酒业转型升级

啤酒是人类非常古老的酒精饮料&#xff0c;是水和茶之后世界上消耗量排名第三的饮料。 啤酒在生产过程中主要有制造麦芽、粉碎原料、糖化、发酵、贮酒後熟、过滤、灌装包装等工序流程。需要用到风选机、筛分机、糖化锅、发酵设备、过滤机、灌装机、包装机等食品机械设备。这些食…

Apache HTTPD 多后缀解析漏洞详解

Apache HTTPD 多后缀解析漏洞 1.查看python版本 这里python版本很重要&#xff0c;因为版本过低可能会导致后面的结果运行不成功 这里我就遇到了因为版本过低而执行不了docker-compose up -d的情况 查看python版本 cd /usr/bin ls -al python* 当版本过低时安装高版本的 …