基于果蝇算法优化的Elman神经网络数据预测 - 附代码

news2024/11/15 13:01:05

基于果蝇算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于果蝇算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于果蝇优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用果蝇算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于果蝇优化的Elman网络

果蝇算法原理请参考:https://blog.csdn.net/u011835903/article/details/108344654

利用果蝇算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

果蝇参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);

%% 果蝇相关参数设定
%% 定义果蝇优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述

从结果来看,3个时刻点,果蝇-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1353622.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Jmeter的安装与快速使用(做并发测试)

1、了解 JMeter是一款开源的性能测试工具,它主要用于模拟多种负载条件下的应用程序或服务器的性能和功能。JMeter可以发送不同类型的请求,如HTTP、HTTPS、FTP、SOAP、REST等,并且可以模拟多种负载类型,例如并发用户、线程组、定时…

洛谷普及组P1044栈,题目讲解(无数论基础,纯打表找规律)

[NOIP2003 普及组] 栈 - 洛谷 我先写了个打表的代码&#xff0c;写了一个小时&#xff0c;o(╥﹏╥)o只能说我真不擅长dfs。 int n; std::unordered_map<std::string, int>map; void dfs(std::vector<int>&a, int step,std::stack<int>p, std::string …

【K8S 资源管理】声明式资源管理

目录 一、常用的发布方式 1、蓝绿发布&#xff1a; 2、金丝雀发布&#xff08;灰度发布&#xff09;&#xff1a; 3、滚动更新&#xff08;deployment的默认更新方式&#xff09;&#xff1a; 二、声明式管理方法&#xff08;yaml文件&#xff09; 1、三种发布命令&#x…

C语言中灵活多变的动态内存,malloc函数 free函数 calloc函数 realloc函数

文章目录 &#x1f680;前言&#x1f680;管理动态内存的函数✈️malloc函数✈️free函数✈️calloc函数✈️realloc函数 &#x1f680;在使用动态内存函数时的常见错误✈️对NULL指针的解引用✈️ 对动态开辟空间的越界访问✈️对非动态开辟内存使用free释放✈️使用free释放一…

三、C语言中的分支与循环—for循环 (6)

本章分支结构的学习内容如下&#xff1a; 三、C语言中的分支与循环—if语句 (1) 三、C语言中的分支与循环—关系操作符 (2) 三、C语言中的分支与循环—条件操作符 与逻辑操作符(3) 三、C语言中的分支与循环—switch语句&#xff08;4&#xff09;分支结构 完 本章循环结构的…

【SpringBoot框架篇】34.使用Spring Retry完成任务的重试

文章目录 简要1.为什么需要重试&#xff1f;2.添加maven依赖3.使用Retryable注解实现重试4.基于RetryTemplate模板实现重试 简要 Spring实现了一套重试机制&#xff0c;功能简单实用。Spring Retry是从Spring Batch独立出来的一个功能&#xff0c;已经广泛应用于Spring Batch,…

Linux 进程和计划任务管理

一 内核功用&#xff1a;进程管理、内存管理、文件系统、网络功能、驱动程序、安全功能等 1 程序 是一组计算机能识别和执行的指令&#xff0c;运行于电子计算机上&#xff0c;满足人们某种需求的信息化工具 用于描述进程要完成的功能&#xff0c;是控制进程执行的指令集 2…

LeetCode 82:删除排序链表中的重复元素 II

一、题目描述 给定一个已排序的链表的头 head &#xff0c; 删除原始链表中所有重复数字的节点&#xff0c;只留下不同的数字 。返回 已排序的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,3,4,4,5] 输出&#xff1a;[1,2,5]示例 2&#xff1a; 输入&#xff1a…

B01、类加载子系统-02

JVM架构图-英文版 中文版见下图&#xff1a; 1、概述类的加载器及类加载过程 1.1、类加载子系统的作用 类加载器子系统负责从文件系统或者网络中加载Class文件,class文件在文件开头有特定的文件标识。ClassLoader只负责class文件的加载,至于它是否可以运行,则由Execution Engi…

炫酷按钮制作(HTML+CSS+Javascript)

实现效果&#xff1a; 当鼠标点击按钮时&#xff1a; 实现代码&#xff1a; <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title><style>div{margin-top: 20px;margin-left: 20px;}.button{border: soli…

力扣热题100道-矩阵篇

矩阵 73.矩阵置零 给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0 。请使用 原地 算法**。** 示例 1&#xff1a; 输入&#xff1a;matrix [[1,1,1],[1,0,1],[1,1,1]] 输出&#xff1a;[[1,0,1],[0,0,0],[1,0,1]]示例…

CSS 顶部位置翻转动画

<template><div class"container" mouseenter"startAnimation" mouseleave"stopAnimation"><!-- 旋方块 --><div class"box" :class"{ rotate-hor-top: isAnimating }"><!-- 元素内容 --><…

stable diffusion 基础教程-图生图

界面 图生图大概有以下几个功能: 图生图涂鸦绘制局部绘制局部绘制(涂鸦蒙版)其常用的也就上面四个,接下来逐步讲解。 以图反推提示词 图生图可以根据反推提示词来获取相应图片的提示词,目前3种主流方式,如下: CLIP反推提示词:推导出的文本倾向于自然语言的描述方式,…

Hive详解、配置、数据结构、Hive CLI

一、Hive 认识 1. Hive 应用 问题&#xff1a;公司的经营状况&#xff1f; 主题一&#xff1a;财务现金流指标1.1&#xff1a;净现金流入/流出量指标1.2&#xff1a;现金转换周期预算执行状况指标2.1&#xff1a;预算内成本控制指标2.2&#xff1a;预算与实际支出的差异 主题…

电路笔记 :自激振荡电路笔记 电弧打火机

三极管相关 三极管的形象描述 二极管 简单求解&#xff08;理想&#xff09; 优先导通&#xff08;理想&#xff09; 恒压降 稳压管&#xff08;二极管plus&#xff09; 基础工作模块 理想稳压管的工作特性 晶体管之三极管(“两个二极管的组合” ) 电弧打火机电路 1.闭合开…

docker 安装可视化工具 Portainer 以及 汉化

安装portainer是最新版本&#xff0c;汉化指定版本2.9.1 。如果要安装汉化版&#xff0c;可直接跳转步骤四 一、拉去镜像 安装网址&#xff1a;Install Portainer BE with Docker on Linux - Portainer Documentation docker pull portainer/portainer二、根据portainer镜像创建…

Centos7 安装zabbix6.0.25, agent2

Centos 7 版本&#xff08;不支持yum安装zabbix服务端&#xff0c;只能编译安装服务端&#xff09;zabbix 6.0 版本 版本6.0支持年限&#xff1a; Nginx 1.22.1 版本php 7.2.34 版本mariadb 10.5.19 版本 #关闭防火墙 [rootzabbix ~]# systemctl stop firewalld [rootzabbix…

STL-string

目录 &#x1f4a1;介绍 &#x1f4a1;string的基本操作 &#x1f4a1;string的构造函数 &#x1f4a1;string赋值操作 &#x1f4a1;string字符串拼接 &#x1f4a1;string的查找和替换 &#x1f4a1;string字符串比较 &#x1f4a1;string字符存取 &#x1f4a1;str…

Spark---RDD介绍

文章目录 1.Spark核心编程2.RDD介绍2.1.RDD基本原理2.2 RDD特点1.弹性2.分布式 &#xff1a;数据存储在大数据集群的不同节点上3.数据集 &#xff1a;RDD封装了计算逻辑&#xff0c;并不保存数据4.数据抽象 &#xff1a;RDD是一个抽象类&#xff0c;具体实现由子类来实现5. 不可…

C语言实例_math.h库函数功能及其用法详解

一、前言 数学在计算机编程中扮演着至关重要的角色&#xff0c;C语言的math.h头文件提供了一系列的函数和工具&#xff0c;用于数学计算和常用数学函数的实现。这些函数包括数值运算、三角函数、指数对数函数等&#xff0c;为开发人员提供了强大的数学处理能力。本文将对math.…