【23-24 秋学期】NNDL 作业13 优化算法3D可视化

news2024/12/28 2:16:12

编程实现优化算法,并3D可视化

1. 函数3D可视化

分别画出x[0]^{2}+x[1]^{2}+x[1]^{3}+x[0]*x[1] 和 x^{2} /20+y^{2}的3D图

代码如下:

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from matplotlib import pyplot as plt
import torch
from nndl.op import Op
 
# 画出x**2
class OptimizedFunction3D(Op):
    def __init__(self):
        super(OptimizedFunction3D, self).__init__()
        self.params = {'x': 0}
        self.grads = {'x': 0}
 
    def forward(self, x):
        self.params['x'] = x
        return x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]
 
    def backward(self):
        x = self.params['x']
        gradient1 = 2 * x[0] + x[1]
        gradient2 = 2 * x[1] + 3 * x[1] ** 2 + x[0]
        grad1 = torch.Tensor([gradient1])
        grad2 = torch.Tensor([gradient2])
        self.grads['x'] = torch.cat([grad1, grad2])
 
# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-3, 3, 0.1)
x2 = np.arange(-3, 3, 0.1)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))
 
model = OptimizedFunction3D()
 
# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy()
ax.plot_surface(X, Y, Z, cmap='rainbow')
 
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')
plt.show()
 
# 画出x * x / 20 + y * y
def func(x, y):
    return x * x / 20 + y * y
 
def paint_loss_func():
    x = np.linspace(-50, 50, 100)  # x的绘制范围是-50到50,从改区间均匀取100个数
    y = np.linspace(-50, 50, 100)  # y的绘制范围是-50到50,从改区间均匀取100个数
 
    X, Y = np.meshgrid(x, y)
    Z = func(X, Y)
 
    fig = plt.figure()  # figsize=(10, 10))
    ax = Axes3D(fig)
    plt.xlabel('x')
    plt.ylabel('y')
 
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
    plt.show()
 
 
paint_loss_func()
 
 

2.加入优化算法,画出轨迹

分别画出x[0]^{2}+x[1]^{2}+x[1]^{3}+x[0]*x[1] 和 x^{2} /20+y^{2}的3D轨迹图

(1)x[0]^{2}+x[1]^{2}+x[1]^{3}+x[0]*x[1]

import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from nndl.op import Op
 
 
class Optimizer(object):  # 优化器基类
    def __init__(self, init_lr, model):
        """
        优化器类初始化
        """
        # 初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        # 指定优化器需要优化的模型
        self.model = model
 
    def step(self):
        """
        定义每次迭代如何更新参数
        """
        pass
 
 
class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)
 
    def step(self):
        # 参数更新
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
 
 
class Adagrad(Optimizer):
    def __init__(self, init_lr, model, epsilon):
        """
        Adagrad 优化器初始化
        输入:
            - init_lr: 初始学习率 - model:模型,model.params存储模型参数值  - epsilon:保持数值稳定性而设置的非常小的常数
        """
        super(Adagrad, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.epsilon = epsilon
 
    def adagrad(self, x, gradient_x, G, init_lr):
        """
        adagrad算法更新参数,G为参数梯度平方的累计值。
        """
        G += gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """
        参数更新
        """
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
 
 
class RMSprop(Optimizer):
    def __init__(self, init_lr, model, beta, epsilon):
        """
        RMSprop优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta:衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(RMSprop, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.beta = beta
        self.epsilon = epsilon
 
    def rmsprop(self, x, gradient_x, G, init_lr):
        """
        rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
        """
        G = self.beta * G + (1 - self.beta) * gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
 
 
class Momentum(Optimizer):
    def __init__(self, init_lr, model, rho):
        """
        Momentum优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - rho:动量因子
        """
        super(Momentum, self).__init__(init_lr=init_lr, model=model)
        self.delta_x = {}
        for key in self.model.params.keys():
            self.delta_x[key] = 0
        self.rho = rho
 
    def momentum(self, x, gradient_x, delta_x, init_lr):
        """
        momentum算法更新参数,delta_x为梯度的加权移动平均
        """
        delta_x = self.rho * delta_x - init_lr * gradient_x
        x += delta_x
        return x, delta_x
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
                                                                      self.model.grads[key],
                                                                      self.delta_x[key],
                                                                      self.init_lr)
class Nesterov(Optimizer):
    def __init__(self, init_lr, model, rho):
        """
        Nesterov优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - rho:动量因子
        """
        super(Nesterov, self).__init__(init_lr=init_lr, model=model)
        self.delta_x = {}
        for key in self.model.params.keys():
            self.delta_x[key] = 0
        self.rho = rho
 
    def nesterov(self, x, gradient_x, delta_x, init_lr):
        """
        Nesterov算法更新参数,delta_x为梯度的加权移动平均
        """
        delta_x_prev = delta_x
        delta_x = self.rho * delta_x - init_lr * gradient_x
        x += -self.rho * delta_x_prev + (1 + self.rho) * delta_x
        return x, delta_x
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.delta_x[key] = self.nesterov(self.model.params[key],
                                                                      self.model.grads[key],
                                                                      self.delta_x[key],
                                                                      self.init_lr)
 
 
class Adam(Optimizer):
    def __init__(self, init_lr, model, beta1, beta2, epsilon):
        """
        Adam优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta1, beta2:移动平均的衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(Adam, self).__init__(init_lr=init_lr, model=model)
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.M, self.G = {}, {}
        for key in self.model.params.keys():
            self.M[key] = 0
            self.G[key] = 0
        self.t = 1
 
    def adam(self, x, gradient_x, G, M, t, init_lr):
        """
        adam算法更新参数
        输入:
            - x:参数
            - G:梯度平方的加权移动平均
            - M:梯度的加权移动平均
            - t:迭代次数
            - init_lr:初始学习率
        """
        M = self.beta1 * M + (1 - self.beta1) * gradient_x
        G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
        M_hat = M / (1 - self.beta1 ** t)
        G_hat = G / (1 - self.beta2 ** t)
        t += 1
        x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
        return x, G, M, t
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
                                                                                 self.model.grads[key],
                                                                                 self.G[key],
                                                                                 self.M[key],
                                                                                 self.t,
                                                                                 self.init_lr)
 
 
class OptimizedFunction3D(Op):
    def __init__(self):
        super(OptimizedFunction3D, self).__init__()
        self.params = {'x': 0}
        self.grads = {'x': 0}
 
    def forward(self, x):
        self.params['x'] = x
        return x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]
 
    def backward(self):
        x = self.params['x']
        gradient1 = 2 * x[0] + x[1]
        gradient2 = 2 * x[1] + 3 * x[1] ** 2 + x[0]
        grad1 = torch.Tensor([gradient1])
        grad2 = torch.Tensor([gradient2])
        self.grads['x'] = torch.cat([grad1, grad2])
 
 
class Visualization3D(animation.FuncAnimation):
    """    绘制动态图像,可视化参数更新轨迹    """
 
    def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=600, blit=True, **kwargs):
        """
        初始化3d可视化类
        输入:
            xy_values:三维中x,y维度的值
            z_values:三维中z维度的值
            labels:每个参数更新轨迹的标签
            colors:每个轨迹的颜色
            interval:帧之间的延迟(以毫秒为单位)
            blit:是否优化绘图
        """
        self.fig = fig
        self.ax = ax
        self.xy_values = xy_values
        self.z_values = z_values
 
        frames = max(xy_value.shape[0] for xy_value in xy_values)
        self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]
                      for _, label, color in zip_longest(xy_values, labels, colors)]
        super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,
                                              interval=interval, blit=blit, **kwargs)
 
    def init_animation(self):
        # 数值初始化
        for line in self.lines:
            line.set_data([], [])
            # line.set_3d_properties(np.asarray([]))  # 源程序中有这一行,加上会报错。 Edit by David 2022.12.4
        return self.lines
 
    def animate(self, i):
        # 将x,y,z三个数据传入,绘制三维图像
        for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):
            line.set_data(xy_value[:i, 0], xy_value[:i, 1])
            line.set_3d_properties(z_value[:i])
        return self.lines
 
 
def train_f(model, optimizer, x_init, epoch):
    x = x_init
    all_x = []
    losses = []
    for i in range(epoch):
        all_x.append(copy.deepcopy(x.numpy()))  # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.
        loss = model(x)
        losses.append(loss)
        model.backward()
        optimizer.step()
        x = model.params['x']
    return torch.Tensor(np.array(all_x)), losses
 
 
# 构建6个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.01, model=model1)
 
model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.5, model=model2, epsilon=1e-7)
 
model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.1, model=model3, beta=0.9, epsilon=1e-7)
 
model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.01, model=model4, rho=0.9)
 
model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.1, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)
 
model6 = OptimizedFunction3D()
opt_Nesterov = Nesterov(init_lr=0.1, model=model6, rho=0.9)
 
models = [model1, model2, model3, model4, model5, model6]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam, opt_Nesterov]
 
x_all_opts = []
z_all_opts = []
 
# 使用不同优化器训练
 
for model, opt in zip(models, opts):
    x_init = torch.FloatTensor([2, 3])
    x_one_opt, z_one_opt = train_f(model, opt, x_init, 150)  # epoch
    # 保存参数值
    x_all_opts.append(x_one_opt.numpy())
    z_all_opts.append(np.squeeze(z_one_opt))
 
# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-3, 3, 0.1)
x2 = np.arange(-3, 3, 0.1)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))
 
model = OptimizedFunction3D()
 
# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy()  # 改为 model(init_x).numpy() David 2022.12.4
ax.plot_surface(X, Y, Z, cmap='rainbow')
 
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')
 
labels = ['SGD', 'AdaGrad', 'RMSprop', 'Momentum', 'Adam', 'Nesterov']
colors = ['#8B0000', '#0000FF', '#000000', '#008B00', '#FF0000']
 
animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper left')
 
plt.show()
animator.save('animation.gif')  # 效果不好,估计被挡住了…… 有待进一步提高 Edit by David 2022.12.4

结果如下:

 (2)x^{2} /20+y^{2}

import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from matplotlib import cm

class Op(object):
    def __init__(self):
        pass

    def __call__(self, inputs):
        return self.forward(inputs)

    # 输入:张量inputs
    # 输出:张量outputs
    def forward(self, inputs):
        # return outputs
        raise NotImplementedError

    # 输入:最终输出对outputs的梯度outputs_grads
    # 输出:最终输出对inputs的梯度inputs_grads
    def backward(self, outputs_grads):
        # return inputs_grads
        raise NotImplementedError
# 优化器基类
class Optimizer(object):
    def __init__(self, init_lr, model):
        """
        优化器类初始化
        """
        # 初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        # 指定优化器需要优化的模型
        self.model = model

    def step(self):
        """
        定义每次迭代如何更新参数
        """
        pass
#SGD
class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)

    def step(self):
        # 参数更新
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
#Adagrad
class Adagrad(Optimizer):
    def __init__(self, init_lr, model, epsilon):
        """
        Adagrad 优化器初始化
        输入:
            - init_lr: 初始学习率 - model:模型,model.params存储模型参数值  - epsilon:保持数值稳定性而设置的非常小的常数
        """
        super(Adagrad, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.epsilon = epsilon

    def adagrad(self, x, gradient_x, G, init_lr):
        """
        adagrad算法更新参数,G为参数梯度平方的累计值。
        """
        G += gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G

    def step(self):
        """
        参数更新
        """
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
#RMSprop
class RMSprop(Optimizer):
    def __init__(self, init_lr, model, beta, epsilon):
        """
        RMSprop优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta:衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(RMSprop, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.beta = beta
        self.epsilon = epsilon

    def rmsprop(self, x, gradient_x, G, init_lr):
        """
        rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
        """
        G = self.beta * G + (1 - self.beta) * gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G

    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
#动量法
class Momentum(Optimizer):
    def __init__(self, init_lr, model, rho):
        """
        Momentum优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - rho:动量因子
        """
        super(Momentum, self).__init__(init_lr=init_lr, model=model)
        self.delta_x = {}
        for key in self.model.params.keys():
            self.delta_x[key] = 0
        self.rho = rho

    def momentum(self, x, gradient_x, delta_x, init_lr):
        """
        momentum算法更新参数,delta_x为梯度的加权移动平均
        """
        delta_x = self.rho * delta_x - init_lr * gradient_x
        x += delta_x
        return x, delta_x

    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
                                                                      self.model.grads[key],
                                                                      self.delta_x[key],
                                                                      self.init_lr)
#Adam
class Adam(Optimizer):
    def __init__(self, init_lr, model, beta1, beta2, epsilon):
        """
        Adam优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta1, beta2:移动平均的衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(Adam, self).__init__(init_lr=init_lr, model=model)
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.M, self.G = {}, {}
        for key in self.model.params.keys():
            self.M[key] = 0
            self.G[key] = 0
        self.t = 1

    def adam(self, x, gradient_x, G, M, t, init_lr):
        """
        adam算法更新参数
        输入:
            - x:参数
            - G:梯度平方的加权移动平均
            - M:梯度的加权移动平均
            - t:迭代次数
            - init_lr:初始学习率
        """
        M = self.beta1 * M + (1 - self.beta1) * gradient_x
        G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
        M_hat = M / (1 - self.beta1 ** t)
        G_hat = G / (1 - self.beta2 ** t)
        t += 1
        x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
        return x, G, M, t

    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
                                                                                 self.model.grads[key],
                                                                                 self.G[key],
                                                                                 self.M[key],
                                                                                 self.t,
                                                                                 self.init_lr)
#三维函数--实现前向传播和反向传播
class OptimizedFunction3D(Op):
    def __init__(self):
        super(OptimizedFunction3D, self).__init__()
        self.params = {'x': 0}
        self.grads = {'x': 0}

    def forward(self, x):
        self.params['x'] = x
        return x[0] * x[0] / 20 + x[1] * x[1] / 1  # x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]

    def backward(self):
        x = self.params['x']
        gradient1 = 2 * x[0] / 20
        gradient2 = 2 * x[1] / 1
        grad1 = torch.Tensor([gradient1])
        grad2 = torch.Tensor([gradient2])
        self.grads['x'] = torch.cat([grad1, grad2])
#动态三维图像--可视化参数更新轨迹
class Visualization3D(animation.FuncAnimation):
    """    绘制动态图像,可视化参数更新轨迹    """
    def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=100, blit=True, **kwargs):
        """
        初始化3d可视化类
        输入:
            xy_values:三维中x,y维度的值
            z_values:三维中z维度的值
            labels:每个参数更新轨迹的标签
            colors:每个轨迹的颜色
            interval:帧之间的延迟(以毫秒为单位)
            blit:是否优化绘图
        """
        self.fig = fig
        self.ax = ax
        self.xy_values = xy_values
        self.z_values = z_values

        frames = max(xy_value.shape[0] for xy_value in xy_values)

        self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]
                      for _, label, color in zip_longest(xy_values, labels, colors)]
        self.points = [ax.plot([], [], [], color=color, markeredgewidth=1, markeredgecolor='black', marker='o')[0]
                       for _, color in zip_longest(xy_values, colors)]
        # print(self.lines)
        super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,
                                              interval=interval, blit=blit, **kwargs)

    def init_animation(self):
        # 数值初始化
        for line in self.lines:
            line.set_data_3d([], [], [])
        for point in self.points:
            point.set_data_3d([], [], [])
        return self.points + self.lines
    #实现动态效果-根据i更新line和point的位置
    def animate(self, i):
        # 将x,y,z三个数据传入,绘制三维图像
        for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):
            line.set_data_3d(xy_value[:i, 0], xy_value[:i, 1], z_value[:i])
        for point, xy_value, z_value in zip(self.points, self.xy_values, self.z_values):
            point.set_data_3d(xy_value[i, 0], xy_value[i, 1], z_value[i])
        return self.points + self.lines
def train_f(model, optimizer, x_init, epoch):
    x = x_init
    all_x = []
    losses = []
    for i in range(epoch):
        all_x.append(copy.deepcopy(x.numpy()))  # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.
        loss = model(x)
        losses.append(loss)
        model.backward()
        optimizer.step()
        x = model.params['x']
    return torch.Tensor(np.array(all_x)), losses

# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.95, model=model1)

model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=1.5, model=model2, epsilon=1e-7)

model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.05, model=model3, beta=0.9, epsilon=1e-7)

model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.1, model=model4, rho=0.9)

model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.3, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)

models = [model1, model2, model3, model4, model5]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam]

x_all_opts = []
z_all_opts = []

# 使用不同优化器训练
for model, opt in zip(models, opts):
    x_init = torch.FloatTensor([-7, 2])
    x_one_opt, z_one_opt = train_f(model, opt, x_init, 100)  # epoch
    # 保存参数值
    x_all_opts.append(x_one_opt.numpy())
    z_all_opts.append(np.squeeze(z_one_opt))
# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-10, 10, 0.01)
x2 = np.arange(-5, 5, 0.01)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))

model = OptimizedFunction3D()

# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy()  # 改为 model(init_x).numpy() David 2022.12.4
surf = ax.plot_surface(X, Y, Z, edgecolor='grey', cmap=cm.coolwarm)
# fig.colorbar(surf, shrink=0.5, aspect=1)
# ax.set_zlim(-3, 2)
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')

labels = ['SGD', 'AdaGrad', 'RMSprop', 'Momentum', 'Adam']
colors = ['#8B0000', '#0000FF', '#000000', '#008B00', '#FF0000']

animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper right')

plt.show()

结合3D动画,用自己的语言,从轨迹、速度等多个角度讲解各个算法优缺点

3.复现CS231经典动画


Animations that may help your intuitions about the learning process dynamics. 

Left: Contours of a loss surface and time evolution of different optimization algorithms. Notice the "overshooting" behavior of momentum-based methods, which make the optimization look like a ball rolling down the hill. 

Right: A visualization of a saddle point in the optimization landscape, where the curvature along different dimension has different signs (one dimension curves up and another down). Notice that SGD has a very hard time breaking symmetry and gets stuck on the top. Conversely, algorithms such as RMSprop will see very low gradients in the saddle direction. Due to the denominator term in the RMSprop update, this will increase the effective learning rate along this direction, helping RMSProp proceed. 

下边代码加上了Nesterov算法(对动量法进行改进:计算速度时先对当前位置进行一次预更新,然后再根据预更新的位置计算速度

参考NNDL 作业13 优化算法3D可视化-CSDN博客

import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from matplotlib import cm
 
 
class Op(object):
    def __init__(self):
        pass
 
    def __call__(self, inputs):
        return self.forward(inputs)
 
    # 输入:张量inputs
    # 输出:张量outputs
    def forward(self, inputs):
        # return outputs
        raise NotImplementedError
 
    # 输入:最终输出对outputs的梯度outputs_grads
    # 输出:最终输出对inputs的梯度inputs_grads
    def backward(self, outputs_grads):
        # return inputs_grads
        raise NotImplementedError
 
 
class Optimizer(object):  # 优化器基类
    def __init__(self, init_lr, model):
        """
        优化器类初始化
        """
        # 初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        # 指定优化器需要优化的模型
        self.model = model
 
    def step(self):
        """
        定义每次迭代如何更新参数
        """
        pass
 
 
class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)
 
    def step(self):
        # 参数更新
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
 
 
class Adagrad(Optimizer):
    def __init__(self, init_lr, model, epsilon):
        """
        Adagrad 优化器初始化
        输入:
            - init_lr: 初始学习率 - model:模型,model.params存储模型参数值  - epsilon:保持数值稳定性而设置的非常小的常数
        """
        super(Adagrad, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.epsilon = epsilon
 
    def adagrad(self, x, gradient_x, G, init_lr):
        """
        adagrad算法更新参数,G为参数梯度平方的累计值。
        """
        G += gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """
        参数更新
        """
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
 
 
class RMSprop(Optimizer):
    def __init__(self, init_lr, model, beta, epsilon):
        """
        RMSprop优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta:衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(RMSprop, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.beta = beta
        self.epsilon = epsilon
 
    def rmsprop(self, x, gradient_x, G, init_lr):
        """
        rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
        """
        G = self.beta * G + (1 - self.beta) * gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
 
 
class Momentum(Optimizer):
    def __init__(self, init_lr, model, rho):
        """
        Momentum优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - rho:动量因子
        """
        super(Momentum, self).__init__(init_lr=init_lr, model=model)
        self.delta_x = {}
        for key in self.model.params.keys():
            self.delta_x[key] = 0
        self.rho = rho
 
    def momentum(self, x, gradient_x, delta_x, init_lr):
        """
        momentum算法更新参数,delta_x为梯度的加权移动平均
        """
        delta_x = self.rho * delta_x - init_lr * gradient_x
        x += delta_x
        return x, delta_x
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
                                                                      self.model.grads[key],
                                                                      self.delta_x[key],
                                                                      self.init_lr)
 
class Nesterov(Optimizer):
    def __init__(self, init_lr, model, rho):
        """
        Nesterov优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - rho:动量因子
        """
        super(Nesterov, self).__init__(init_lr=init_lr, model=model)
        self.delta_x = {}
        for key in self.model.params.keys():
            self.delta_x[key] = 0
        self.rho = rho
 
    def nesterov(self, x, gradient_x, delta_x, init_lr):
        """
        Nesterov算法更新参数,delta_x为梯度的加权移动平均
        """
        delta_x_prev = delta_x
        delta_x = self.rho * delta_x - init_lr * gradient_x
        x += -self.rho * delta_x_prev + (1 + self.rho) * delta_x
        return x, delta_x
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.delta_x[key] = self.nesterov(self.model.params[key],
                                                                      self.model.grads[key],
                                                                      self.delta_x[key],
                                                                      self.init_lr)
 
 
class Adam(Optimizer):
    def __init__(self, init_lr, model, beta1, beta2, epsilon):
        """
        Adam优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta1, beta2:移动平均的衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(Adam, self).__init__(init_lr=init_lr, model=model)
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.M, self.G = {}, {}
        for key in self.model.params.keys():
            self.M[key] = 0
            self.G[key] = 0
        self.t = 1
 
    def adam(self, x, gradient_x, G, M, t, init_lr):
        """
        adam算法更新参数
        输入:
            - x:参数
            - G:梯度平方的加权移动平均
            - M:梯度的加权移动平均
            - t:迭代次数
            - init_lr:初始学习率
        """
        M = self.beta1 * M + (1 - self.beta1) * gradient_x
        G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
        M_hat = M / (1 - self.beta1 ** t)
        G_hat = G / (1 - self.beta2 ** t)
        t += 1
        x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
        return x, G, M, t
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
                                                                                 self.model.grads[key],
                                                                                 self.G[key],
                                                                                 self.M[key],
                                                                                 self.t,
                                                                                 self.init_lr)
 
 
class OptimizedFunction3D(Op):
    def __init__(self):
        super(OptimizedFunction3D, self).__init__()
        self.params = {'x': 0}
        self.grads = {'x': 0}
 
    def forward(self, x):
        self.params['x'] = x
        return - x[0] * x[0] / 2 + x[1] * x[1] / 1  # x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]
 
    def backward(self):
        x = self.params['x']
        gradient1 = - 2 * x[0] / 2
        gradient2 = 2 * x[1] / 1
        grad1 = torch.Tensor([gradient1])
        grad2 = torch.Tensor([gradient2])
        self.grads['x'] = torch.cat([grad1, grad2])
 
 
class Visualization3D(animation.FuncAnimation):
    """    绘制动态图像,可视化参数更新轨迹    """
 
    def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=100, blit=True, **kwargs):
        """
        初始化3d可视化类
        输入:
            xy_values:三维中x,y维度的值
            z_values:三维中z维度的值
            labels:每个参数更新轨迹的标签
            colors:每个轨迹的颜色
            interval:帧之间的延迟(以毫秒为单位)
            blit:是否优化绘图
        """
        self.fig = fig
        self.ax = ax
        self.xy_values = xy_values
        self.z_values = z_values
 
        frames = max(xy_value.shape[0] for xy_value in xy_values)
 
        self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]
                      for _, label, color in zip_longest(xy_values, labels, colors)]
        self.points = [ax.plot([], [], [], color=color, markeredgewidth=1, markeredgecolor='black', marker='o')[0]
                       for _, color in zip_longest(xy_values, colors)]
        # print(self.lines)
        super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,
                                              interval=interval, blit=blit, **kwargs)
 
    def init_animation(self):
        # 数值初始化
        for line in self.lines:
            line.set_data_3d([], [], [])
        for point in self.points:
            point.set_data_3d([], [], [])
        return self.points + self.lines
 
    def animate(self, i):
        # 将x,y,z三个数据传入,绘制三维图像
        for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):
            line.set_data_3d(xy_value[:i, 0], xy_value[:i, 1], z_value[:i])
        for point, xy_value, z_value in zip(self.points, self.xy_values, self.z_values):
            point.set_data_3d(xy_value[i, 0], xy_value[i, 1], z_value[i])
        return self.points + self.lines
 
 
def train_f(model, optimizer, x_init, epoch):
    x = x_init
    all_x = []
    losses = []
    for i in range(epoch):
        all_x.append(copy.deepcopy(x.numpy()))  # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.
        loss = model(x)
        losses.append(loss)
        model.backward()
        optimizer.step()
        x = model.params['x']
    return torch.Tensor(np.array(all_x)), losses
 
 
# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.05, model=model1)
 
model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.05, model=model2, epsilon=1e-7)
 
model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.05, model=model3, beta=0.9, epsilon=1e-7)
 
model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.05, model=model4, rho=0.9)
 
model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.05, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)
 
model6 = OptimizedFunction3D()
opt_Nesterov = Nesterov(init_lr=0.1, model=model6, rho=0.9)
 
models = [model1, model2, model3, model4, model5, model6]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam, opt_Nesterov]
 
x_all_opts = []
z_all_opts = []
 
# 使用不同优化器训练
 
for model, opt in zip(models, opts):
    x_init = torch.FloatTensor([0.00001, 0.5])
    x_one_opt, z_one_opt = train_f(model, opt, x_init, 100)  # epoch
    # 保存参数值
    x_all_opts.append(x_one_opt.numpy())
    z_all_opts.append(np.squeeze(z_one_opt))
 
# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-1, 2, 0.01)
x2 = np.arange(-1, 1, 0.05)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))
 
model = OptimizedFunction3D()
 
# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy()  # 改为 model(init_x).numpy() David 2022.12.4
surf = ax.plot_surface(X, Y, Z, edgecolor='grey', cmap=cm.coolwarm)
# fig.colorbar(surf, shrink=0.5, aspect=1)
ax.set_zlim(-3, 2)
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')
 
labels = ['SGD', 'AdaGrad', 'RMSprop', 'Momentum', 'Adam', 'Nesterov']
colors = ['#8B0000', '#0000FF', '#000000', '#008B00', '#FF0000']
 
 
animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper right')
 
plt.show()
# animator.save('teaser' + '.gif', writer='imagemagick',fps=10) # 效果不好,估计被挡住了…… 有待进一步提高 Edit by David 2022.12.4
# save不好用,不费劲了,安装个软件做gif https://pc.qq.com/detail/13/detail_23913.html

 图像如下

4.结合3D动画,用自己的语言,从轨迹、速度等多个角度讲解各个算法优缺点

SGD(随机梯度下降)

轨迹:

1.轨迹呈现"之"字型:在y方向上更新变化很大,而x轴方向上变化小,梯度的具有随机性,产生动荡现象。

缺点:

2.收敛速度较慢

3.在动画中可以看到SGD陷入了局部最小值。

4.需要调整学习率

AdaGrad

轨迹:

1.“之”字形的变动程度有所衰减:y轴方向梯度大->开始变动较大->按比例进行调整减小更新->y轴方向上的更新程度被减弱。函数的取值高效地向着最小值移动。

2.刚开始AdaGrad速度比RMSprop和SGD要快,有时甚至比Momentum和Nesterov还要快。但是时间越长,AdaGrad的速度会变成最慢【梯度衰减】

缺点:

到后期梯度衰减,速度变慢,会早停

优点:

1.自适应学习率

2.“之”字形的变动程度有所衰减

3.依旧需要手动添加一个全局学习率

RMSprop

轨迹

1.RMSprop在初始阶段比AdaGrad慢。

2.随着时间变化,AdaGrad变慢但RMSprop仍然保持稳定平缓。

3.RMSprop与AdaGrad在轨迹方向上基本一致。

优点:解决AdaGrad的梯度衰减问题,引入衰减率

缺点:要设置新的超参数

Momentum动量法

轨迹

1.Momentum在速度上明显快于其他几种算法,与Nesterov类似。

2.开始时Momentum会朝错误的方向震荡,然后再修正。

3.Momentum可以快速收敛到局部最小值,并解决鞍点问题。

优点:收敛速度、训练速度快

缺点:方向性差

Nesterov

轨迹:

同图中可以看到,在方向正确性高和速度上也快,比Momentum要好。

优点:Nesterov速度快,轨迹正确性高。 Nesterov是对Momentum的改进,它不仅速度快,同时轨迹更加平滑、具有方向性驶向最优点。

Adam

轨迹:

可以看到前期收敛幅度较大,后期逐渐平稳,朝着最优点不断移动。

优点:

它结合了RMSprop算法【调整学习率】和Momentum算法【梯度修正】,轨迹稳定且快速收敛。

参考:【23-24 秋学期】NNDL 作业12 优化算法2D可视化-CSDN博客 

【23-24 秋学期】NNDL 作业13 优化算法3D可视化-CSDN博客 

NNDL 作业13 优化算法3D可视化-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1350445.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

关于Python里xlwings库对Excel表格的操作(二十四)

这篇小笔记主要记录如何【如何使用xlwings库中的“api”类设置单元格边界线型、粗细、颜色】。前面的小笔记已整理成目录,可点链接去目录寻找所需更方便。 【目录部分内容如下】【点击此处可进入目录】 (1)如何安装导入xlwings库;…

宣传照(私密)勿转发

精美的海报通常都是由UI进行精心设计的,现在有100 件商品需要进行宣传推广,如果每个商品都出一张图显然是不合理的,且商品信息各异。因此需要通过代码的形式生成海报。对此,我也对我宣传一波,企图实现我一夜暴富的伟大…

深度学习代码20240102

import torch from torch import nn #搭建神经网络 class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()#在 Tudui 类的构造函数中调用其父类的构造函数,以确保执行父类的初始化操作#通过 super(Tudui, self).__init__(),我们获取…

基于springboot技术的美食烹饪互动平台的设计与实现

🍅点赞收藏关注 → 私信领取本源代码、数据库🍅 本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目希望你能有所收获,少走一些弯路。🍅关注我不迷路🍅一 、设计说明 1.1 课题背景 二…

【C++】浅拷贝 / 深拷贝 / 写时拷贝

文章目录 1. 经典的string类问题2. 浅拷贝3. 深拷贝3.1 传统写法的String类3.2 现代写法的String类 4. 写时拷贝 1. 经典的string类问题 上一篇博客已经对string类进行了简单的介绍,大家只要能够正常使用即可。 链接:【C】string 在面试中,面…

PMP报考别跟风!搞懂这些问题不踩坑

大家好,今天我想和大家分享一下关于PMP报考的一些问题。近年来,PMP认证越来越受到大家的关注,但是报考PMP并不是一件简单的事情,需要我们认真考虑和准备。下面我将从PMP是什么、PMP有什么用、PMP适合什么人考、PMP是学什么的、PMP…

Git开发工具基本使用

文章目录 前言Git仓库基本概念基本环境安装清除原先配置生成秘钥配置Host添加公钥Github添加Gitee添加测试 本地仓库基本概览查看提交日志(log)版本回退添加文件至忽略列表分支分支冲突 远程仓库推送到远程仓库从远程仓库中抓取和拉取 在Idea中使用Git总结 前言 这里只是对Git…

WPF+Halcon 培训项目实战(10):HS组件绘制图案

文章目录 前言相关链接项目专栏运行环境匹配图片模板匹配加载模板文件运行结果 绘制十字标 WPF HS组件绘制图像绘制和生成的区别 前言 为了更好地去学习WPFHalcon,我决定去报个班学一下。原因无非是想换个工作。相关的教学视频来源于下方的Up主的提供的教程。这里只…

系列一、如何正确的获取Spring Cloud Alibaba Spring Cloud Spring Boot之间的版本对应关系

一、正确的获取Spring Cloud Alibaba & Spring Cloud & Spring Boot之间的版本对应关系 1.1、概述 Java发展日新月异,Spring Cloud Alibaba 、 Spring Cloud 、 Spring Boot在GitHub上的迭代也是异常的频繁,这也说明其社区很活跃,通…

NFS(文件存储服务)

题目 创建NFS共享文件夹,允许InsideCli可以远程挂载,映射挂载到D卷。共享文件夹路径为D:\shares\NFSshare。共享名称为NFSshare。允许未映射的用户访问。共享权限为读/写。服务配置步骤( 服务端 ) 步骤一 - 安装服务 步骤二 - 配置NFS服务 配置共享文件夹 选择共享路径

【BIG_FG_CSDN】C++ 数组与指针 (个人向——学习笔记)

一维数组 在内存占用连续存储单元的相同类型数据序列的存储。 数组是静态存储器的块;在编译时确定大小后才能使用; 其声明格式如下: 元素类型 数组名[常量];元素类型:数组中元素的数据类型; 常量&#…

Linux系统驱动要如何学习

1.你将获得: 快速上手 Linux 操作系统; 掌握Linux 内核工作原理; 掌握Linux 内核调试手段; 掌握复杂驱动:USB、PCIE、V4L2等 这门课程旨在为你打开Linux内核驱动的大门,让你在探索Linux内核的旅程中获得前…

HPM6750开发笔记《GPIO例程深度解析》

目录 创建工程: 代码分析: 1.头文件包含: 2.宏定义: 3.中断服务程序(ISR): 清除中断标志: 处理 LED 状态切换: 处理用户按键状态: 处理其他情况&…

Tomcat服务为什么起不来?

转载说明:如果您喜欢这篇文章并打算转载它,请私信作者取得授权。感谢您喜爱本文,请文明转载,谢谢。 服务跑在Tomcat下面,有时候会遇到Tomcat起不来的情况。目前为止常遇到的情况有如下几种: 1. Tomcat服务…

Python模拟技巧实现自动抽屉登录和自动点赞

目录 一、引言 二、准备工作 三、自动抽屉登录 四、自动点赞 五、注意事项 六、案例分析 七、总结 一、引言 随着互联网的普及,人们越来越依赖于各种在线平台进行社交互动和信息获取。在这些平台上,用户需要登录才能享受各种服务,同时…

李宏毅机器学习第二十三周周报 Flow-based model

文章目录 week 23 Flow-based model摘要Abstract一、李宏毅机器学习1.引言2.数学背景2.1Jacobian2.2Determinant2.3Change of Variable Theorem 3.Flow-based Model4.GLOW 二、文献阅读1. 题目2. abstract3. 网络架构3.1 change of variable formula3.2 Coupling layers3.3Prop…

java数据结构与算法刷题-----LeetCode509. 斐波那契数

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846 很多人觉得动态规划很难,但它就是固定套路而已。其实动态规划只…

跨境电商独立站代采1688货源网站

什么是淘宝代购 淘宝代购是近年兴起的一种购物模式,是帮国外客户购买中国商品。主要是通过万邦 科技的外贸代购系统,把淘宝、天猫等电商平台的全站商品通过API 接入到你的网站 上,瞬间就可以架设一个有数亿产品的大型网上商城,而且…

外贸人应该顺应趋势做外贸

2024年,有人疑惑外贸将如何发展?我想紧跟趋势是不会出错的,多年前网络没有如今那么发达,客户到中国参展或者来访就能确认订单。如今到处都是各种推广平台,客户足不出户就能在线上订购产品,如果你还是想靠之…

出版实务 | 书刊整体设计

文章目录 书刊整体设计概念目的原则内容外部装帧设计内文版式设计 书刊的形态术语书刊外表的翻本形态书刊的开本书刊装订样式种类平装精装骑马订装散页装 书刊的结构部件图书封面勒口书名页目录页 期刊面封底封 书刊版式设计概述版心、周空、版口、翻口的概念版面类型——和合面…