【MATLAB】鲸鱼算法优化混合核极限学习机(WOA-HKELM)时序预测算法

news2025/1/15 16:34:08

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

鲸鱼算法优化混合核极限学习机(WOA-HKELM)是一种时序预测算法,它结合了鲸鱼算法和混合核极限学习机(HKELM)的优点。以下是该算法的基本原理:

  1. 「初始化」:在算法开始时,需要在可行解空间中初始化一群鲸鱼个体。每个鲸鱼个体代表一个潜在的最优解,位置表示鲸鱼的特征,适应度值由适应度函数计算得到。

  2. 「搜索」:每个鲸鱼按照一定的规则探索空间。这个过程模拟了鲸鱼包围、追捕和攻击猎物等过程。具体来说,每只鲸鱼会根据其当前位置和速度,按照一定的规则在解空间中移动,并更新其位置。

  3. 「评估」:每当鲸鱼移动时,都会计算当前的适应度值。适应度值由目标函数计算得到,表示鲸鱼的优劣。如果当前的适应度值优于之前的适应度值,则将当前适应度值设为最优解。

  4. 「更新」:当所有的鲸鱼都完成移动和评估后,算法会根据一定的规则更新所有鲸鱼的位置和速度。更新的规则是基于鲸鱼的适应度值和种群最优解的情况,确保算法向着更优的方向演化。

  5. 「迭代」:重复上述步骤,直到满足终止条件或者达到预设的最大迭代次数。在迭代过程中,鲸鱼的主要行为包括包围猎物、捕获猎物、搜索猎物等。通过这些行为,鲸鱼种群逐渐向最优解靠近。

通过以上步骤,鲸鱼算法优化混合核极限学习机(WOA-HKELM)能够找到最优解,实现时序预测。该算法具有较高的效率和稳定性,能够应用于各种类型的优化问题。

在WOA-HKELM中,HKELM被用作预测模型,而鲸鱼算法被用于优化HKELM的参数。通过优化参数,WOA-HKELM能够提高预测精度和稳定性。

总的来说,WOA-HKELM 是一种非常实用的时序预测工具,尤其适合新手学习和研究人员进行时序预测的实验和比较。在实际应用中,通过调整参数和优化算法,WOA-HKELM 工具也能够满足不同场景和任务的需求。

以下是对鲸鱼算法优化混合核极限学习机(WOA-HKELM)实现过程的描述:

  1. 「初始化」:在算法开始时,需要在可行解空间中初始化一群鲸鱼个体。每个鲸鱼个体代表一个潜在的最优解,位置表示鲸鱼的特征,适应度值由适应度函数计算得到。

  2. 「搜索」:每个鲸鱼按照一定的规则探索空间。这个过程模拟了鲸鱼包围、追捕和攻击猎物等过程。具体来说,每只鲸鱼会根据其当前位置和速度,按照一定的规则在解空间中移动,并更新其位置。

  3. 「评估」:每当鲸鱼移动时,都会计算当前的适应度值。适应度值由目标函数计算得到,表示鲸鱼的优劣。如果当前的适应度值优于之前的适应度值,则将当前适应度值设为最优解。

  4. 「更新」:当所有的鲸鱼都完成移动和评估后,算法会根据一定的规则更新所有鲸鱼的位置和速度。更新的规则是基于鲸鱼的适应度值和种群最优解的情况,确保算法向着更优的方向演化。

  5. 「迭代」:重复上述步骤,直到满足终止条件或者达到预设的最大迭代次数。在迭代过程中,鲸鱼的主要行为包括包围猎物、捕获猎物、搜索猎物等。通过这些行为,鲸鱼种群逐渐向最优解靠近。

通过以上步骤,鲸鱼算法优化混合核极限学习机(WOA-HKELM)能够找到最优解,实现时序预测。该算法具有较高的效率和稳定性,能够应用于各种类型的优化问题。

在鲸鱼优化算法(WOA)中,参数的调整可以通过实验和经验来决定。以下是一些常见的参数调整方法:

  1. 「种群规模」:种群规模是指算法中鲸鱼的数量,通常需要通过实验来选择合适的种群规模。一般来说,种群规模不宜过大或过小,需要根据问题的复杂性和求解精度要求进行合理设置。

  2. 「迭代次数」:迭代次数是指算法的迭代次数,也需要在实验中进行合理设置。如果迭代次数太少,算法可能无法找到全局最优解;如果迭代次数太多,可能会导致算法运行时间过长。

  3. 「搜索空间」:搜索空间是指鲸鱼在解空间中移动的范围,可以通过设置适当的搜索空间来限制鲸鱼的移动范围。搜索空间的设置需要根据问题的特性进行合理设置。

  4. 「学习因子」:学习因子是指鲸鱼之间的学习程度,可以通过调整学习因子的值来影响算法的性能。一般来说,学习因子的值应该在一定范围内进行选择,以便在全局搜索和局部搜索之间取得平衡。

  5. 「边界条件」:边界条件是指解空间的边界,可以通过设置合理的边界条件来避免鲸鱼越界。边界条件的设置应该根据问题的实际情况进行合理设置。

在调整参数时,可以尝试不同的参数组合,通过实验和比较来选择最优的参数配置。同时,也可以参考其他优化算法的参数调整经验,以便更好地优化鲸鱼优化算法的性能。

2 出图效果

附出图效果如下:

附视频教程操作:

【MATLAB】鲸鱼算法优化混合核极限学习机(WOA-HKELM)时序预测算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1349041.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解锁React魔法门:高效项目开发工作流揭秘

你好,我是坚持分享干货的 EarlGrey,翻译出版过《Python编程无师自通》、《Python并行计算手册》等技术书籍。 如果我的分享对你有帮助,请关注我,一起向上进击。 创作不易,希望大家给一点鼓励,把公众号设置为…

2024年PMP考试新考纲-PMBOK第七版-【模型、方法和工件】真题解析(2)

今天我们继续来看第七版PMBOK第四部分【模型、方法和工件】这个章节相关的真题。 实际上在做题的时候,可能有的小伙伴会发现,这部分和第六版PMBOK中散落在各个知识领域的题目很相似。没错!在之前版本的PMBOK中,很经典的框架是每个…

2.1 DFMEA步骤一:策划和准备

2.1.1 目的 设计FMEA的“策划和准备”步骤旨在确定将要执行的FMEA类型,以及根据进行中的分析类型(如系统、子系统或组件)明确每个FMEA的范围。设计FMEA(DFMEA)的主要目标包括: 项目识别项目计划:涵盖目的、时间安排、团队、任务和工具(5T)分析边界:界定分析的范围,…

LLM应用的分块策略

每日推荐一篇专注于解决实际问题的外文,精准翻译并深入解读其要点,助力读者培养实际问题解决和代码动手的能力。 欢迎关注公众号 原文标题:Chunking Strategies for LLM Applications 原文地址:https://www.pinecone.io/learn/c…

数据结构:队列(链表和数组模拟实现)

目录 1.何为队列 2.链表模拟实现 2.1 节点和队列创建 2.2 初始化队列 2.3 入队操作 2.4 出队操作 2.5 遍历队列 2.6 获取队首和队尾元素 2.7 判断队列是否为空 2.8 完整实现 3. 数组模拟实现 3.1 创建队列 3.2 入队和出队操作 3.3 遍历队列 3.4 获取队首和队尾元…

计算机组成原理复习4

习题 练习题 下列不属于系统总线的为() a.数据总线 b.地址总线 c.控制总线 d.片内总线 D 系统总线中地址总线的功能是() a.选择主存单元地址 b.选择进行信息传输的设备 c.选择外存地址 d.指定主存和I/O设备接口电路的地址 D 解…

【电商项目实战】商品详情显示与Redis存储购物车信息

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是Java方文山,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的专栏《电商项目实战》。🎯🎯 &am…

第9章 继承和派生习题(详解)

一、选择题 1.下列表示引用的方法中, () 是正确的。已知:int m10: A.int &xm; B.int &y10; C.int &z; D.fl…

[CISCN 2019华东南]Web11

[CISCN 2019华东南]Web11 wp 信息搜集 页面内容如下: 右上角显示的是我的当前 IP 。 在最下角提示:Build With Smarty ! Smarty 是 PHP 的一个模板引擎,那么这道题应该是 Smarty 模板注入。 Smarty 模板注入 可以参考博客:Sm…

4年微博热搜数据,一次拿走

又是新的一年了,从2020年开始,就养成了定时备份各大平台热搜数据的习惯,微博,知乎都在备份,今天给大家看一下从2020年到2023年的微博热搜数据情况 这是2022年的备份数据,每天的热搜数据一个文件&#xff0c…

[蓝桥杯基础题型] 图论题目

遍历 添加路障 首先答案只能是0 1 2 ,原因:把出发点堵住只需要两个路障 路障为0:不能找到一条从出发点到终点的路 路障为1:能找到一条从出发点到终点的路,但是只有一条 路障为2:能找到一条从出发点到终…

Origin 2021软件安装包下载及安装教程

Origin 2021下载链接:https://docs.qq.com/doc/DUnJNb3p4VWJtUUhP 1.选中下载的压缩包,然后鼠标右键选择解压到"Origin 2021"文件夹 2.双击打开“Setup”文件夹 3.选中“Setup.exe”鼠标右键点击“以管理员身份运行” 4.点击“下一步" 5…

SELinux 安全模型——MLS

首发公号:Rand_cs BLP 模型:于1973年被提出,是一种模拟军事安全策略的计算机访问控制模型,它是最早也是最常用的一种多级访问控制模型,主要用于保证系统信息的机密性,是第一个严格形式化的安全模型 暂时无…

SQL性能优化-索引

1.性能下降sql慢执行时间长等待时间长常见原因 1)索引失效 索引分为单索、复合索引。 四种创建索引方式 create index index_name on user (name); create index index_name_2 on user(id,name,email); 2)查询语句较烂 3)关联查询太多join&a…

Embedding模型在大语言模型中的重要性

引言 随着大型语言模型的发展,以ChatGPT为首,涌现了诸如ChatPDF、BingGPT、NotionAI等多种多样的应用。公众大量地将目光聚焦于生成模型的进展之快,却少有关注支撑许多大型语言模型应用落地的必不可少的Embedding模型。本文将主要介绍为什么…

【SpringCloud Alibaba笔记】(2)Nacos服务注册与配置中心

Nacos Nacos简介与下载 是什么? 一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台。 Nacos(Dynamic Naming and Configuration Service)就是注册中心+配置中心的组合 Nacos Eureka Config Bus 替代Eureka…

初识HTTP协议

Web服务器可以接收浏览器的请求,并将服务器中的web项目资源响应给浏览器,浏览器与服务器之间进行网络通信遵循HTTP协议。 一、什么是HTTP协议 超文本传输协议(HTTP,HyperText Transfer Protocol)(浏览器---->web服务…

27 UVM queue

uvm_queue类构建一个动态队列,该队列将按需分配并通过引用传递。 uvm_queue类声明: class uvm_queue #( type T int ) extends uvm_object 1 uvm_queue class hierarchy 2 uvm_queue class Methods 3 UVM Queue Example 在下面的示例中,…

基于深度卷积神经网络的垃圾分类识别系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 本文详细介绍了一基于深度卷积神经网络的垃圾分类识别系统。采用TensorFlow和Keras框架,通过卷积神经网络(CNN)进行模型训练和预测。引入迁移学习中的VGG16模型…

Linux:apache优化(7)—— 日志分割|日志合并

作用:随着网站访问量的增加,访问日志中的信息会越来越多, Apache 默认访问日志access_log单个文件会越来越大,日志文件体积越大,信息都在一个文件中,查看及分析信息会及不方便。 分割 实现方式&#xff1a…