基于深度卷积神经网络的垃圾分类识别系统

news2024/11/28 7:38:47

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 

1. 项目简介

        本文详细介绍了一基于深度卷积神经网络的垃圾分类识别系统。采用TensorFlow和Keras框架,通过卷积神经网络(CNN)进行模型训练和预测。引入迁移学习中的VGG16模型,取得95%的分类准确率。系统基于Web平台,实现用户上传垃圾图片进行在线测试,系统即时预测并展示垃圾类别。此系统不仅展示了深度学习在垃圾分类中的应用,也提供了专业而高效的Web界面,为用户提供准确可靠的垃圾分类服务。

2. 卷积神经网络基本原理

        深度卷积神经网络(DCNN)是一种人工神经网络,特别适用于处理具有空间结构的数据,如图像和视频。它通过多层卷积和池化层来逐渐提取输入数据的特征,并通过全连接层进行分类或回归任务。DCNN 在计算机视觉和模式识别领域取得了巨大成功,被广泛应用于图像识别、物体检测、人脸识别等任务中。

        卷积神经网络的构造包括:

        (1)输入层
        输入层接收原始图像数据。图像通常由三个颜色通道(红、绿、蓝)组成,形成一个二维矩阵,表示像素的强度值。

        (2)卷积和激活
        卷积层将输入图像与卷积核进行卷积操作。然后,通过应用激活函数(如ReLU)来引入非线性。这一步使网络能够学习复杂的特征。

        (3)池化层
        池化层通过减小特征图的大小来减少计算复杂性。它通过选择池化窗口内的最大值或平均值来实现。这有助于提取最重要的特征。

        (4)多层堆叠
        CNN通常由多个卷积和池化层的堆叠组成,以逐渐提取更高级别的特征。深层次的特征可以表示更复杂的模式。

        (5)全连接和输出
        最后,全连接层将提取的特征映射转化为网络的最终输出。这可以是一个分类标签、回归值或其他任务的结果。

        经典VGG16、VGG19卷积神经网络模型架构如下图所示:

3.  数据集读取与预处理

该数据集包含了2527个生活垃圾图片。数据集的创建者将垃圾分为了6个类别,分别是:

玻璃(glass)共501个图片
纸(paper)共594个图片
硬纸板(cardboard)共403个图片
塑料(plastic)共482个图片
金属(metal)共410个图片
一般垃圾(trash)共137个图片

 物品都是放在白板上在日光/室内光源下拍摄的,压缩后的尺寸为512 * 384。

data_dir = "./dataset-resized/"
data_dir = pathlib.Path(data_dir)

img_height = 112
img_width = 112

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "./dataset-resized/",  #数据集目录
    label_mode="categorical",  #标签模式,根据目录生成
    validation_split=0.2,  # 验证集比例为20%
    subset="training",   #这是个训练集
    seed=42 ,     #随机种子,保证划分一致  
    image_size=(img_height, img_width),  #图像大小
    batch_size=batch_size
)

        垃圾分类数据集可视化:

plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    labels = [tf.argmax(i) for i in labels]  
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")

4. 卷积神经网络模型构建

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
    layers.MaxPooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.MaxPooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.2),  
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(len(class_names))               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构

        模型训练:

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
 
epochs = 20
 
# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
......
 
# 设置早停
......

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer, earlystopper]
)

        训练日志:

Epoch 1/20
64/64 [==============================] - ETA: 0s - loss: 1.7266 - accuracy: 0.3042
Epoch 1: val_accuracy improved from -inf to 0.43762, saving model to best_model.h5
64/64 [==============================] - 6s 59ms/step - loss: 1.7266 - accuracy: 0.3042 - val_loss: 1.3680 - val_accuracy: 0.4376
Epoch 3/20
......
64/64 [==============================] - ETA: 0s - loss: 0.0248 - accuracy: 0.9965
Epoch 20: val_accuracy did not improve from 0.91485
64/64 [==============================] - 4s 64ms/step - loss: 0.0248 - accuracy: 0.9965 - val_loss: 0.4591 - val_accuracy: 0.9109

5. 基于迁移学习的模型优化

        构造 VGG 16模型,加载预训练模型权重,并定制化模型预测输出部分的结构:

VGG16_model_con = models.Sequential([
#两次使用64个3*3的卷积核,池化后维度(112,112,64)
    layers.Conv2D(64, (3, 3),padding='same', activation='relu',name='block1_conv1', input_shape=(img_height, img_width, 3)), 
    layers.Conv2D(64, (3, 3), padding='same',activation='relu',name='block1_conv2'),     
    layers.AveragePooling2D(pool_size=(2,2),strides=(2,2), name = 'block1_pool'),  
#两次使用128个3*3的卷积核,池化后维度(56,56,128)   
    
    ......
       
    layers.Conv2D(512, (3, 3),padding='same',activation='relu',name='block5_conv2'),   
    layers.Conv2D(512, (3, 3),padding='same',activation='relu',name='block5_conv3'),     
    layers.AveragePooling2D(pool_size=(2,2),strides=(2,2), name = 'block5_pool'),    
])
# 加载模型参数
VGG16_model_con.load_weights('./vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5')
# 冻结前13层网络参数  保证加载的预训练参数不被改变
......

# 添加模型分类层(顶层)
VGG16_model_all = models.Sequential([
    VGG16_model_con,
    layers.Flatten(),                       
    layers.Dense(256, activation='relu'), 
    layers.Dense(128, activation='relu'),
    layers.Dense(len(class_names), activation="softmax")               
])   
VGG16_model_all.summary()  # 打印网络结构

        模型训练损失函数和准确率变化曲线:

6. 垃圾分类识别系统

6.1 首页与注册登陆

6.2 垃圾分类实时预测

        利用Flask + Bootstrap 等框架,搭建垃圾分类识别系统,加载训练好的模型权重,通过上传测试图片,预测所属垃圾的类别:

def submit_and_predict():
    """
    自动l垃圾分类
    """
    test_file = request.files['file']
    filename = test_file.filename

    # 保存上传的文件
    test_file_path = './static/img/predict_test/{}'.format(filename)
    test_file.save(test_file_path)

    img = Image.open(test_file_path)
    img = np.array(img)

    # 模型预测
    image = tf.image.resize(img, [img_height, img_width])
    img_array = tf.expand_dims(image, 0)

    predictions = VGG16_model_all.predict(img_array)
    predict_class = class_names[np.argmax(predictions)]
    print("预测结果为:", predict_class)

    result = {
        "upload_image": test_file_path,
        "predict": predict_class
    }
    return jsonify(result)

        可以看出,模型预测效果非常好,测试集分类准确率高达95%以上。 

7. 结论

        本文详细介绍了一基于深度卷积神经网络的垃圾分类识别系统。采用TensorFlow和Keras框架,通过卷积神经网络(CNN)进行模型训练和预测。引入迁移学习中的VGG16模型,取得95%的分类准确率。系统基于Web平台,实现用户上传垃圾图片进行在线测试,系统即时预测并展示垃圾类别。此系统不仅展示了深度学习在垃圾分类中的应用,也提供了专业而高效的Web界面,为用户提供准确可靠的垃圾分类服务。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1349013.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux:apache优化(7)—— 日志分割|日志合并

作用:随着网站访问量的增加,访问日志中的信息会越来越多, Apache 默认访问日志access_log单个文件会越来越大,日志文件体积越大,信息都在一个文件中,查看及分析信息会及不方便。 分割 实现方式&#xff1a…

『JavaScript』JavaScript事件类型详解:全面解析各类用户交互行为

📣读完这篇文章里你能收获到 理解事件驱动编程的基本概念和工作原理掌握JavaScript中常见的事件类型及其应用场合学习如何使用DOM API添加和移除事件监听器探讨事件冒泡、事件捕获和事件委托等高级事件处理技术 文章目录 一、事件处理程序1. HTML事件处理HTML事件处…

单片机键盘程序设计举例

1、键盘与的连接 图3键盘连接 图4单片机与键盘接口图 2、通过1/0口连接。将每个按钮的一端接到单片机的I/O口,另一端接地,这是最简单的办法,如图3所示是实验板上按钮的接法,四个按钮分别接到P3.2 、P3.3、P3.4和P3.5。对于这种键…

HttpClient入门

HttpClient入门 简介 HttpClient 是 Apache HttpComponents 项目中的一个开源的 Java HTTP 客户端库,用于发送 HTTP 请求和处理 HTTP 响应。它提供了一组强大而灵活的 API,使得在 Java 程序中执行 HTTP 请求变得相对简单 maven依赖 org.apache.httpco…

72内网安全-域横向CSMSF联动及应急响应知识

拿到才行,拿不到就是多余的 案例一MSF&CobaltStrike 联动 Shell 有一些功能可能cs或者msf强大一些,他们两个可以相互调用,在真实情况下也是可以cs和msf同时启动的, cs移交给msf .创建Foreign监听器 “Listeners”“Add”…

[NAND Flash 4.2] Flash 原理 | NOR Flash 和 NAND Flash 闪存详解

依公知及经验整理,原创保护,禁止转载。 专栏 《深入理解NAND Flash》 <<<< 返回总目录 <<<< 前言 智能手机有一个可用的存储空间(如苹果128G),电脑里有一个固态硬盘空间(如联想512G), 这个空间是啥呢? 这个存储空间就是闪存设备,我们都统称为…

ILI9481 TFT3.5寸屏STM32F446ZEXX FMC驱动方式详解

图片来源于网络&#xff0c;如若侵权请联系博主删除 文章目录 1. 背景2. 基础知识2.1 TFT-LCD2.2 硬件接线2.3 FMC2.4 ILI9481 3. 软件抽象 1. 背景 最近做项目需要&#xff0c;博主在某宝上买了一块3.5寸的TFT屏&#xff0c;店家虽然发了资料&#xff0c;但是往产品上移植驱动…

动画墙纸:将视频、网页、游戏、模拟器变成windows墙纸——Lively Wallpaper

文章目录 前言下载github地址&#xff1a;网盘 关于VideoWebpagesYoutube和流媒体ShadersGIFs游戏和应用程序& more:Performance:多监视器支持&#xff1a;完结 前言 Lively Wallpaper是一款开源的视频壁纸桌面软件&#xff0c;类似 Wallpaper Engine&#xff0c;兼容 Wal…

PiflowX组件-JDBCRead

JDBCRead组件 组件说明 使用JDBC驱动向任意类型的关系型数据库读取数据。 计算引擎 flink 有界性 Scan Source: Bounded Lookup Source: Sync Mode 组件分组 Jdbc 端口 Inport&#xff1a;默认端口 outport&#xff1a;默认端口 组件属性 名称展示名称默认值允许…

Vue(一):Vue 入门与 Vue 指令

Vue 01. Vue 快速上手 1.1 Vue 的基本概念 用于 构建用户界面 的 渐进性 框架 构建用户界面&#xff1a;基于数据去渲染用户看到的界面渐进式&#xff1a;不需要学习全部的语法就能完成一些功能&#xff0c;学习是循序渐进的框架&#xff1a;一套完整的项目解决方案&#x…

数据结构与算法——符号表API设计及有序符号表设计

Java学习手册面试指南&#xff1a;https://javaxiaobear.cn 符号表最主要的目的就是将一个键和一个值联系起来&#xff0c;符号表能够将存储的数据元素是一个键和一个值共同组成的键值对数据&#xff0c;我们可以根据键来查找对应的值。 符号表中&#xff0c;键具有唯一性。 符…

PiflowX组件-WriteToUpsertKafka

WriteToUpsertKafka组件 组件说明 以upsert方式往Kafka topic中写数据。 计算引擎 flink 有界性 Streaming Upsert Mode 组件分组 kafka 端口 Inport&#xff1a;默认端口 outport&#xff1a;默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子kafka_h…

QT音频编程实战项目(一)ui搭建和槽函数的完成

第一个类实现播放音乐&#xff0c;第二个类实现歌曲列表&#xff0c;第三个类是播放本地歌曲 上边是歌曲的总时长&#xff0c;下边是当前播放的时长。 所需要的槽函数如上图。 这个是构造函数&#xff1a; …

基于JavaWeb实验室预约管理系统(源码+数据库+文档)

一、项目简介 本项目是一套基于JavaWeb实验室预约管理系统&#xff0c;主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者。 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;e…

OFDM——PAPR减小

文章目录 前言一、PAPR 减小二、MATLAB 仿真1、OFDM 信号的 CCDF①、MATLAB 源码②、仿真结果 2、单载波基带/通频带信号的 PAPR①、MATLAB 源码②、仿真结果 3、时域 OFDM 信号和幅度分布①、MATLAB 源码②、仿真结果 4、Chu 序列和 IEEE802.16e 前导的 PAPR①、MATLAB 源码②…

ToDesk Linux 客户端安装(欧拉系统)

下载链接 下载链接 https://newdl.todesk.com/linux/todesk-v4.3.1.0-x86_64.rpm &#xff08;使用4.3.1.0覆盖安装后&#xff0c;临时密码将会变更&#xff09; 安装命令&#xff1a; sudo rpm -Uvh todesk-v4.3.1.0-x86_64.rpm启动命令&#xff1a; todesk启动命令只能在桌…

算法通关村第二十关-白银挑战图的存储与遍历

大家好我是苏麟, 今天继续聊图 . 与前面的链表、树等相比&#xff0c;图的存储和遍历要复杂非常多 .所以理解就好 , 面试基本不会让写代码的 . 图的类型多、表示方式多&#xff0c;相关算法也很多&#xff0c;实现又过于复杂&#xff0c;多语言实现难度太大了。这些算法一般理…

Ultra ISO 虚拟光驱修改光盘盘符

windows xp 环境 ultra iso 虚拟光驱修改光盘盘符 method 1. 在ultra iso 中 [选项]->[配置]->[虚拟光驱]&#xff0c;在新盘符里选指定盘符 ->[修改] method 2. 打开命令行&#xff0c;进入安装目录&#xff0c;如 "C:\Program Files\UltraISO\drivers"&…

浅析锂电池保护板(BMS)系统设计思路(四)SOC算法-扩展Kalman滤波算法

1 SOC估算方法介绍 电池SOC的估算是电池管理系统的核心&#xff0c;自从动力电池出现以来&#xff0c;各种各样的电池SOC估算方法不断出现。随着电池管理系统的逐渐升级&#xff0c;电池SOC估算方法的效率与精度不断提高&#xff0c;下面将介绍常用几种电池SOC估算方法[1]&…

2023年总结及2024年规划:我们结婚啦

目录 1、回首2023 1.1、生活方面 1.2、工作方面 1.3、学习方面 2、展望2024 2.1、生活方面 2.2、工作方面 2.3、学习方面 2023年最重要的事情当然是我们结婚啦&#xff01; 1、回首2023 1.1、生活方面 今年五一假期&#xff0c;我和对象回老家在双方亲友的见证下完…