YOLOv8改进 | 检测头篇 | ASFF改进YOLOv8检测头(全网首发)

news2025/1/16 11:45:02

一、本文介绍

本文给大家带来的改进机制是利用ASFF改进YOLOv8的检测头形成新的检测头Detect_ASFF,其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。经过我的实验验证,修改后的检测头在所有的检测目标上均有大幅度的涨点效果,此版本为三头版本,后期我会在该检测头的基础上进行二次创新形成四头版本的Detect_ASFF助力小目标检测,本文的检测头非常推荐大家使用。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图-> 

目录

一、本文介绍

二、ASFF的基本框架原理

三、ASFF_Detect的核心代码

 四、手把手教你添加ASFF_Detect检测头

4.1 修改一

4.2 修改二

4.3 修改三 

4.4 修改四 

4.5 修改五 

4.6 修改六 

​​4.7 修改七 

4.8 修改八

4.9 修改九 

五、Detect_AFPN检测头的yaml文件

六、完美运行记录

七、本文总结


二、ASFF的基本框架原理

官方论文地址: 官方论文地址点击即可跳转

官方代码地址: 官方代码地址点击即可跳转


ASFF(自适应空间特征融合)方法针对单次对象检测任务提出,解决了不同特征尺度间的一致性问题。其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。研究表明,将ASFF应用于YOLOv3可以显著提高在MS COCO数据集上的检测性能,实现了速度与准确性的平衡。ASFF方法可以通过反向传播进行训练,与模型无关,并且引入的计算开销很小,使其成为现有对象检测框架的一种实用增强。

ASFF的创新点主要包括:

1. 自适应空间特征融合:提出了一种新的金字塔特征融合策略,能够空间过滤冲突信息,压制不同尺度特征间的不一致性。

2. 改善尺度不变性:通过ASFF策略,显著提升了特征的尺度不变性,有助于提高对象检测的准确性。

3. 低推理开销:在提升检测性能的同时,几乎不增加额外的推理开销。

这些创新使ASFF成为单次对象检测领域的一个重要进展,特别是对处理不同尺度对象的能力的提升,所以将其对于一些单一尺度检测的Neck适合是不适用的大家需要注意这一点

这张图片展示了自适应空间特征融合(ASFF)机制的工作原理,它是用于单次对象检测的。在这种结构中,不同层级的特征(表示为不同颜色的层)首先通过各自的步幅(stride)进行下采样或上采样,以便所有特征具有相同的空间维度。

- Level 1、Level 2和Level 3指的是特征金字塔中不同层级的特征,每个层级都有不同的空间分辨率。
- ASFF-1、ASFF-2和ASFF-3表示应用了ASFF机制的不同层级的特征融合。
- 在ASFF-3的放大部分,我们可以看到来自其他层级的特征(x1→3、x2→3)被调整到与第三层(x3→3)相同的尺寸,然后它们通过学习到的权重图进行加权融合,生成最终用于预测的融合特征(y^3)。

通过这种方式,ASFF能够在每个空间位置自适应地选择最有用的特征,以提高检测的准确性。这种方法允许模型根据每个特定位置和尺度的上下文,灵活地决定哪些特征层级对最终预测最为重要。


三、ASFF_Detect的核心代码

现在是三头的检测版本,后期我会出四头的增加小目标检测层的版本给大家,其使用方式看章节四。

import torch
import torch.nn as nn
from ultralytics.utils.tal import  dist2bbox, make_anchors
import math
import torch.nn.functional as F

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))


class DFL(nn.Module):
    """
    Integral module of Distribution Focal Loss (DFL).

    Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
    """

    def __init__(self, c1=16):
        """Initialize a convolutional layer with a given number of input channels."""
        super().__init__()
        self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
        x = torch.arange(c1, dtype=torch.float)
        self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
        self.c1 = c1

    def forward(self, x):
        """Applies a transformer layer on input tensor 'x' and returns a tensor."""
        b, c, a = x.shape  # batch, channels, anchors
        return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
        # return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)

class ASFFV5(nn.Module):
    def __init__(self, level, multiplier=1, rfb=False, vis=False, act_cfg=True):
        """
        ASFF version for YoloV5 .
        different than YoloV3
        multiplier should be 1, 0.5 which means, the channel of ASFF can be
        512, 256, 128 -> multiplier=1
        256, 128, 64 -> multiplier=0.5
        For even smaller, you need change code manually.
        """
        super(ASFFV5, self).__init__()
        self.level = level
        self.dim = [int(1024 * multiplier), int(512 * multiplier),
                    int(256 * multiplier)]
        # print(self.dim)

        self.inter_dim = self.dim[self.level]
        if level == 0:
            self.stride_level_1 = Conv(int(512 * multiplier), self.inter_dim, 3, 2)

            self.stride_level_2 = Conv(int(256 * multiplier), self.inter_dim, 3, 2)

            self.expand = Conv(self.inter_dim, int(
                1024 * multiplier), 3, 1)
        elif level == 1:
            self.compress_level_0 = Conv(
                int(1024 * multiplier), self.inter_dim, 1, 1)
            self.stride_level_2 = Conv(
                int(256 * multiplier), self.inter_dim, 3, 2)
            self.expand = Conv(self.inter_dim, int(512 * multiplier), 3, 1)
        elif level == 2:
            self.compress_level_0 = Conv(
                int(1024 * multiplier), self.inter_dim, 1, 1)
            self.compress_level_1 = Conv(
                int(512 * multiplier), self.inter_dim, 1, 1)
            self.expand = Conv(self.inter_dim, int(
                256 * multiplier), 3, 1)

        # when adding rfb, we use half number of channels to save memory
        compress_c = 8 if rfb else 16
        self.weight_level_0 = Conv(
            self.inter_dim, compress_c, 1, 1)
        self.weight_level_1 = Conv(
            self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = Conv(
            self.inter_dim, compress_c, 1, 1)

        self.weight_levels = Conv(
            compress_c * 3, 3, 1, 1)
        self.vis = vis

    def forward(self, x):  # l,m,s
        """
        # 128, 256, 512
        512, 256, 128
        from small -> large
        """
        x_level_0 = x[2]  # l
        x_level_1 = x[1]  # m
        x_level_2 = x[0]  # s
        # print('x_level_0: ', x_level_0.shape)
        # print('x_level_1: ', x_level_1.shape)
        # print('x_level_2: ', x_level_2.shape)
        if self.level == 0:
            level_0_resized = x_level_0
            level_1_resized = self.stride_level_1(x_level_1)
            level_2_downsampled_inter = F.max_pool2d(
                x_level_2, 3, stride=2, padding=1)
            level_2_resized = self.stride_level_2(level_2_downsampled_inter)
        elif self.level == 1:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized = F.interpolate(
                level_0_compressed, scale_factor=2, mode='nearest')
            level_1_resized = x_level_1
            level_2_resized = self.stride_level_2(x_level_2)
        elif self.level == 2:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized = F.interpolate(
                level_0_compressed, scale_factor=4, mode='nearest')
            x_level_1_compressed = self.compress_level_1(x_level_1)
            level_1_resized = F.interpolate(
                x_level_1_compressed, scale_factor=2, mode='nearest')
            level_2_resized = x_level_2

        # print('level: {}, l1_resized: {}, l2_resized: {}'.format(self.level,
        #      level_1_resized.shape, level_2_resized.shape))
        level_0_weight_v = self.weight_level_0(level_0_resized)
        level_1_weight_v = self.weight_level_1(level_1_resized)
        level_2_weight_v = self.weight_level_2(level_2_resized)
        # print('level_0_weight_v: ', level_0_weight_v.shape)
        # print('level_1_weight_v: ', level_1_weight_v.shape)
        # print('level_2_weight_v: ', level_2_weight_v.shape)

        levels_weight_v = torch.cat(
            (level_0_weight_v, level_1_weight_v, level_2_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = level_0_resized * levels_weight[:, 0:1, :, :] + \
                            level_1_resized * levels_weight[:, 1:2, :, :] + \
                            level_2_resized * levels_weight[:, 2:, :, :]

        out = self.expand(fused_out_reduced)

        if self.vis:
            return out, levels_weight, fused_out_reduced.sum(dim=1)
        else:
            return out

class Detect_ASFF(nn.Module):
    """YOLOv8 Detect head for detection models."""
    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, ch=(), multiplier=0.25, rfb=False):
        """Initializes the YOLOv8 detection layer with specified number of classes and channels."""
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch)  # number of detection layers
        self.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.stride = torch.zeros(self.nl)  # strides computed during build
        c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
        self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
        self.l0_fusion = ASFFV5(level=0, multiplier=multiplier, rfb=rfb)
        self.l1_fusion = ASFFV5(level=1, multiplier=multiplier, rfb=rfb)
        self.l2_fusion = ASFFV5(level=2, multiplier=multiplier, rfb=rfb)
    def forward(self, x):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        x1 = self.l0_fusion(x)
        x2 = self.l1_fusion(x)
        x3 = self.l2_fusion(x)
        x = [x3, x2, x1]
        shape = x[0].shape  # BCHW
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:
            return x
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape

        x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
        if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'):  # avoid TF FlexSplitV ops
            box = x_cat[:, :self.reg_max * 4]
            cls = x_cat[:, self.reg_max * 4:]
        else:
            box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides

        if self.export and self.format in ('tflite', 'edgetpu'):
            # Normalize xywh with image size to mitigate quantization error of TFLite integer models as done in YOLOv5:
            # https://github.com/ultralytics/yolov5/blob/0c8de3fca4a702f8ff5c435e67f378d1fce70243/models/tf.py#L307-L309
            # See this PR for details: https://github.com/ultralytics/ultralytics/pull/1695
            img_h = shape[2] * self.stride[0]
            img_w = shape[3] * self.stride[0]
            img_size = torch.tensor([img_w, img_h, img_w, img_h], device=dbox.device).reshape(1, 4, 1)
            dbox /= img_size

        y = torch.cat((dbox, cls.sigmoid()), 1)
        return y if self.export else (y, x)

    def bias_init(self):
        """Initialize Detect() biases, WARNING: requires stride availability."""
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)

if __name__ == "__main__":

    # Generating Sample image
    image1 = (1, 64, 32, 32)
    image2 = (1, 128, 16, 16)
    image3 = (1, 256, 8, 8)

    image1 = torch.rand(image1)
    image2 = torch.rand(image2)
    image3 = torch.rand(image3)
    image = [image1, image2, image3]
    channel = (64, 128, 256)
    # Model
    mobilenet_v1 = Detect_ASFF(nc=80, ch=channel)

    out = mobilenet_v1(image)
    print(out)

 四、手把手教你添加ASFF_Detect检测头

这里教大家添加检测头,检测头的添加相对于其它机制来说比较复杂一点,修改的地方比较多。

具体更多细节可以看我的添加教程博客,下面的教程也是完美运行的,看那个都行具体大家选择。

添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头 


4.1 修改一

首先我们将上面的代码复制粘贴到'ultralytics/nn/modules' 目录下新建一个py文件复制粘贴进去,具体名字自己来定,我这里起名为ASFFHead.py。


4.2 修改二

我们新建完上面的文件之后,找到如下的文件'ultralytics/nn/tasks.py'。这里需要修改的地方有点多,总共有7处,但都很简单。首先我们在该文件的头部导入我们ASFFHead文件中的检测头。

​​


4.3 修改三 

找到如下的代码进行将检测头添加进去,这里给大家推荐个快速搜索的方法用ctrl+f然后搜索Detect然后就能快速查找了。

​​


4.4 修改四 

同理将我们的检测头添加到如下的代码里。

​​


4.5 修改五 

同理

​​


4.6 修改六 

同理

​​


4.7 修改七 

同理

​​


4.8 修改八

这里有一些不一样,我们需要加一行代码

        else:
            return 'detect'

为啥呢不一样,因为这里的m在代码执行过程中会将你的代码自动转换为小写,所以直接else方便一点,以后出现一些其它分割或者其它的教程的时候在提供其它的修改教程。 

​​


4.9 修改九 

这里也有一些不一样,需要自己手动添加一个括号,提醒一下大家不要直接添加,和我下面保持一致。

​​


五、Detect_AFPN检测头的yaml文件

这个代码的yaml文件和正常的对比也需要修改一下,如下->

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect_ASFF, [nc]]  # Detect(P3, P4, P5)


六、完美运行记录

最后提供一下完美运行的图片。

​​


七、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1348741.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

12/31

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 摘要Abstract文献阅读:用于密集预测的多路径视觉Transformer1、研究背景2、方法提出3、相关方法3.1、Vision Transformers for dense predictions3.2、C…

「网络编程」其他重要的协议或技术_ DNS协议 | ICMP协议 | NAT技术

「前言」文章内容是DNS协议、ICMP协议、NAT技术的讲解。 「归属专栏」网络编程 「主页链接」个人主页 「笔者」枫叶先生(fy) 目录 一、DNS协议1.1 背景1.2 域名简介1.3 域名解析的过程 二、ICMP协议2.1 ICMP简介2.2 ping命令2.3 traceroute命令 三、NAT技术3.1 NAT技术背景3.2 …

小型企业网设计-课设实验-爆款实验

可以按照我的配置依次配置&#xff0c;成品打包文件&#xff0c;请&#xff1a;Ensp888 <Huawei>sys Enter system view, return user view with CtrlZ. [Huawei]un in en Info: Information center is disabled. [Huawei]# [Huawei]sysname SW5 [SW5]# [SW5]vlan batch…

(C++) 拷贝构造函数

目录 一、基本介绍 二、为什么需要拷贝构造函数 三、拷贝构造函数 四、传参时的问题 五、完整代码 一、基本介绍 拷贝构造函数是C中一个特殊的构造函数&#xff0c;用于创建一个类的对象作为另一个同类对象的副本。当一个对象以值的形式被传递给函数、从函数返回&#xff0…

深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第一节 理解堆与栈

深入浅出图解C#堆与栈 C# HeapingVS Stacking第一节 理解堆与栈 [深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第一节 理解堆与栈](https://mp.csdn.net/mdeditor/101021023)[深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第二节 栈基本工作原理](https://mp.csdn.n…

Avalonia学习(十六)-Mapsui

今天开始继续Avalonia练习。 本节&#xff1a;Mapsui 1.引入 Mapsui.Avalonia 2.项目引入 前台代码 <Window xmlns"https://github.com/avaloniaui"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:vm"using:MapsuiAvalonia.Vi…

C语言之分支与循环【附6个练习】

文章目录 前言一、什么是语句&#xff1f;1.1 表达式语句1.2 函数调用语句1.3 控制语句1.4 复合语句1.5 空语句 二、分支语句&#xff08;选择结构&#xff09;2.1 if语句2.1.1 悬空else2.1.2 练习&#xff08;1. 判断一个数是否为奇数 2. 输出1-100之间的奇数&#xff09; 2.2…

postman win7 低版本 postman7.0.9win64 postman7.0.9win32

百度网盘&#xff1a; postman7.0.9win64&#xff1a; 链接: https://pan.baidu.com/s/18ck9tI0r9Pqoz36MOwwnnQ 提取码: rkf7 postman7.0.9win32&#xff1a; 链接: https://pan.baidu.com/s/1HrpGPrgvVzyAcjdHuwVOpA 提取码: ke5k win7系统安装postman&#xff0c;可能会…

侯捷C++ 2.0 新特性

关键字 nullptr and std::nullptr_t auto 一致性初始化&#xff1a;Uniform Initialization 11之前&#xff0c;初始化方法包括&#xff1a;小括号、大括号、赋值号&#xff0c;这让人困惑。基于这个原因&#xff0c;给他来个统一&#xff0c;即&#xff0c;任何初始化都能够…

实验六——cache模拟器实验

前言 本次实验的主要目的是熟悉cache的原理。加深对cache的映像规则、替换方法、cache命中与缺失的理解。通过实验对比分析映像规则对cache性能的影响。 实验内容一&#xff1a;熟悉模拟程序 阅读给出的cache模拟程序&#xff08;cachesimulator.cpp&#xff09;&#xff0c;…

空间域图像增强之直方图均衡的python代码实现——冈萨雷斯数字图像处理

原理 直方图&#xff1a; 图像的直方图是一个图像中像素强度值分布的图表。 对于灰度图像&#xff0c;直方图展示了每个灰度级出现的频率。 直方图均衡步骤&#xff1a; 计算累积分布函数&#xff08;CDF&#xff09;&#xff1a;首先&#xff0c;计算图像的直方图&#xff0…

oracle物化视图

物化视图定义 视图是一个虚拟表&#xff08;也可以认为是一条语句&#xff09;&#xff0c;基于它创建时指定的查询语句返回的结果集&#xff0c;每次访问它都会导致这个查询语句被执行一次&#xff0c;为了避免每次访问都执行这个查询&#xff0c;可以将这个查询结果集存储到…

C语言与人生:数组交换和二分查找

少年们&#xff0c;大家好。我是博主那一脸阳光&#xff0c;今天和分享数组交换和二分查找。 前言&#xff1a;探索C语言中的数组交换操作与二分查找算法 在计算机编程领域&#xff0c;特别是以C语言为代表的低级编程语言中&#xff0c;对数据结构的理解和熟练运用是至关重要的…

C# 如何读取Excel文件

当处理Excel文件时&#xff0c;从中读取数据是一个常见的需求。通过读取Excel数据&#xff0c;可以获取电子表格中包含的信息&#xff0c;并在其他应用程序或编程环境中使用这些数据进行进一步的处理和分析。本文将分享一个使用免费库来实现C#中读取Excel数据的方法。具体如下&…

Android 跨进程之间通信(IPC)方式之BroadcastReceiver

Android 跨进程之间通信 Android 跨进程之间通信(IPC)方式之BroadcastReceiverAndroid 跨进程之间通信(IPC)方式之ContentProvider 文章目录 Android 跨进程之间通信前言一、关于系统广播二、如何利用BroadcastReceiver跨进程通信1.创建广播接收器2.清单文件中声明注册3.发送广…

08-接口文档管理工具-项目集成knife4j__ev

2、knife4j快速入门 2.1 knife4j介绍 knife4j是为Java MVC框架集成Swagger生成Api文档的增强解决方案,前身是swagger-bootstrap-ui,取名kni4j是希望它能像一把匕首一样小巧,轻量,并且功能强悍! gitee地址&#xff1a;knife4j: Knife4j是一个集Swagger2 和 OpenAPI3为一体的增…

目标检测-Two Stage-Mask RCNN

文章目录 前言一、Mask RCNN的网络结构和流程二、Mask RCNN的创新点总结 前言 前文目标检测-Two Stage-Faster RCNN提到了Faster RCNN主要缺点是&#xff1a; ROI Pooling有两次量化操作&#xff0c;会引入误差影响精度 Mask RCNN针对这一缺点做了改进&#xff0c;此外Mask …

功能真强大!5个令人惊叹的 Jupyter 黑科技

Jupyter 是一种功能强大的交互式计算环境&#xff0c;被广泛应用于数据分析、机器学习、科学计算等领域。 除了常见的基本功能外&#xff0c;Jupyter还隐藏着许多令人惊叹的黑科技&#xff0c;这些功能可以帮助用户更高效地完成工作&#xff0c;提升工作体验。 在本文中&…

.NET Core中灵活使用反射

前言 前段时间有朋友问道一个这样的问题&#xff0c;.NET Core中如何通过Attribute的元数据信息来调用标记的对应方法。我第一时间想到的就是通过C#反射获取带有Custom Attribute标记的类&#xff0c;然后通过依赖注入&#xff08;DI&#xff09;的方式获取对应服务的方法并通…

Elasticsearch8集群部署

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 本文记录在3台服务器上离线搭建es8.7.1版本集群。 1. 修改系统配置 1.1 hosts配置 在三台es节点服务器加入hostname解析&…