模式识别与机器学习-SVM(带软间隔的支持向量机)

news2025/4/22 14:24:55

SVM(带软间隔的支持向量机)

  • 软间隔思想的由来
  • 软间隔的引入

谨以此博客作为复习期间的记录。

软间隔思想的由来

在上一篇博客中,回顾了线性可分的支持向量机,但在实际情况中,很少有完全线性可分的情况,大部分线性可分的情况都是整体线性可分,个别样本点无法线性分割开。因此就要避免这极个别样本点对分割平面产生的影响。
线性可分支持向量机
在这里插入图片描述

软间隔的引入

在分类过程中,允许极个别数据点“越界”,如何在目标函数中体现这一点呢?
软间隔支持向量机(Soft Margin Support Vector Machine)的数学形式可以通过修改支持向量机(SVM)的优化目标函数和约束条件来实现。软间隔允许一些数据点越界,引入了松弛变量来处理这些点。

首先,我们考虑软间隔的目标函数和约束条件:

  1. 目标函数:
    最小化目标函数,同时考虑间隔的最大化和误分类点的惩罚,即:
    min ⁡ w , b , ξ 1 2 ∥ w ∥ 2 + C ∑ i = 1 N ξ i \min_{\mathbf{w}, b, \boldsymbol{\xi}} \frac{1}{2}\|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i w,b,ξmin21w2+Ci=1Nξi
    这里 w \mathbf{w} w 是超平面的法向量, b b b 是截距, ξ \boldsymbol{\xi} ξ 是松弛变量, C > 0 C > 0 C>0 是一个超参数,用于控制对误分类点的惩罚程度。

  2. 约束条件:
    考虑函数间隔大于等于 1 的约束条件,以及松弛变量 ξ \boldsymbol{\xi} ξ 的非负性约束:
    y i ( w ⋅ x i + b ) ≥ 1 − ξ i , i = 1 , 2 , … , N ξ i ≥ 0 , i = 1 , 2 , … , N \begin{align*} & y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 - \xi_i, \quad i = 1, 2, \dots, N \\ & \xi_i \geq 0, \quad i = 1, 2, \dots, N \end{align*} yi(wxi+b)1ξi,i=1,2,,Nξi0,i=1,2,,N

线性支持向量机学习算法
输入: 训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\left\{\left(x_1, y_1\right),\left(x_2, y_2\right), \cdots,\left(x_N, y_N\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)}, 其中, x i ∈ X = R n , y i ∈ x_i \in \mathcal{X}=\mathbf{R}^n, y_i \in xiX=Rn,yi Y = { − 1 , + 1 } , i = 1 , 2 , ⋯   , N \mathcal{Y}=\{-1,+1\}, \quad i=1,2, \cdots, N Y={1,+1},i=1,2,,N;
输出: 分离超平面和分类决策函数.
(1) 选择惩罚参数 C > 0 C>0 C>0, 构造并求解凸二次规划问题
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i  s.t.  ∑ i = 1 N α i y i = 0 0 ⩽ α i ⩽ C , i = 1 , 2 , ⋯   , N \begin{aligned} \min _\alpha & \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j\left(x_i \cdot x_j\right)-\sum_{i=1}^N \alpha_i \\ \text { s.t. } & \sum_{i=1}^N \alpha_i y_i=0 \\ & 0 \leqslant \alpha_i \leqslant C, \quad i=1,2, \cdots, N \end{aligned} αmin s.t. 21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαii=1Nαiyi=00αiC,i=1,2,,N

求得最优解 α ∗ = ( α 1 ∗ , α 2 ∗ , ⋯   , α N ∗ ) T \alpha^*=\left(\alpha_1{ }^*, \alpha_2{ }^*, \cdots, \alpha_N{ }^*\right)^{\mathrm{T}} α=(α1,α2,,αN)T.
(2) 计算 w ∗ = ∑ i = 1 N α i ∗ y i x i w^*=\sum_{i=1}^N \alpha_i^* y_i x_i w=i=1Nαiyixi

选择 α ∗ \alpha^* α 的一个分量 α j ∗ \alpha_j{ }^* αj 适合条件 0 < α j ∗ < C 0<\alpha_j^*<C 0<αj<C, 计算
b ∗ = y j − ∑ i = 1 N y i α i ∗ ( x i ⋅ x j ) b^*=y_j-\sum_{i=1}^N y_i \alpha_i^*\left(x_i \cdot x_j\right) b=yji=1Nyiαi(xixj)
(3) 求得分离超平面
w ∗ ⋅ x + b ∗ = 0 w^* \cdot x+b^*=0 wx+b=0

分类决策函数:
f ( x ) = sign ⁡ ( w ∗ ⋅ x + b ∗ ) f(x)=\operatorname{sign}\left(w^* \cdot x+b^*\right) f(x)=sign(wx+b)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1346103.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《末世少女/Zombie Girl》v1.0.0|容量13.6GB|官方简体介绍说明

《末世少女/Zombie Girl》v1.0.0|容量13.6GB|官方简体介绍说明 末世少女/Zombie Girl 一、游戏简介 《末世少女/Zombie Girl》是一款独特的第三人称射击游戏&#xff0c;以其惊心动魄的游戏体验、富有挑战性的丧尸战斗和深入的剧情探索而受到玩家们的热爱。这款游戏带领玩家进…

最优化方法Python计算:无约束优化应用——神经网络回归模型

人类大脑有数百亿个相互连接的神经元&#xff08;如下图(a)所示&#xff09;&#xff0c;这些神经元通过树突从其他神经元接收信息&#xff0c;在细胞体内综合、并变换信息&#xff0c;通过轴突上的突触向其他神经元传递信息。我们在博文《最优化方法Python计算&#xff1a;无约…

大模型推理部署:LLM 七种推理服务框架总结

自从ChatGPT发布以来&#xff0c;国内外的开源大模型如雨后春笋般成长&#xff0c;但是对于很多企业和个人从头训练预训练模型不太现实&#xff0c;即使微调开源大模型也捉襟见肘&#xff0c;那么直接部署这些开源大模型服务于企业业务将会有很大的前景。 本文将介绍七中主流的…

IntelliJ IDEA [插件 MybatisX] mapper和xml间跳转

文章目录 1. 安装插件2. 如何使用3. 主要功能总结 MybatisX 是一款为 IntelliJ IDEA 提供支持的 MyBatis 开发插件 它通过提供丰富的功能集&#xff0c;大大简化了 MyBatis XML 文件的编写、映射关系的可视化查看以及 SQL 语句的调试等操作。本文将介绍如何安装、配置和使用 In…

格密码基础:子格,q-ary垂直格与线性代数

目录 一.写在前面 二.子空间垂直 2.1 理论解释 2.2 举例分析 三. 零空间 3.1 零空间与q-ary垂直格 3.2 零空间与行/列空间 四. 格密码相关 一.写在前面 格密码中的很多基础原语都来自于线性代数的基本概念&#xff0c;比如举几个例子&#xff1a; 格密码中的非满秩格…

【Unity】【FBX】如何将FBX模型导入Unity

【背景】 网上能够找到不少不错的FBX模型资源&#xff0c;大大加速游戏开发时间。如何将这些FBX导入Unity呢&#xff1f; 【步骤】 打开Unity项目文件&#xff0c;进入场景。 点击Projects面板&#xff0c;右键选择Import New Assets 选中FBX文件后导入。Assets文件夹中就会…

WPF 新手指引弹窗

新手指引弹窗介绍 我们在第一次使用某个软件时&#xff0c;通常会有一个“新手指引”教学引导。WPF实现“新手指引”非常方便&#xff0c;且非常有趣。接下来我们就开始制作一个简单的”新手指引”(代码简单易懂&#xff0c;便于移植)&#xff0c;引用到我们的项目中又可添加一…

【谭浩强C程序设计精讲 5】运算符和表达式

文章目录 3.3 运算符和表达式3.3.1 C运算符3.3.2 基本的算术运算符3.3.3 自增&#xff08;&#xff09;、自减&#xff08;--&#xff09;运算符3.3.4 算术表达式和运算符的优先级与结合性3.3.5 不同类型数据间的混合运算3.3.6 强制类型转换运算符 3.3 运算符和表达式 3.3.1 C…

Java强软弱虚引用

面试&#xff1a; 1.强引用&#xff0c;软引用&#xff0c;弱引用&#xff0c;虚引用分别是什么&#xff1f; 2.软引用和弱引用适用的场景&#xff1f; 3.你知道弱引用的话&#xff0c;能谈谈WeakHashMap吗&#xff1f; 目录 一、Java引用 1、强引用&#xff08;默认支持模式…

GBASE南大通用 GCDW阿里云计算巢:自动化部署云原生数据仓库

目前&#xff0c;GBASE南大通用已与阿里云计算巢合作&#xff0c;双方融合各自技术优势&#xff0c;助力企业用户实现云上数据仓库的自动化部署&#xff0c;让用户在云端获取数据仓库服务“更简单”&#xff0c;让用户在云端使用数据仓库服务“更便捷”&#xff0c;满足企业用户…

条件编译处理多端差异

条件编译https://uniapp.dcloud.net.cn/tutorial/platform.html#%E4%B8%BA%E4%BB%80%E4%B9%88%E9%80%89%E6%8B%A9%E6%9D%A1%E4%BB%B6%E7%BC%96%E8%AF%91%E5%A4%84%E7%90%86%E8%B7%A8%E7%AB%AF%E5%85%BC%E5%AE%B9 <template><view class"container"><…

数模学习day05-插值算法

插值算法有什么作用呢&#xff1f; 答&#xff1a;数模比赛中&#xff0c;常常需要根据已知的函数点进行数据、模型的处理和分析&#xff0c;而有时候现有的数据是极少的&#xff0c;不足以支撑分析的进行&#xff0c;这时就需要使用一些数学的方法&#xff0c;“模拟产生”一些…

【SpringCloud笔记】(12)分布式请求链路跟踪之Sleuth

Sleuth 背景 在微服务框架中&#xff0c;一个由客户端发起的请求在后端系统中会经过多个不同的的服务节点调用来协同产生最后的请求结果&#xff0c;每一个前段请求都会形成一条复杂的分布式服务调用链路&#xff0c;链路中的任何一环出现高延时或错误都会引起整个请求最后的…

【基础】【Python网络爬虫】【2.请求与响应】常用请求报头和常用响应方法

Python网络爬虫基础 爬虫基础请求与相应HTTP/HTTPS 协议HTTP/HTTPS的优缺点HTTP 的缺点HTTPS的优点 请求与响应概述请求请求目标&#xff08;url&#xff09;请求体&#xff08;response&#xff09;常用的请求报头查看请求体&#xff08;requests 模块&#xff09; 响应HTTP响…

DsPdf:GcPdf 7.0 for NET Crack

DsPdf:GcPdf 7.0 用于全面文档控制的功能丰富的 C# .NET PDF API 库 PDF 文档解决方案&#xff08;DsPdf&#xff0c;以前称为 GcPdf&#xff09;可让您快速、高效地生成文档&#xff0c;且无需依赖任何内存。 在 C# .NET 中生成、加载、编辑和保存 PDF 文档 支持多种语言的全…

Python数值型字符串校验

从键盘输入一行字符串&#xff0c;编写Python代码判定字符串是python“合法”数值。 (笔记模板由python脚本于2023年12月25日 18:00:52创建&#xff0c;本篇笔记适合熟悉Python符串基本数据类型的coder翻阅) 【学习的细节是欢悦的历程】 Python 官网&#xff1a;https://www.py…

Java集合/泛型篇----第四篇

系列文章目录 文章目录 系列文章目录前言一、什么Set集合二、HashSet( Hash 表)三、什么是TreeSet(二叉树)前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 一、…

【HDFS联邦(2)】HDFS Router-based Federation官网解读:HDFSRouterFederation的架构、各组件基本原理

文章目录 一. 介绍二、HDFS Router-based Federation 架构1. 示例说明2. Router2.1. Federated interface2.2. Router heartbeat2.3. NameNode heartbeat2.4. Availability and fault toleranceInterfaces 3. Quota management4. State Store 三、部署 ing 本文主要参考官网&am…

从马尔可夫奖励过程到马尔可夫决策到强化学习【01/2】

一、说明 关于马尔可夫过程&#xff0c;如何将马尔可夫决策转化成决策依据&#xff0c;这里介绍的基本的思想路径&#xff0c;为读者将来设计和应用决策模型提供理论上的参考。 这是了解强化学习的一系列基础文章的后续文章。如果您有兴趣了解强化学习&#xff0c;请查看此处。…

秒杀系统的设计思路(应对高并发,超卖等问题的解决思路)

首先我们先看一下设计秒杀系统时&#xff0c;我们应该考虑的问题。 解决方案&#xff1a; 一.页面静态化结合CDN内容分发 前端把能提前放入cdn服务器的东西都放进去&#xff0c;反正把所有能提升效率的步骤都做一下&#xff0c;减少真正秒杀时候服务器的压力。 秒杀活动的页面…