EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

news2025/4/22 15:32:41

EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

目录

    • EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

基本介绍

1.【EI级】 Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测;
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模。
2.运行环境为Matlab2023a及以上;
3.data为数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

模型描述

TCN-BiGRU-Multihead-Attention是一种用于多变量时间序列预测的深度学习模型。该模型结合了Temporal Convolutional Network (TCN)、Bidirectional Gated Recurrent Unit (BiGRU)和Multihead Attention三个组件,以提高模型对时间序列数据的建模能力和预测准确性。

输入层:模型接收多个变量的时间序列作为输入。每个变量的时间序列可以具有不同的特征。

Temporal Convolutional Network (TCN):TCN是一种卷积神经网络结构,用于捕捉时间序列数据中的局部和全局模式。TCN中的卷积层可以跨越不同时间步,从而捕捉长期依赖性。TCN通过多个卷积层和残差连接来构建深度模型,并提供更好的特征提取能力。

Bidirectional Gated Recurrent Unit (BiGRU):BiGRU是一种循环神经网络结构,通过正向和反向两个方向进行时间序列的建模。正向和反向的GRU单元分别记忆和传递时间序列的过去和未来信息,从而更好地捕捉序列中的上下文关系。

Multihead Attention:多头注意力机制用于模型对时间序列数据的重要特征进行自适应加权。它通过将输入序列进行多次映射,每次映射产生一个注意力头。每个注意力头关注不同的时间序列特征,然后将它们的加权表示进行融合,以获得更全面的特征表示。

输出层:最后,模型使用全连接层将多头注意力的输出进行整合,并生成最终的预测结果。预测结果可以是单个时间步的值或者是未来多个时间步的序列。

训练过程中,模型通过最小化预测值与真实标签之间的误差来进行优化,并使用反向传播算法更新模型的参数。为了避免过拟合,可以使用正则化技术如Dropout或L2正则化,并进行交叉验证和早停等操作。

TCN-BiGRU-Multihead-Attention模型通过结合TCN、BiGRU和多头注意力机制,可以更好地建模多变量时间序列数据,并提高时间序列预测的准确性。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测获取。
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  相关指标计算
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%  MAPE
maep1 = sum(abs(T_sim1 - T_train)./T_train) ./ M ;
maep2 = sum(abs(T_sim2 - T_test )./T_test) ./ N ;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的MAPE为:', num2str(maep1)])
disp(['测试集数据的MAPE为:', num2str(maep2)])
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%  RMSE
RMSE1 = sqrt(sumsqr(T_sim1 - T_train)/M);
RMSE2 = sqrt(sumsqr(T_sim2 - T_test)/N);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的RMSE为:', num2str(RMSE1)])
disp(['测试集数据的RMSE为:', num2str(RMSE2)])



参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1346072.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

petalinux

基于网络参考,运行一个xilinx pcie rc的参考,选择vcu118平台(基于microblaze):该参考通过pcie rc对挂在的外部ssd进行读写测试 Zynq PCI Express Root Complex design in Vivado - FPGA Developer 1,安装…

使用YOLOv8和Grad-CAM技术生成图像热图

目录 yolov8导航 YOLOv8(附带各种任务详细说明链接) 概述 环境准备 代码解读 导入库 定义letterbox函数 调整尺寸和比例 计算填充 应用填充 yolov8_heatmap类定义和初始化 后处理函数 绘制检测结果 类的调用函数 热图生成细节 参数解释 we…

Netty(一)-NIO

一、Netty 现在的互联网环境下,分布式系统大行其道,而分布式系统的根基在于网络编程,而Netty恰恰是Java领域网络编程的王者。如果要致力于开发高性能的服务器程序,高性能的客户端程序,必须掌握Netty。 1、NIO NIO&…

鸿蒙(OpenHarmony)系统之智能语音部件(1)

本文重点参考: OpenHarmony/ai_intelligent_voice_framework 一、总体概述 1. 功能简介及架构 智能语音组件包括智能语音服务框架和智能语音驱动,主要实现了语音注册及语音唤醒相关功能。 智能语音组件架构图如下图所示: (1&a…

分库分表之Mycat应用学习四

4 分片策略详解 分片的目标是将大量数据和访问请求均匀分布在多个节点上,通过这种方式提升数 据服务的存储和负载能力。 4.1 Mycat 分片策略详解 总体上分为连续分片和离散分片,还有一种是连续分片和离散分片的结合,例如先 范围后取模。 …

弱电工程计算机网络系统基础知识

我们周围无时无刻不存在一张网,如电话网、电报网、电视网、计算机网络等;即使我们身体内部也存在许许多多的网络系统,如神经系统、消化系统等。最为典型的代表即计算机网络,它是计算机技术与通信技术两个领域的结合。 计算机网络的…

C语言函数篇——sqrt()函数

sqrt()函数介绍: sqrt()函数是C语言中用于计算一个数的平方根的数学函数。它接受一个浮点数作为参数,并返回该数的平方根。 sqrt()函数的语法: double sqrt(double x); 其中,x是要计算平方根的数。 sqrt()函数的应用案例&#x…

【中小型企业网络实战案例 五】配置可靠性和负载分担

【中小型企业网络实战案例 三】配置DHCP动态分配地址-CSDN博客 【中小型企业网络实战案例 四】配置OSPF动态路由协议 【中小型企业网络实战案例 二】配置网络互连互通-CSDN博客 【中小型企业网络实战案例 一】规划、需求和基本配置_大小企业网络配置实例-CSDN博客 配置VRRP联…

matlab导出高清图片,须经修改后放入latex(例如添加文字说明,matlab画图不易操作)

一、背景 我们在写文章时,使用matlab画图后,如果不需要对图片进行额外修改或调整,例如添加文字说明,即可直接从matlab导出eps格式图片,然后插入到latex使用。 通常latex添加图片,是需要eps格式的。 但很…

matplotlib单变量和双变量可视化

使用seaborn 库的tips数据集,其中包含了某餐厅服务员收集的顾客付小费的相关数据(评论区) 单变量可视化 直方图 直方图是观察单个变量最常用的方法。这些值是经过"装箱"(bin)处理的 直方图会将数据分组后绘…

通用定时器PWM波输出原理

1通用PWM波输出原理 总结&#xff1a;PWM波周期或频率由ARR决定&#xff0c;PWM波占空比由CCRx决定 1通用PWM模式 1.1PWM模式1 PWM模式1&#xff1a; 递增&#xff1a;CNT < CCRx&#xff0c;输出有效电平1 CNT > CCRx&#xff0c;输出无效电平0 递减&#xff1a;CNT …

蜕变,我的2023

作者&#xff1a;苍何&#xff0c;前大厂高级 Java 工程师&#xff0c;阿里云专家博主&#xff0c;CSDN 2023 年 实力新星&#xff0c;土木转码&#xff0c;现任部门技术 leader&#xff0c;专注于互联网技术分享&#xff0c;职场经验分享。 &#x1f525;热门文章推荐&#xf…

uniapp中组件库的丰富NumberBox 步进器的用法

目录 基本使用 #步长设置 #限制输入范围 #限制只能输入整数 #禁用 #固定小数位数 #异步变更 #自定义颜色和大小 #自定义 slot API #Props #Events #Slots 基本使用 通过v-model绑定value初始值&#xff0c;此值是双向绑定的&#xff0c;无需在回调中将返回的数值重…

【Linux专区】如何配置新服务器 | 添加普通用户到sudoers | 配置vim | git免账号密码pull push

&#x1f49e;&#x1f49e;欢迎来到 Claffic 的博客&#x1f49e;&#x1f49e; &#x1f449; 专栏&#xff1a;《Linux专区》&#x1f448; &#x1f4ac;前言&#xff1a; 时隔131天&#xff0c;你的好友Claffic重新发文了&#xff01;(✿◕‿◕✿) 上期已经带大家白嫖了阿…

MFC - 给系统菜单(About Dialog)发消息

文章目录 MFC - 给系统菜单(About Dialog)发消息概述笔记resource.h菜单的建立菜单项的处理MSDN上关于系统菜单项值的说法END MFC - 给系统菜单(About Dialog)发消息 概述 做了一个对话框程序, 在系统菜单(在程序上面的标题栏右击)中有"关于"的菜单. 这个是程序框架…

Git:常用命令(一)

取得项目的Git 仓库 从当前目录初始化 1 git init 初始化后&#xff0c;在当前目录下会出现一个名为.git 的目录&#xff0c;所有Git 需要的数据和资源都存放在这个目录中。不过目前&#xff0c;仅仅是按照既有的结构框架初始化好了里边所有的文件和目录&#xff0c;但我们还…

考pmp有用么?

PMP考出来究竟有什么用&#xff0c;这个问题一直是站在边缘的朋友经常思考的问题&#xff0c;其实我想说的是&#xff0c;当能力和经验都充足的时候&#xff0c;可能这单单的一张证书就能有莫大的作用&#xff0c;帮助你实现目前所追求的东西。 当我利用这张证书达到我的目的之…

idea部署javaSE项目(awt+swing项目)_idea导入eclipse的javaSE项目

一.idea打开项目 选择需要部署的项目 二、设置JDK 三、引入数据库驱动包 四、执行sql脚本 四、修改项目的数据库连接 找到数据库连接文件 五.其他系统实现 JavaSwing实现学生选课管理系统 JavaSwing实现学校教务管理系统 JavaSwingsqlserver学生成绩管理系统 JavaSwing用…

开源radishes高仿网易云音乐完整源码,可试听和下载“灰色”歌曲,跨平台的无版权音乐平台

源码介绍 Radishes是项目名称&#xff0c;是由萝卜翻译而来。可以在这里试听和下载“灰色”歌曲&#xff0c;是一个可以跨平台的无版权音乐平台。 萝卜音乐界面和功能参考 windows 网易云音乐界面和 ios 的网易云音乐 安装依赖 cd radishes/ yarn bootstrap 运行项目 web:…

Linux shell编程学习笔记38:history命令

0 前言 使用DOS的朋友&#xff0c;都知道可以在命令行提示符中使用上下光标键来浏览最近执行过的命令&#xff0c;这是基于DOS提供的DosKey命令。 而在Unix和Linux的shell中&#xff0c;我们同样可以使用上下光标键来浏览最近执行过的命令历史纪录&#xff08;history&#x…