深入浅出理解TensorFlow的padding填充算法

news2025/1/19 2:56:55

一、参考资料

notes_on_padding_2

二、TensorFlow的padding算法

本文以TensorFlow v2.14.0版本为例,介绍TensorFlow的padding算法。

1. 引言

tf.nn.conv2d and tf.nn.max_pool2d 函数都有padding参数,在执行函数之前,都需要进行填充padding(零元素)操作。padding参数可以是 VALIDSAMEVALID 表示no-padding不填充,SAME表示需要padding。

对于convolutions,用零元素填充;对于pools,填充值可以忽略,例如max_pool,其滑动窗口会忽略填充值。

2. VALID padding

padding='VALID' 表示不填充,这种情况下,输出的尺寸一般小于输入的尺寸。

对于 conv2d,它的输出尺寸为:

out_height = ceil((in_height - filter_height + 1) / stride_height)
out_width  = ceil((in_width - filter_width + 1) / stride_width)

其中,filter_height and filter_width 表示滤波器fillter的尺寸。

3. SAME padding

padding='SAME' 可以对空间的各个维度进行padding。对于 conv2d,它的输出尺寸为:

out_height = ceil(in_height / stride_height)
out_width  = ceil(in_width / stride_width)

重要说明:如果不关注padding的内部实现机制,该结论可以直接使用。

对于每个维度方向的padding,可以表示为:

if (in_height % strides[1] == 0):
  pad_along_height = max(filter_height - stride_height, 0)
else:
  pad_along_height = max(filter_height - (in_height % stride_height), 0)
if (in_width % strides[2] == 0):
  pad_along_width = max(filter_width - stride_width, 0)
else:
  pad_along_width = max(filter_width - (in_width % stride_width), 0)

最终,对于 top, bottom, left and right 各维度的padding为:

pad_top = pad_along_height // 2
pad_bottom = pad_along_height - pad_top
pad_left = pad_along_width // 2
pad_right = pad_along_width - pad_left

其中,the division by 2 表示两侧(top vs bottom, right vs left)的padding,而 the bottom and right sides 两侧需要填充剩余的padding。例如,when pad_along_height is 5, we pad 2 pixels at the top and 3 pixels at the bottom. 注意:该种padding方式与其他的深度学习框架(例如,PyTorch and Caffe)不同,其他的深度学习框架需要明确padding的数量,且在两侧padding相同的数量。

Note that this is different from existing libraries such as PyTorch and Caffe, which explicitly specify the number of padded pixels and always pad the same number of pixels on both sides.

3.1 代码示例

in_height = 5
filter_height = 3
stride_height = 2

in_width = 2
filter_width = 2
stride_width = 1

inp = tf.ones((2, in_height, in_width, 2))
filter = tf.ones((filter_height, filter_width, 2, 2))
strides = [stride_height, stride_width]
output = tf.nn.conv2d(inp, filter, strides, padding='SAME')
output.shape[1]  # output_height: ceil(5 / 2)=3

output.shape[2] # output_width: ceil(2 / 1)=2

3.2 计算padding尺寸

已知条件:

(in_height, in_width)=(5, 2)
(filter_height, filter_width)=(3, 2)
(strides[1], strides[2])=(2, 1)

先计算Height方向的padding,可得:

in_height % strides[1] = 5%2 = 1

则满足以下公式:

pad_along_height = max(filter_height - (in_height % stride_height), 0)

代入公式,可得:

pad_along_height = max(3-(5%2), 0)=max(3-1, 0)=2
pad_top = pad_along_height // 2 = 2 // 2 = 1
pad_bottom = pad_along_height - pad_top = 2-1 = 1

由此可知,在 top 方向填充1,在 bottom 方向填充1。

再计算 Width 方向的padding,可得:

in_width % strides[2] = 2%1 = 0

则满足以下公式:

pad_along_width = max(filter_width - stride_width, 0)

代入公式,可得:

pad_along_heght = max(2-1, 0) = 1
pad_left = pad_along_width // 2 = 1 // 2 = 0
pad_right = pad_along_width - pad_left = 1-0 = 1

由此可知,在 left 方向不填充,在 right 方向填充1。

综上所述,填充的示意图如下:
在这里插入图片描述

填充之后,输入尺寸由(5,2) 扩充为 (7,3)。

3.3 计算output尺寸

标准卷积输出尺寸的计算公式:
o = i + 2 p − k s + 1 i = size   of   input o = size   of   output p = p a d d i n g k = size   of   kernel s = s t r i d e s ( 1 ) o=\frac{i+2p-k}s+1 \quad \begin{array}{l} \\i=\textit{size of input}\\o=\textit{size of output}\\p=padding\\k=\textit{size of kernel}\\s=strides\end{array}\quad (1) o=si+2pk+1i=size of inputo=size of outputp=paddingk=size of kernels=strides(1)
计算Height方向的输出尺寸,可得:
o u t _ h e i g h t = i n _ h e i g h t + ( p a d _ t o p + p a d _ b o t t o m ) − f i l t e r _ h e i g h t s t r i d e s [ 1 ] + 1 ( 2 ) out\_height=\frac{in\_height+(pad\_top+pad\_bottom)-filter\_height}{strides[1]}+1\quad (2) out_height=strides[1]in_height+(pad_top+pad_bottom)filter_height+1(2)
将已知条件代入上述 公式 ( 2 ) 公式(2) 公式(2) 中,可得:
o u t _ h e i g h t = 5 + ( 1 + 1 ) − 3 2 + 1 = 3 out\_height=\frac{5+(1+1)-3}{2}+1=3 out_height=25+(1+1)3+1=3
计算Width方向的输出尺寸,可得:
o u t _ w i d t h = i n _ w i d t h + ( p a d _ l e f t + p a d _ r i g h t ) − f i l t e r _ w i d t h s t r i d e s [ 2 ] + 1 ( 3 ) out\_width=\frac{in\_width+(pad\_left+pad\_right)-filter\_width}{strides[2]}+1\quad (3) out_width=strides[2]in_width+(pad_left+pad_right)filter_width+1(3)
将已知条件代入上述 公式 ( 3 ) 公式(3) 公式(3) 中,可得:
o u t _ w i d t h = 2 + ( 0 + 1 ) − 2 1 + 1 = 2 out\_width=\frac{2+(0+1)-2}{1}+1=2 out_width=12+(0+1)2+1=2
综上所述,输出尺寸为(3, 2),与代码验证的结果一致。

4. Explicit padding

在TensorFlow中,也可以指定padding的数量。但需要注意的是,padding 参数为 list 类型,而不是Tensor,且该参数的格式与 tf.pad 相同。

对于 conv2d,当 data_format='NHWC'padding 的参数格式为 [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]] ,第一个 [[0, 0]] 表示 batch维度上no-padding不填充,最后一个 [[0, 0]] 表示 channel 维度上no-padding不填充。

For example, in the 2D case, the list is in the format [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]] when data_format is its default value of 'NHWC'. The two [0, 0] pairs indicate the batch and channel dimensions have no padding, which is required, as only spatial dimensions can have padding.

4.1 代码示例

inp = tf.ones((1, 3, 3, 1))
filter = tf.ones((2, 2, 1, 1))
strides = [1, 1]
padding = [[0, 0], [1, 2], [0, 1], [0, 0]]
output = tf.nn.conv2d(inp, filter, strides, padding=padding)
tuple(output.shape)  # (1, 5, 3, 1)

# Equivalently, tf.pad can be used, since convolutions pad with zeros.
inp = tf.pad(inp, padding)
# 'VALID' means to use no padding in conv2d (we already padded inp)
output2 = tf.nn.conv2d(inp, filter, strides, padding='VALID')
tf.debugging.assert_equal(output, output2)

4.2 计算padding尺寸

已知条件:

(in_height, in_width)=(3, 3)
(filter_height, filter_width)=(2, 2)
(strides[1], strides[2])=(1, 1)
(pad_top, pad_bottom)=(1, 2)
(pad_left, pad_right)=(0, 1)

从已知条件中可以看出,在 top 方向填充1,在 bottom 方向填充2。在 left 方向不填充,在 right 方向填充1。

综上所述,填充的示意图如下:
在这里插入图片描述

填充之后,输入尺寸由(3,3) 扩充为 (6,4)。

4.3 计算output尺寸

将已知条件代入上述 公式 ( 2 ) 公式(2) 公式(2) 中,可得:
o u t _ h e i g h t = 3 + ( 1 + 2 ) − 2 1 + 1 = 5 out\_height=\frac{3+(1+2)-2}{1}+1=5 out_height=13+(1+2)2+1=5
将已知条件代入上述 公式 ( 3 ) 公式(3) 公式(3) 中,可得:
o u t _ w i d t h = 3 + ( 0 + 1 ) − 2 1 + 1 = 3 out\_width=\frac{3+(0+1)-2}{1}+1=3 out_width=13+(0+1)2+1=3
综上所述,输出尺寸为(5, 3),与代码验证的结果一致。

5. 区分卷积层和池化层中的padding

卷积层与池化层中的padding不一样。对于卷积层,以零元素进行padding,再与kernel相乘(卷积操作)。对于池化层,没有相乘的过程。例如,对于一个4x4的 average pooling,其padding对最终结果没有影响。

5.1 代码示例

x_in = np.array([[
  [[2], [2]],
  [[1], [1]],
  [[1], [1]]]])
kernel_in = np.array([  # simulate the avg_pool with conv2d
 [ [[0.25]], [[0.25]] ],
 [ [[0.25]], [[0.25]] ]])
x = tf.constant(x_in, dtype=tf.float32)
kernel = tf.constant(kernel_in, dtype=tf.float32)
conv_out = tf.nn.conv2d(x, kernel, strides=[1, 1, 1, 1], padding='SAME')
pool_out = tf.nn.avg_pool(x, [2, 2], strides=[1, 1, 1, 1], padding='SAME')
print(conv_out.shape, pool_out.shape)
# (1, 3, 2, 1) (1, 3, 2, 1)
tf.reshape(conv_out, [3, 2]).numpy()  # conv2d takes account of padding
"""
array([[1.5, 0.75],
		[1., 0.5],
		[0.5, 0.25]], dtype=float32)
"""

tf.reshape(pool_out, [3, 2]).numpy()  # avg_pool excludes padding
"""
array([[1.5, 1.5],
		[1., 1.],
		[1., 1.0]], dtype=float32)
"""

5.2 计算padding尺寸

已知条件:

(in_height, in_width)=(3, 2)
(filter_height, filter_width)=(2, 2)
(strides[1], strides[2])=(1, 1)

先计算Height方向的padding,可得:

in_height % strides[1] = 3%1 = 0

则满足以下公式:

pad_along_height = max(filter_height - stride_height, 0)

代入公式,可得:

pad_along_height = max(2-1, 0) = 1
pad_top = pad_along_height // 2 = 1 // 2 = 0
pad_bottom = pad_along_height - pad_top = 1-0 = 1

由此可知,在 top 方向填充0,在 bottom 方向填充1。

再计算 Width 方向的padding,可得:

in_width % strides[2] = 2%1 = 0

则满足以下公式:

pad_along_width = max(filter_width - stride_width, 0)

代入公式,可得:

pad_along_heght = max(2-1, 0) = 1
pad_left = pad_along_width // 2 = 1 // 2 = 0
pad_right = pad_along_width - pad_left = 1-0 = 1

由此可知,在 left 方向不填充,在 right 方向填充1。

综上所述,填充的示意图如下:
在这里插入图片描述

填充之后,输入尺寸由(3,2) 扩充为 (4,3)。

5.3 计算output尺寸

将已知条件代入上述 公式 ( 2 ) 公式(2) 公式(2) 中,可得:
o u t _ h e i g h t = 3 + ( 0 + 1 ) − 2 1 + 1 = 3 out\_height=\frac{3+(0+1)-2}{1}+1=3 out_height=13+(0+1)2+1=3
将已知条件代入上述 公式 ( 3 ) 公式(3) 公式(3) 中,可得:
o u t _ w i d t h = 2 + ( 0 + 1 ) − 2 1 + 1 = 2 out\_width=\frac{2+(0+1)-2}{1}+1=2 out_width=12+(0+1)2+1=2
综上所述,输出尺寸为(3, 2),与代码验证的结果一致。

5.4 计算卷积操作的结果

在这里插入图片描述

5.5 计算池化操作的结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1344998.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【进收藏夹吃灰系列】Python学习指南

文章目录 [toc]Python基础字符串判断语句循环语句异常文件读写迭代器生成器闭包线程 个人主页:丷从心 系列专栏:进收藏夹吃灰系列 Python基础 字符串 【Python基础】字符串 判断语句 【Python基础】判断语句 循环语句 【Python基础】循环语句 异常 …

【华为OD机试真题2023CD卷 JAVAJS】手机App防沉迷系统

华为OD2023(C&D卷)机试题库全覆盖,刷题指南点这里 手机App防沉迷系统 知识点数组字符串编程基础循环统计 时间限制:1s 空间限制:256MB 限定语言:不限 题目描述: 智能手机方便了我们生活的同时,也侵占了我们不少的时间。“手机App防沉迷系统”能够让我们每天合理的规…

WPF 消息日志打印帮助类:HandyControl+NLog+彩色控制台打印+全局异常捕捉

文章目录 前言相关文章Nlog配置HandyControl配置简单使用显示效果文本内容 全局异常捕捉异常代码运行结果 前言 我将简单的HandyControl的消息打印系统和Nlog搭配使用,简化我们的代码书写 相关文章 .NET 控制台NLog 使用 WPF-UI HandyControl 控件简单实战 C#更改…

行人重识别(ReID)基础知识入门

这里写目录标题 1、ReID技术概述1.1 基本原理1.2 实现流程1.3 重识别存在的技术挑战 2、训练数据格式介绍 1、ReID技术概述 1.1 基本原理 ReID,全称Re-identification,目的是利用各种智能算法在图像数据库中找到与要搜索的目标相似的对象。ReID是图像检…

阿里开源大模型 Qwen-72B 私有化部署

近期大家都知道阿里推出了自己的开源的大模型千问72B,据说对于中文非常友好,在开源模型里面,可谓是名列前茅。 千问拥有有强大的基础语言模型,已经针对多达 3 万亿个 token 的多语言数据进行了稳定的预训练,覆盖领域、…

《微信小程序开发从入门到实战》学习六十七

6.6 网络API 部分小程序服务端不是用云开发技术实现,而是由开发人员使用后端开发语言实现。 在小程序用网络API与(开发人员使后端开发语言建设的)服务端进行交互,可与服务端交换数据、上传或下载文件。 6.6.1 服务器域名配置 …

C#使用条件语句判断用户登录身份

目录 一、示例 二、生成 利用条件语句判断用户登录身份,根据用户登录身份的不同,给予相应的操作权限。 一、示例 主要用if语句及ComboBox控件。其中,ComboBox是窗体中的下拉列表控件,在使用ComboBox控件前,可以先向…

Spring6入门

1、入门 1.1、环境要求 JDK:Java17(Spring6要求JDK最低版本是Java17)Maven:3.6Spring:6.1.2 1.2、构建模块 (1)构建父模块spring6 在idea中,依次单击 File -> New -> Proj…

Vue3-30-路由-嵌套路由的基本使用

什么是嵌套路由 嵌套路由 &#xff1a;就是一个组件内部还希望展示其他的组件&#xff0c;使用嵌套的方式实现页面组件的渲染。 就像 根组件 通过路由渲染 普通组件一样&#xff0c;嵌套路由也是一样的道理。 嵌套路由的相关关键配置 1、<router-view> 标签 声明 被嵌套组…

乒乓球廉价底板及套胶评测4

球拍找到适应自己的不容易&#xff0c;因为初学者或者说业余爱好者无法确定是按打法特点选拍还是按拍子练打法特点&#xff0c;所以有时候就要孤注一掷&#xff0c;想想练球的初衷&#xff0c;不用被打的好的对手所左右。我和朋友打球的时候发现大家借力的能力越来越强&#xf…

三巨头对决:深入了解pnpm、yarn与npm

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 三巨头对决&#xff1a;深入了解pnpm、yarn与npm 前言包管理器简介npm&#xff08;Node Package Manager&#xff09;&#xff1a;Yarn&#xff1a;pnpm&#xff08;Performant Npm&#xff09;&#…

FL Studio 21.2.2官方中文版重磅发布

纯正简体中文支持&#xff0c;更快捷的音频剪辑及素材管理器&#xff0c;多样主题随心换&#xff01; Mac版新增对苹果M2/1家族芯片原生支持。 丰富的主题换肤 现在大家可以通过控制色调、饱和度、亮度、文本、仪表和步进序列器的颜色来改变你的DAW外观&#xff0c; DAW“情绪…

Docker 概述以及整体架构

文章目录 一、Docker概述1.1 什么是 Docker1.2 Docker 如何工作1.3 底层技术 二、Docker架构2.1 Docker 整体架构2.2 Docker daemon2.3 Docker client2.4 Docker registries2.5 Docker objects2.6 Docker Desktop 参考资料 一、Docker概述 1.1 什么是 Docker Docker是一个用于…

JVM工作原理与实战(二):字节码编辑器jclasslib

专栏导航 JVM工作原理与实战 RabbitMQ入门指南 从零开始了解大数据 目录 专栏导航 前言 一、字节码编辑器jclasslib介绍和安装 1.介绍 2.安装 3.IntelliJ IDEA 插件安装 二、字节码编辑器jclasslib的使用 1.使用jclasslib bytecode viewer打开字节码文件 2.使用Intell…

Spring 是如何解决循环依赖的

1.什么是循环依赖? 所谓的循环依赖是指&#xff0c;A 依赖 B&#xff0c;B 又依赖 A&#xff0c;它们之间形成了循环依赖。或者是 A 依赖 B&#xff0c;B 依赖 C&#xff0c;C 又依赖 A。它们之间的依赖关系如下&#xff1a; 2.通过手写代码演示理解Spring循环依赖 DEMO: pu…

模型性能评估简介

模型评估 混淆矩阵 Positive - 正例Negative (N) - 负例 结果: 预测为正类别 预测为负类别 真实为正类别 True Positive (TP) False Negative (FN) 真实为负类别 False Positive (FP) True Negative (TN)TP - 预测 P, 实际 P, 模型预测正确FP - 预测 P, …

Spring-5-切入点的高级使用

Spring提供了两个额外的Pointcut实现&#xff0c;分别是ComposablePointcut和ControlFlowPointcut,它们提供了所需的灵活性。 使用控制流切入点 由ControlFlowPointcut类实现的Spring控制流切入点类似于许多其他AOP实现中可用的cflow构造&#xff0c;尽管功能上没有那么强大。…

2023十大编程语言及未来展望

2023十大编程语言及未来展望 1. 2023年十大编程语言排行榜2. 十大编程语言未来展望PythonCCJavaC#JavaScriptPHPVisual BasicSQLAssembly language 1. 2023年十大编程语言排行榜 TIOBE排行榜是根据互联网上有经验的程序员、课程和第三方厂商的数量&#xff0c;并使用搜索引擎&a…

vivado CDC约束-约束总线偏移

CDC限制 关于CDC约束 时钟域交叉&#xff08;CDC&#xff09;约束适用于具有不同启动和捕获时钟。根据发布和捕获时钟关系以及在CDC路径上设置的定时异常。例如同步时钟之间但被错误路径约束覆盖的CDC路径不定时&#xff0c;并且因此被视为异步CDN。异步CDC路径可以是安全的&…

CentOS7安装部署Zookeeper

文章目录 CentOS7安装部署Zookeeper一、前言1.简介2.架构3.集群角色4.特点5.环境 二、正文1.部署服务器2.基础环境1&#xff09;主机名2&#xff09;Hosts文件3&#xff09;关闭防火墙4&#xff09;JDK 安装部署 3.单机部署1&#xff09;下载和解压2&#xff09;配置文件3&…