UI演示双视图立体匹配与重建

news2025/1/21 8:51:44

相关文章:

  • PyQt5和Qt designer的详细安装教程:https://blog.csdn.net/qq_43811536/article/details/135185233?spm=1001.2014.3001.5501
  • Qt designer界面和所有组件功能的详细介绍:https://blog.csdn.net/qq_43811536/article/details/135186862?spm=1001.2014.3001.5501
  • Qt designer设计UI实例:双视图立体匹配与重建的可视化UI:https://blog.csdn.net/qq_43811536/article/details/135198820?spm=1001.2014.3001.5501
  • 基于PyQt5自定义UI的详细教程:https://blog.csdn.net/qq_43811536/article/details/135284469?spm=1001.2014.3001.5501

目录

  • 1. 实例:双视图立体匹配与重建的可视化UI
  • 2. 实现描述
    • 2.1 算法简介
    • 2.2 用户界面
    • 2.3 功能流程
  • 3. 实验结果
    • 3.1 运行结果展示
    • 3.2 算法性能对比
  • 4. 源代码
  • 5. 附录


1. 实例:双视图立体匹配与重建的可视化UI

  • 输入:一对左右眼视图的图像。
  • 任务:对输入的一对带相机参数的左右眼图像数据,实现SAD、NCC 两种局部的立体匹配方法进行重建。
  • 输出
    • 基本的交互界面供用户选择立体匹配算法以及输入的图片。
    • 将每种立体匹配方法所用的时间以及图片大小信息显示出来。
    • 可视化重建的结果,如点云,深度图,视差图等,可以使用Meshlab 软件
      或者Open3D 进行可视化

2. 实现描述

2.1 算法简介

本项目旨在通过双视图立体匹配技术实现三维场景重建。输入为一对左右眼视图的图像,输出为三维重建的深度图可视化结果。本报告通过实现 WTA(Winner-Take-All)和 SGM(Semi-Global Matching)匹配算法,结合 SAD(Sum of Absolute Differences)、SSD(Sum of Squared Differences)和 NCC(Normalized Cross-Correlation)三种成本函数,提供了一个用于立体图像匹配和深度图重建的较为完整的解决方案。

  • 匹配算法:

    • WTA:一种简单但有效的匹配策略,选择具有最低成本的匹配作为最终结果。
    • SGM:一种更复杂的方法,通过考虑图像中的邻近像素来优化匹配过程。
  • 成本计算:

    • SAD:计算两个窗口中对应像素差的绝对值之和。
    • SSD:计算两个窗口中对应像素差的平方和。
    • NCC:衡量两个窗口的相似性。

2.2 用户界面

基于上一小节具体的算法实现,本报告使用Qt Designer 设计了一个可供用户交互的界面,详情参考Qt designer设计UI实例:双视图立体匹配与重建的可视化UI。界面包含图片选择(Picture)、匹配算法选择(Matching algorithm)、成本函数选择(Matching cost)、运行按钮(Run)、图片显示窗口(Picture visualization)、结果显示窗口(Results display)和输出信息窗口(Output information)。然后使用 PyQt5 实现界面的初始化和槽函数自定义,详情参考基于PyQt5自定义UI的详细教程。

2.3 功能流程

  • 用户选择双视图:本报告提供了5对双视图,分别为“Adirondack”、“cones”、“bow-ling”、“artroom1”和“chess1” 1,其中前两对双视图提供深度图的ground truth(灰度图)以及masked image(用于排除遮挡区域的掩码图),最后两对提供左右视图的彩色深度图的ground truth但缺少masked image,中间的“bowling”仅有左右视图。在用户选择好图片之后,被选择的图片会实时绘制在Picture visualization窗口中,根据可视化结果用户可以决定是否更改图片选择。
  • 选择匹配参数:我们的界面相对简陋,目前只提供两种匹配算法WTA和SGM,以及三种成本SAD、SSD和NCC。有关算法的细节比如max_disparity(要考虑的最大差距)、filter_radius(滤波器半径)以及accx_threshold(计算重建精度Acc时的阈值差)等参数未提供接口,默认使用实验过程确定好的参数。
  • 运行:用户点击“RUN”按钮开始匹配和重建过程。这部分可能需要等候一段时间。
  • 结果显示:在Results display窗口输出深度图,同时Output information窗口显示运行日志、用时、图片大小和重建精度(如果存在ground truth)等信息。所有结果都保存在“./results”中。

3. 实验结果

3.1 运行结果展示

以图片“Adirondack”为例,下图展示了该图片在使用SGM和NCC算法时的重建结果以及运行过程中的用户界面。其中运行时长为21.565s,重建精度为0.929。

在这里插入图片描述

3.2 算法性能对比

我们以双视图“Adirondack”和“cones”为例,分别对两种匹配算法和三种成本算法进行重建性能和用时对比。“bowling”的重建结果见附录图。

下面两幅图分别呈现两个双视图在不同匹配和成本算法下的深度图结果,两个表格分别罗列重建性能和用时的量化结果。

  • 在两个不同的场景下,全局匹配算法SGM的性能都是要显著优于WTA的,但由于算法的复杂性相应的用时也会成倍增长。这主要是因为SGM通过考虑像素间的连续性和平滑性,减少了匹配错误,同时它的算法结构使其对图像噪声和纹理不均匀区域更具鲁棒性,在处理复杂场景(如遮挡、重复纹理等)时表现更优。但SGM 的计算复杂度高于 WTA,因此在计算资源受限的环境中可能不太适用。
  • 成本算法NCC相比其他两种成本性能提升显著。这主要是以为NCC对光照变化和图像强度缩放具有较好的鲁棒性。它通过归一化操作减少了这些因素的影响。在光照变化显著的环境下,NCC 往往能提供比 SAD 和 SSD 更准确的匹配结果,比如“Adirondack_SGM_NCC”性能最优。但NCC 的计算相对复杂,可能不适合对实时性要求较高的应用。而SSD 对差异较大的像素施加更强的惩罚,有助于准确匹配高对比度的特征,比如“cones_SGM_SSD”性能最优。

图1

图1

请添加图片描述

图2

在这里插入图片描述


4. 源代码

源代码可以从GitHub链接获取:https://github.com/Jurio0304/Two-view_Stereo_Matching_and_Reconstruction

创作不易,参考的话球球给个star…


5. 附录

请添加图片描述


创作不易,麻烦点点赞和关注咯!

  1. Scharstein D, Hirschmüller H, Kitajima Y, et al. High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth. In: Pattern Recognition. Ed. by Jiang X, Hornegger
    J, and Koch R. Cham: Springer International Publishing, 2014:31–42. ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1344515.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【机组期末速成】CPU的结构与功能|CPU结构|指令周期概述|指令流水线|中断系统

🎥 个人主页:深鱼~🔥收录专栏:计算机组成原理🌄欢迎 👍点赞✍评论⭐收藏 前言: 最近在备战期末考试,所以本专栏主要是为了备战期末计算机组成原理这门考试,讲的比较浅显&…

CSS 丝带形状效果

CSS 丝带形状效果如图: 通过CSS创建折叠丝带形状 这里代码应该比较清晰易懂,clip-path 的值应该也容易理解。要注意的是,我们使用了 color-mix() 函数,这个属性允许创建主颜色的深色版本。现在如果我们将元素旋转相反的方向&#…

Element|InfiniteScroll 无限滚动组件的具体使用方法

目录 InfiniteScroll 无限滚动 基本用法 详细说明 v-infinite-scroll 指令 infinite-scroll-disabled 属性 infinite-scroll-distance 属性 总结 需求背景 : 项目统计管理列表页面,数据量过多时在 IE 浏览器上面会加载异常缓慢,导致刚…

Java多线程<二>多线程经典场景

leetcode 多线程刷题 上锁上一次,还是上多次? 同步的顺序。 1. 交替打印字符 使用sychronize同步锁使用lock锁使用concurrent的默认机制使用volitale关键字 Thread.sleep() / Thread.yield机制使用automic原子类 方式1 :使用互斥访问st…

【开源】基于JAVA语言的创意工坊双创管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 管理员端2.2 Web 端2.3 移动端 三、系统展示四、核心代码4.1 查询项目4.2 移动端新增团队4.3 查询讲座4.4 讲座收藏4.5 小程序登录 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的创意工坊双创管理…

nodejs微信小程序+python+PHP的林业信息管理系统的设计与实现-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

交互式笔记Jupyter Notebook本地部署并实现公网远程访问内网服务器

最近,我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念,而且内容风趣幽默。我觉得它对大家可能会有所帮助,所以我在此分享。点击这里跳转到网站。 文章目录 1.前言2.Jupyter Notebook的安装2.1 Jupyter Notebook下…

HarmonyOS自学-Day4(TodoList案例)

目录 文章声明⭐⭐⭐让我们开始今天的学习吧!TodoList小案例 文章声明⭐⭐⭐ 该文章为我(有编程语言基础,非编程小白)的 HarmonyOS自学笔记,此类文章笔记我会默认大家都学过前端相关的知识知识来源为 HarmonyOS官方文…

PHP开发日志 ━━ 基于PHP和JS的AES相互加密解密方法详解(CryptoJS) 适合CryptoJS4.0和PHP8.0

最近客户在做安全等保,需要后台登录密码采用加密方式,原来用个base64变形一下就算了,现在不行,一定要加密加key加盐~~ 前端使用Cypto-JS加密,传输给后端使用PHP解密,当然,前端虽然有key有盐&…

TP-LINK 路由器忘记密码 - 恢复出厂设置

TP-LINK 路由器忘记密码 - 恢复出厂设置 1. 恢复出厂设置2. 创建管理员密码3. 上网设置4. 无线设置5. TP-LINK ID6. 网络状态References 1. 恢复出厂设置 在设备通电的情况下,按住路由器背面的 Reset 按钮直到所有指示灯同时亮起后松开。 2. 创建管理员密码 3. 上网…

C++ stack使用、模拟实现、OJ题

目录 一、介绍 二、常用函数 三、模拟实现 四、OJ练习题 1、最小栈 2、栈的压入、弹出序列 3、逆波兰表达式(后缀转中缀) 4、中缀转后缀思路 5、用栈实现队列 一、介绍 stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除…

vr体验馆用什么软件计时计费,如遇到停电软件程序如何恢复时间

vr体验馆用什么软件计时计费,如遇到停电软件程序如何恢复时间 一、软件程序问答 如下图,软件以 佳易王vr体验馆计时计费软件V17.9为例说明 1、软件如何计时间? 点击相应编号的开始计时按钮即可 2、遇到停电再打开软件时间可以恢复吗&…

谷歌开发者账号:企业号和个人号的区别与优劣势对比

根据近期谷歌开发者账号的热点和测试情况,与大家探讨一下企业号和个人号的区别和优劣势对比,以及后续可能的发展方向。 个人号问题分析 由于过去个人号的滥用行为,谷歌采取了多项风险控制措施,这些措施包括了对注册地区进行限制&a…

vue3项目使用pako库解压后端返回zip数据

文章目录 前言一、pako 介绍一些特点和功能:简单示例 二、vue3 实战示例1.安装后引入库安装:引用用自定义hooks 抽取共用逻辑部署小插曲 前言 外部接口返回一个图片数据是经过zip压缩的,前端需要把这个数据处理成可以显示的图片。大概思路:z…

thinkphp学习01-thinkphp6安装

thinkphp官网 thinkphp文档 准备 安装php 安装composer 创建项目 切换到目录下,新建项目,通过composer创建 composer create-project topthink/think tp6启动 命令行启动 进入到tp6文件夹,执行启动命令 php think run访问localhost:8…

状态模式-举例

在软件系统中,有些对象也像水一样具有多种状态, 这些状态在某些情况下能够相互转换, 而且对象在不同的状态下也将具有不同的行为。 参考日志来设置状态。 如何判断一个设计模式是行为模式还是什么其他模式? 什么叫行为模式&#…

山西电力市场日前价格预测【2023-12-28】

日前价格预测 预测说明: 如上图所示,预测明日(2023-12-28)山西电力市场全天平均日前电价为814.30元/MWh。其中,最高日前电价为1500.00元/MWh,预计出现在08:00~08:45,17:00~20:15。最低日前电价为394.61元/…

FFmpeg学习笔记--Centos8安装FFmpeg

1--安装指令 sudo yum install epel-releasesudo yum localinstall --nogpgcheck https://download1.rpmfusion.org/free/el/rpmfusion-free-release-8.noarch.rpmsudo yum install ffmpeg ffmpeg-develffmpeg -version 2--版本信息

设计模式-注册模式

设计模式专栏 模式介绍模式特点应用场景注册模式和单例模式的区别代码示例Java实现注册模式Python实现注册模式 注册模式在spring中的应用 模式介绍 注册模式是一种设计模式,也称为注册树或注册器模式。这种模式将类的实例化和创建分离开来,避免在应用程…

Linux文件的扩展属性 attr cap

文件属性 Linux文件属性分为常规属性与扩展属性,其中扩展属性有两种:attr与xattr. 一般常规的文件属性由stat API 读取,一般是三种权限,ower, group,时间等。 扩展属性attr 用户态API ioctl(fd, FS_IOC32_SETFLAGS…