OpenCV-Python(22):直方图的计算绘制与分析

news2025/1/21 12:08:57

目标

  • 了解直方图的原理及应用
  • 使用OpenCV 或Numpy 函数计算直方图
  • 使用Opencv 或者Matplotlib 函数绘制直方图
  • 学习函数cv2.calcHist()、np.histogram()等

原理及应用

        直方图是一种统计图形,是对图像的另一种解释,用于表示图像中各个像素值的频次分布。直方图的x 轴是灰度值(0 到255),y 轴是图片中具有同一个灰度值的点的数目。通过直方图你可以对整幅图像的灰度分布、对比度、亮度等有一个整体的了解。在计算机视觉中,直方图是一种常用的图像特征描述方法,可以用于图像处理、图像分割、图像匹配等应用,几乎所有的图像处理软件提供了直方图分析功能。

        在图像处理中,直方图可以用于对图像进行增强、对比度调整、色彩均衡等操作。通过分析图像的直方图,可以了解图像的亮度分布情况,进而进行亮度调整,使图像更加清晰、明亮或暗淡。

        在图像分割中,直方图可以用于选择合适的阈值进行图像分割。通过分析图像的直方图,可以找到合适的阈值,将图像分成不同的区域,达到目标检测和图像分割的目的。

        在图像匹配中,直方图可以用于计算图像之间的相似度。通过比较两幅图像的直方图,可以得到它们的相似程度,从而实现图像的匹配和检索。

        我们来分析上面幅图片和它的直方图(要记住:直方图是根据灰度图像绘制的,而不是彩色图像)。直方图的左边区域像是暗一点的像素数量,右侧显示了亮一点的像素的数量。从这幅图上你可以看到灰暗的区域比亮的区域大,而处于中间部分的像素点很少。 

参考以下连接获取更多相关信息:https://www.cambridgeincolour.com/tutorials/histograms1.htm

统计直方图 

        现在我们知道什么是直方图了,那么我们应该怎样获得一副图像的直方图呢?OpenCV 和Numpy 有内置函数做这件事。在使用这些函数之前我们有必要了解一下直方图相关的术语。

  • BINS

        上面的直方图显示了每个像素灰度值对应的像素数目。如果像素值为0到255,你就需要256 个数来显示上面的直方图。但是,如果你不需要知道每一个像素值的像素点数目,而只希望知道两个像素值之间的像素点数目怎么办呢?举例来说,我们想知道像素值在0 到15 之间的像素点的数目,接着是16 到31,....240 到255。我们只需要16 个值来绘制直方图即可。

        那么到底要怎么做呢?你只需要把原来的256 个值等分成16 小组,取每组的总和。而这里的每一个小组就就成为BIN。第一个例子中有256 个BIN,第二个例子中有16 个BIN。在OpenCV 的文档中用histSize 表示BINS。

  • DIMS

        表示我们收集数据的参数数目。在本例中,我们对收集到的数据只考虑一件事:灰度值。所以这里就是1。

  • RANGE

        就是要统的灰度值范围,一般来说为[0-256],也就是所有的灰度值。

cv2.calcHist()函数是OpenCV中用于计算图像直方图的函数。函数原型为:

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])

参数解释:

  • images:输入图像(图像格式为uint8 或float32)。它应该是一个包含图像的列表,每个图像都是一个NumPy数组。
  • channels:指定要计算直方图的通道。它是以0为基础的索引,例如,对于灰度图像,它的值为[0],对于彩色图像,可以传递[0],[1]或[2]来计算蓝色、绿色或红色通道的直方图。
  • mask:眼膜图像,可选参数,用于指定要计算直方图的区域。如果不需要,则传递None。。但是如果你想统计图像某一部分的直方图的话,你就需要制作一个掩模图像并使用它。
  • histSize:指定直方图的大小。它表示直方图中有多少个BIN(柱子),即分成多少个区间,应该用中括号括起来,例如[256]
  • ranges:指定像素值的范围。一般情况下,它的值为[0, 256],表示像素值的范围为0到255。

返回值:

  • hist:计算的直方图。它是一个一维数组,表示每个bin的频次。

我们从一副简单图像开始吧,示例代码:

import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图像
image = cv2.imread('image.jpg')

# 将图像转换为灰度图像
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 计算直方图,别忘了参数中的中括号,只有mask 没有中括号
hist = cv2.calcHist([gray_image], [0], None, [256], [0, 256])

# 绘制直方图
plt.plot(hist)
plt.show()

        上述代码中,首先使用cv2.imread()函数读取图像,然后使用cv2.cvtColor()函数将图像转换为灰度图像。接着,调用cv2.calcHist()函数计算灰度图像的直方图,其中channels参数为[0]表示只计算灰度通道的直方图,mask参数为None表示计算整个图像的直方图,histSize参数为[256]表示直方图分成256个bin,ranges参数为[0, 256]表示像素值的范围为0到255。最后,使用matplotlib库中的plt.plot()函数绘制直方图。

使用Numpy 中的函数np.histogram() 也可以帮我们统计直方图。你也可以尝试以下代码:

#img.ravel() 将图像转换成一维数组,这里没有中括号。
hist,bins = np.histogram(img.ravel(),256,[0,256])

hist 与上面计算的一样。但是这里的bins 是257,因为Numpy 计算bins 的方式为:0-0.99,1-1.99,2-2.99 等。所以最后一个范围是255-255.99。为了显示它,所以在bins 的结尾加上了256。但是我们不需要256,到255就够了。 

绘制直方图

有两种方法来绘制直方图:

  • 1. Short Way(简单方法):使用Matplotlib 中的绘图函数。
  • 2. Long Way(复杂方法):使用OpenCV 绘图函数

Matplotlib 中有直方图绘制函数matplotlib.pyplot.hist()它可以直接统计并绘制直方图。你应该使用函数calcHist() 或np.histogram()统计直方图。代码如下:

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('home.jpg',0)
plt.hist(img.ravel(),256,[0,256]);

plt.show()

或者使用如下的方式:

mport cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

# 计算灰度直方图
hist = cv2.calcHist([image], [0], None, [256], [0, 256])

# 绘制直方图
plt.figure()
plt.title('Grayscale Histogram')
plt.xlabel('Bins')
plt.ylabel('# of Pixels')
plt.plot(hist)
plt.xlim([0, 256])
plt.show()

你会得到如下的图:

或者你可以只使用matplotlib 的绘图功能,这在同时绘制多通道(BGR)的直方图很有用。但是你要先告诉绘图函数你的直方图数据在哪。

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('home.jpg')
color = ('b','g','r')
# 对一个列表或数组既遍历索引又遍历历元素时
# 使用内置enumerrate 函数会有更加直接
#enumerate 会将数组或列表组成一个索引序列。
# 使我们再获取索引和索引内容的时候更加方便
for i,col in enumerate(color):
    histr = cv2.calcHist([img],[i],None,[256],[0,256])
    plt.plot(histr,color = col)
    plt.xlim([0,256])
plt.show()

从上面的直方图你可以推断出蓝色曲线右侧的最多,很明显那些就是天空。 使用OpenCV 自带函数绘制直方图比较麻烦,可以单独研究。 

使用掩模绘制直方图

        要统计图像某个局部区域的直方图只需要构建一副掩模图像。将要统计的部分设置成白色,其余部分为黑色就构成了一副掩模图像。然后把这个掩模图像传给函数就可以了。

img = cv2.imread('home.jpg',0)
# create a mask
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:400] = 255
masked_img = cv2.bitwise_and(img,img,mask = mask)
# Calculate histogram with mask and without mask
# Check third argument for mask
hist_full = cv2.calcHist([img],[0],None,[256],[0,256])
hist_mask = cv2.calcHist([img],[0],mask,[256],[0,256])
plt.subplot(221), plt.imshow(img, 'gray')
plt.subplot(222), plt.imshow(mask,'gray')
plt.subplot(223), plt.imshow(masked_img, 'gray')
plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)
plt.xlim([0,256])
plt.show()

结果如下:其中蓝线是整幅图像的直方图,绿线是使用掩模之后的直方图。 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1344466.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux Shell学习笔记】Linux Shell的位置参数与函数

一、位置参数 位置参数,也被称之为位置变量,通过位置参数,可以在执行程序的时候,向程序传递数据 1.1 shell接收参数的方法 1.2 向shell传递参数的方法 二、函数 2.1 函数基础 2.1.1 函数简介 函数本质上就是一个代码块&#xf…

【并行计算】GPU,CUDA

一、CUDA层次结构 1.kernel核函数 一个CUDA程序是一个kernel核函数被GPU的多个计算单元并行执行的过程&#xff0c;CUDA给了如下抽象 dim3 threadsPerBlock(4, 3, 1); dim3 numBlocks(3, 2, 1); matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C); 2.G…

人工智能的第一性原理

今天跟大家分享一篇 北师大 - 图像处理研究中心主任 郭平教授的一篇文章 通过“四个问题”&#xff0c; 解释了人工智能的第一性原理 提出了如何运用第一性原理思维 来解决人工智能缺乏基本常识的问题 并且他建议将最小作用量原理 作为人工智能的第一性原理 什么是第一…

JavaScript系列——正则表达式

文章目录 需求场景正则表达式的定义创建正则表达式通过 / 表示式/ 创建通过构造函数创建 编写一个正则表达式的模式使用简单模式使用特殊字符常用特殊字符列表特殊字符组和范围 正则表达式使用代码演示 常用示例验证手机号码合法性 小结 需求场景 在前端开发领域&#xff0c;在…

Java注解学习,一文掌握@Autowired 和 @Resource 注解区别

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

【AI导师】利用Coding Agent完成AIGC编程

利用Coding Agent完成AIGC编程 一、前言二、Coding Agent三、1024code四、AI导师README项目初版功能定义代码结构设计方案函数方法设计方案迭代记录 一、前言 AI产品的发展确实在过去两年年中取得了显著进展&#xff0c;尤其是在编程领域。一开始&#xff0c;ChatGPT和类似的语…

Android 13 默认关闭 快速打开相机

介绍 在设置菜单的手势界面里&#xff0c;快速打开相机是默认开启的&#xff0c;此功能当开启时连续点击两次电源键会打开相机&#xff0c;现在客户需要默认关闭。 效果展示 修改 这里一开始想到的就是配置文件&#xff0c;在路径下果然找到了,从注释中看使我们需要的&#x…

纯CSS3制作优惠券线性UI效果

纯CSS3制作优惠券线性UI效果-遇见你与你分享

MIT线性代数笔记-第33讲-复习三

目录 33.复习三打赏 33.复习三 已知 d u ⃗ d t A u ⃗ [ 0 − 1 0 1 0 − 1 0 1 0 ] u ⃗ \dfrac{d \vec{u}}{dt} A \vec{u} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \vec{u} dtdu ​Au ​010​−101​0−10​ ​…

对DataFrame各列数据进行描述性统计分析 DataFrame.describe()

【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 对DataFrame各列数据 进行描述性统计分析 DataFrame.describe() [太阳]选择题 请问以下代码返回的统计性信息中不包括哪个选项&#xff1f; import pandas as pd df pd.DataFrame( {A:…

力扣LeetCode第80题 删除有序数组中的重复项 II

一、题目 给你一个有序数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使得出现次数超过两次的元素只出现两次&#xff0c;返回删除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成。 示…

两种汇编的实验

week04 一、汇编-1二、汇编-2 一、汇编-1 1 通过输入gcc -S -o main.s main.c -m32 将下面c程序”week0401学号.c“编译成汇编代码 int g(int x){ return x3; } int f(int x){ int i 学号后两位&#xff1b; return g(x)i; } int main(void){ return f(8)1; } 2. 删除汇编代码…

【年度征文】回顾2023,迎接2024

转眼一年~~2023又到年底了&#xff0c;CSDN年度征文如约而至&#xff01;不知不觉又在CSDN平台写了488篇博文&#xff0c;非常感谢CSDN提供的平台&#xff0c;同时也感谢关注和支持博主的粉丝们&#xff0c;在马上到来新的一年里&#xff0c;我会继续努力&#xff01;也非常感谢…

基于立锜RTQ7882,支持全协议及DP显示功能的PD快充方案

在上一篇文章【基于RTQ7882的车载PD快充方案 - 大大通 &#xff08;wpgdadatong.com&#xff09;】中&#xff0c;已经对立锜科技&#xff08;Richtek&#xff09;及主打产品RTQ7882的基本功能作了介绍。 本文将分享RTQ7882近期新增的功能&#xff0c;以及其Cost Down版本。 旨…

2023年终总结

前言&#xff1a; 嘻嘻&#xff0c;12月底广州降温了又到了写年终总结的时间&#xff0c;这也是我第二年写年终总结。今年的年终总结主要记录了我大三下学期和大四上学期这两个时间段的学习和收获&#xff0c;也是我尝试走出校园&#xff0c;接触社会的第一年&#xff08;感触…

k8s:kubernets

自动部署、自动扩展和管理的容器化部署的应用程序的一个开源系统 k8s负责自动化运维管理多个容器化程序的集群&#xff0c;是一个功能强大的容器编排工具 可以以分布式和集群化的方式进行容器管理 1.18版本&#xff0c;目前最多的是1.20版本&#xff0c;最新的是1.29版本&am…

链表总结(2)

theme: fancy 又是链表专题啦&#xff0c;老样子&#xff0c;标题就是leetcode链接&#xff0c;在这里只放我的代码答案和注释 141环形链表 public class Solution {public boolean hasCycle(ListNode head) {if(head null || head.next null) return false;if(head.nex…

视频编辑与制作,视频尺寸修改器

你是否曾因为视频尺寸与平台不匹配无法上传而烦恼&#xff1f;这个时候一款视频尺寸修改工具&#xff0c;就能帮你轻松搞定。不论是为了适应不同的平台要求&#xff0c;还是为了获得不一样的观看体验&#xff0c;【视频剪辑高手】都能为你提供完美的解决方案。 所需工具&#…

Linux之定时任务调度

crond crond是Linux系统中的一个守护进程&#xff0c;主要用于周期性地执行某种任务或等待处理某些事件。而crondtab是配套的工作&#xff0c;用于定时任务的设置。 语法 crontab [选项]常用选项 入门案例 执行crontab -e命令输入任务到调度文件中 */1 * * * * ls -l /et…

竞赛保研 基于卷积神经网络的乳腺癌分类 深度学习 医学图像

文章目录 1 前言2 前言3 数据集3.1 良性样本3.2 病变样本 4 开发环境5 代码实现5.1 实现流程5.2 部分代码实现5.2.1 导入库5.2.2 图像加载5.2.3 标记5.2.4 分组5.2.5 构建模型训练 6 分析指标6.1 精度&#xff0c;召回率和F1度量6.2 混淆矩阵 7 结果和结论8 最后 1 前言 &…