YOLOv8改进 | 主干篇 | EfficientNetV1均衡缩放网络改进特征提取层

news2025/1/23 9:12:04

一、本文介绍

这次给大家带来的改进机制是EfficientNetV1主干,用其替换我们YOLOv8的特征提取网络,其主要思想是通过均衡地缩放网络的深度、宽度和分辨率,以提高卷积神经网络的性能。这种方法采用了一个简单但有效的复合系数,统一调整所有维度。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,同时该主干网络提供多种版本,大家可以在源代码中进行修改版本的使用。本文通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图->  

目录

一、本文介绍

二、EfficientNetV1的框架原理

三、EfficientNetV1的核心代码

四、手把手教你添加EfficientNetV1机制

修改一

修改二

修改三 

修改四

修改五 

修改六 

修改七

修改八

五、EfficientNetV1的yaml文件

六、成功运行记录 

七、本文总结


二、EfficientNetV1的框架原理

官方论文地址: 官方论文地址点击即可跳转

官方代码地址: 官方代码地址点击即可跳转


EfficientNetV1的主要思想是通过均衡地缩放网络的深度、宽度和分辨率,以提高卷积神经网络的性能。这种方法采用了一个简单但有效的复合系数,统一调整所有维度。EfficientNet在多个方面优于现有的ConvNets,特别是在ImageNet数据集上,EfficientNet-B7模型在保持较小的大小和更快的推理速度的同时,达到了84.3%的顶级准确率。此外,EfficientNet还在CIFAR-100和Flowers等其他数据集上展示了出色的迁移学习性能,参数数量大大减少。

总结:EfficientNetV1的主要创新为提出了一种新的模型缩放方法,该方法使用一个复合系数来统一地缩放网络的深度、宽度和分辨率,实现更均衡的网络扩展

​这张图展示了EfficientNet提出的模型缩放方法。图中(a)表示基线网络,而图(b)-(d)表示传统的缩放方法,只增加网络的一个维度:宽度、深度或分辨率。图(e)展示了EfficientNet的创新之处,即复合缩放方法,它使用固定比例同时均匀地缩放网络的所有三个维度。


三、EfficientNetV1的核心代码

import re
import math
import collections
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils import model_zoo


# Parameters for the entire model (stem, all blocks, and head)
GlobalParams = collections.namedtuple('GlobalParams', [
    'width_coefficient', 'depth_coefficient', 'image_size', 'dropout_rate',
    'num_classes', 'batch_norm_momentum', 'batch_norm_epsilon',
    'drop_connect_rate', 'depth_divisor', 'min_depth', 'include_top'])

# Parameters for an individual model block
BlockArgs = collections.namedtuple('BlockArgs', [
    'num_repeat', 'kernel_size', 'stride', 'expand_ratio',
    'input_filters', 'output_filters', 'se_ratio', 'id_skip'])

# Set GlobalParams and BlockArgs's defaults
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)

# Swish activation function
if hasattr(nn, 'SiLU'):
    Swish = nn.SiLU
else:
    # For compatibility with old PyTorch versions
    class Swish(nn.Module):
        def forward(self, x):
            return x * torch.sigmoid(x)


# A memory-efficient implementation of Swish function
class SwishImplementation(torch.autograd.Function):
    @staticmethod
    def forward(ctx, i):
        result = i * torch.sigmoid(i)
        ctx.save_for_backward(i)
        return result

    @staticmethod
    def backward(ctx, grad_output):
        i = ctx.saved_tensors[0]
        sigmoid_i = torch.sigmoid(i)
        return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))


class MemoryEfficientSwish(nn.Module):
    def forward(self, x):
        return SwishImplementation.apply(x)


def round_filters(filters, global_params):
    """Calculate and round number of filters based on width multiplier.
       Use width_coefficient, depth_divisor and min_depth of global_params.

    Args:
        filters (int): Filters number to be calculated.
        global_params (namedtuple): Global params of the model.

    Returns:
        new_filters: New filters number after calculating.
    """
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    # TODO: modify the params names.
    #       maybe the names (width_divisor,min_width)
    #       are more suitable than (depth_divisor,min_depth).
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor  # pay attention to this line when using min_depth
    # follow the formula transferred from official TensorFlow implementation
    new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params):
    """Calculate module's repeat number of a block based on depth multiplier.
       Use depth_coefficient of global_params.

    Args:
        repeats (int): num_repeat to be calculated.
        global_params (namedtuple): Global params of the model.

    Returns:
        new repeat: New repeat number after calculating.
    """
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    # follow the formula transferred from official TensorFlow implementation
    return int(math.ceil(multiplier * repeats))


def drop_connect(inputs, p, training):
    """Drop connect.

    Args:
        input (tensor: BCWH): Input of this structure.
        p (float: 0.0~1.0): Probability of drop connection.
        training (bool): The running mode.

    Returns:
        output: Output after drop connection.
    """
    assert 0 <= p <= 1, 'p must be in range of [0,1]'

    if not training:
        return inputs

    batch_size = inputs.shape[0]
    keep_prob = 1 - p

    # generate binary_tensor mask according to probability (p for 0, 1-p for 1)
    random_tensor = keep_prob
    random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
    binary_tensor = torch.floor(random_tensor)

    output = inputs / keep_prob * binary_tensor
    return output


def get_width_and_height_from_size(x):
    """Obtain height and width from x.

    Args:
        x (int, tuple or list): Data size.

    Returns:
        size: A tuple or list (H,W).
    """
    if isinstance(x, int):
        return x, x
    if isinstance(x, list) or isinstance(x, tuple):
        return x
    else:
        raise TypeError()


def calculate_output_image_size(input_image_size, stride):
    """Calculates the output image size when using Conv2dSamePadding with a stride.
       Necessary for static padding. Thanks to mannatsingh for pointing this out.

    Args:
        input_image_size (int, tuple or list): Size of input image.
        stride (int, tuple or list): Conv2d operation's stride.

    Returns:
        output_image_size: A list [H,W].
    """
    if input_image_size is None:
        return None
    image_height, image_width = get_width_and_height_from_size(input_image_size)
    stride = stride if isinstance(stride, int) else stride[0]
    image_height = int(math.ceil(image_height / stride))
    image_width = int(math.ceil(image_width / stride))
    return [image_height, image_width]


# Note:
# The following 'SamePadding' functions make output size equal ceil(input size/stride).
# Only when stride equals 1, can the output size be the same as input size.
# Don't be confused by their function names ! ! !

def get_same_padding_conv2d(image_size=None):
    """Chooses static padding if you have specified an image size, and dynamic padding otherwise.
       Static padding is necessary for ONNX exporting of models.

    Args:
        image_size (int or tuple): Size of the image.

    Returns:
        Conv2dDynamicSamePadding or Conv2dStaticSamePadding.
    """
    if image_size is None:
        return Conv2dDynamicSamePadding
    else:
        return partial(Conv2dStaticSamePadding, image_size=image_size)


class Conv2dDynamicSamePadding(nn.Conv2d):
    """2D Convolutions like TensorFlow, for a dynamic image size.
       The padding is operated in forward function by calculating dynamically.
    """

    # Tips for 'SAME' mode padding.
    #     Given the following:
    #         i: width or height
    #         s: stride
    #         k: kernel size
    #         d: dilation
    #         p: padding
    #     Output after Conv2d:
    #         o = floor((i+p-((k-1)*d+1))/s+1)
    # If o equals i, i = floor((i+p-((k-1)*d+1))/s+1),
    # => p = (i-1)*s+((k-1)*d+1)-i

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True):
        super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
        self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2

    def forward(self, x):
        ih, iw = x.size()[-2:]
        kh, kw = self.weight.size()[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)  # change the output size according to stride ! ! !
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
        return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)


class Conv2dStaticSamePadding(nn.Conv2d):
    """2D Convolutions like TensorFlow's 'SAME' mode, with the given input image size.
       The padding mudule is calculated in construction function, then used in forward.
    """

    # With the same calculation as Conv2dDynamicSamePadding

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, image_size=None, **kwargs):
        super().__init__(in_channels, out_channels, kernel_size, stride, **kwargs)
        self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2

        # Calculate padding based on image size and save it
        assert image_size is not None
        ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size
        kh, kw = self.weight.size()[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2,
                                                pad_h // 2, pad_h - pad_h // 2))
        else:
            self.static_padding = nn.Identity()

    def forward(self, x):
        x = self.static_padding(x)
        x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
        return x


def get_same_padding_maxPool2d(image_size=None):
    """Chooses static padding if you have specified an image size, and dynamic padding otherwise.
       Static padding is necessary for ONNX exporting of models.

    Args:
        image_size (int or tuple): Size of the image.

    Returns:
        MaxPool2dDynamicSamePadding or MaxPool2dStaticSamePadding.
    """
    if image_size is None:
        return MaxPool2dDynamicSamePadding
    else:
        return partial(MaxPool2dStaticSamePadding, image_size=image_size)


class MaxPool2dDynamicSamePadding(nn.MaxPool2d):
    """2D MaxPooling like TensorFlow's 'SAME' mode, with a dynamic image size.
       The padding is operated in forward function by calculating dynamically.
    """

    def __init__(self, kernel_size, stride, padding=0, dilation=1, return_indices=False, ceil_mode=False):
        super().__init__(kernel_size, stride, padding, dilation, return_indices, ceil_mode)
        self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride
        self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size
        self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation

    def forward(self, x):
        ih, iw = x.size()[-2:]
        kh, kw = self.kernel_size
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
        return F.max_pool2d(x, self.kernel_size, self.stride, self.padding,
                            self.dilation, self.ceil_mode, self.return_indices)


class MaxPool2dStaticSamePadding(nn.MaxPool2d):
    """2D MaxPooling like TensorFlow's 'SAME' mode, with the given input image size.
       The padding mudule is calculated in construction function, then used in forward.
    """

    def __init__(self, kernel_size, stride, image_size=None, **kwargs):
        super().__init__(kernel_size, stride, **kwargs)
        self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride
        self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size
        self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation

        # Calculate padding based on image size and save it
        assert image_size is not None
        ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size
        kh, kw = self.kernel_size
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2))
        else:
            self.static_padding = nn.Identity()

    def forward(self, x):
        x = self.static_padding(x)
        x = F.max_pool2d(x, self.kernel_size, self.stride, self.padding,
                         self.dilation, self.ceil_mode, self.return_indices)
        return x


################################################################################
# Helper functions for loading model params
################################################################################

# BlockDecoder: A Class for encoding and decoding BlockArgs
# efficientnet_params: A function to query compound coefficient
# get_model_params and efficientnet:
#     Functions to get BlockArgs and GlobalParams for efficientnet
# url_map and url_map_advprop: Dicts of url_map for pretrained weights
# load_pretrained_weights: A function to load pretrained weights

class BlockDecoder(object):
    """Block Decoder for readability,
       straight from the official TensorFlow repository.
    """

    @staticmethod
    def _decode_block_string(block_string):
        """Get a block through a string notation of arguments.

        Args:
            block_string (str): A string notation of arguments.
                                Examples: 'r1_k3_s11_e1_i32_o16_se0.25_noskip'.

        Returns:
            BlockArgs: The namedtuple defined at the top of this file.
        """
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
        assert (('s' in options and len(options['s']) == 1) or
                (len(options['s']) == 2 and options['s'][0] == options['s'][1]))

        return BlockArgs(
            num_repeat=int(options['r']),
            kernel_size=int(options['k']),
            stride=[int(options['s'][0])],
            expand_ratio=int(options['e']),
            input_filters=int(options['i']),
            output_filters=int(options['o']),
            se_ratio=float(options['se']) if 'se' in options else None,
            id_skip=('noskip' not in block_string))

    @staticmethod
    def _encode_block_string(block):
        """Encode a block to a string.

        Args:
            block (namedtuple): A BlockArgs type argument.

        Returns:
            block_string: A String form of BlockArgs.
        """
        args = [
            'r%d' % block.num_repeat,
            'k%d' % block.kernel_size,
            's%d%d' % (block.strides[0], block.strides[1]),
            'e%s' % block.expand_ratio,
            'i%d' % block.input_filters,
            'o%d' % block.output_filters
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list):
        """Decode a list of string notations to specify blocks inside the network.

        Args:
            string_list (list[str]): A list of strings, each string is a notation of block.

        Returns:
            blocks_args: A list of BlockArgs namedtuples of block args.
        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """Encode a list of BlockArgs to a list of strings.

        Args:
            blocks_args (list[namedtuples]): A list of BlockArgs namedtuples of block args.

        Returns:
            block_strings: A list of strings, each string is a notation of block.
        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


def efficientnet_params(model_name):
    """Map EfficientNet model name to parameter coefficients.

    Args:
        model_name (str): Model name to be queried.

    Returns:
        params_dict[model_name]: A (width,depth,res,dropout) tuple.
    """
    params_dict = {
        # Coefficients:   width,depth,res,dropout
        'efficientnet-b0': (1.0, 1.0, 224, 0.2),
        'efficientnet-b1': (1.0, 1.1, 240, 0.2),
        'efficientnet-b2': (1.1, 1.2, 260, 0.3),
        'efficientnet-b3': (1.2, 1.4, 300, 0.3),
        'efficientnet-b4': (1.4, 1.8, 380, 0.4),
        'efficientnet-b5': (1.6, 2.2, 456, 0.4),
        'efficientnet-b6': (1.8, 2.6, 528, 0.5),
        'efficientnet-b7': (2.0, 3.1, 600, 0.5),
        'efficientnet-b8': (2.2, 3.6, 672, 0.5),
        'efficientnet-l2': (4.3, 5.3, 800, 0.5),
    }
    return params_dict[model_name]


def efficientnet(width_coefficient=None, depth_coefficient=None, image_size=None,
                 dropout_rate=0.2, drop_connect_rate=0.2, num_classes=1000, include_top=True):
    """Create BlockArgs and GlobalParams for efficientnet model.

    Args:
        width_coefficient (float)
        depth_coefficient (float)
        image_size (int)
        dropout_rate (float)
        drop_connect_rate (float)
        num_classes (int)

        Meaning as the name suggests.

    Returns:
        blocks_args, global_params.
    """

    # Blocks args for the whole model(efficientnet-b0 by default)
    # It will be modified in the construction of EfficientNet Class according to model
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        image_size=image_size,
        dropout_rate=dropout_rate,

        num_classes=num_classes,
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        drop_connect_rate=drop_connect_rate,
        depth_divisor=8,
        min_depth=None,
        include_top=include_top,
    )

    return blocks_args, global_params


def get_model_params(model_name, override_params):
    """Get the block args and global params for a given model name.

    Args:
        model_name (str): Model's name.
        override_params (dict): A dict to modify global_params.

    Returns:
        blocks_args, global_params
    """
    if model_name.startswith('efficientnet'):
        w, d, s, p = efficientnet_params(model_name)
        # note: all models have drop connect rate = 0.2
        blocks_args, global_params = efficientnet(
            width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s)
    else:
        raise NotImplementedError('model name is not pre-defined: {}'.format(model_name))
    if override_params:
        # ValueError will be raised here if override_params has fields not included in global_params.
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


# train with Standard methods
# check more details in paper(EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks)
url_map = {
    'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth',
    'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b1-f1951068.pth',
    'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth',
    'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b3-5fb5a3c3.pth',
    'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth',
    'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b5-b6417697.pth',
    'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b6-c76e70fd.pth',
    'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth',
}

# train with Adversarial Examples(AdvProp)
# check more details in paper(Adversarial Examples Improve Image Recognition)
url_map_advprop = {
    'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b0-b64d5a18.pth',
    'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b1-0f3ce85a.pth',
    'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b2-6e9d97e5.pth',
    'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b3-cdd7c0f4.pth',
    'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b4-44fb3a87.pth',
    'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b5-86493f6b.pth',
    'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b6-ac80338e.pth',
    'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b7-4652b6dd.pth',
    'efficientnet-b8': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b8-22a8fe65.pth',
}

# TODO: add the petrained weights url map of 'efficientnet-l2'


def load_pretrained_weights(model, model_name, weights_path=None, load_fc=True, advprop=False, verbose=True):
    """Loads pretrained weights from weights path or download using url.

    Args:
        model (Module): The whole model of efficientnet.
        model_name (str): Model name of efficientnet.
        weights_path (None or str):
            str: path to pretrained weights file on the local disk.
            None: use pretrained weights downloaded from the Internet.
        load_fc (bool): Whether to load pretrained weights for fc layer at the end of the model.
        advprop (bool): Whether to load pretrained weights
                        trained with advprop (valid when weights_path is None).
    """
    if isinstance(weights_path, str):
        state_dict = torch.load(weights_path)
    else:
        # AutoAugment or Advprop (different preprocessing)
        url_map_ = url_map_advprop if advprop else url_map
        state_dict = model_zoo.load_url(url_map_[model_name])

    if load_fc:
        ret = model.load_state_dict(state_dict, strict=False)
        assert not ret.missing_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys)
    else:
        state_dict.pop('_fc.weight')
        state_dict.pop('_fc.bias')
        ret = model.load_state_dict(state_dict, strict=False)
        assert set(ret.missing_keys) == set(
            ['_fc.weight', '_fc.bias']), 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys)
    assert not ret.unexpected_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.unexpected_keys)

    if verbose:
        print('Loaded pretrained weights for {}'.format(model_name))


VALID_MODELS = (
    'efficientnet-b0', 'efficientnet-b1', 'efficientnet-b2', 'efficientnet-b3',
    'efficientnet-b4', 'efficientnet-b5', 'efficientnet-b6', 'efficientnet-b7',
    'efficientnet-b8',

    # Support the construction of 'efficientnet-l2' without pretrained weights
    'efficientnet-l2'
)


class MBConvBlock(nn.Module):
    """Mobile Inverted Residual Bottleneck Block.

    Args:
        block_args (namedtuple): BlockArgs, defined in utils.py.
        global_params (namedtuple): GlobalParam, defined in utils.py.
        image_size (tuple or list): [image_height, image_width].

    References:
        [1] https://arxiv.org/abs/1704.04861 (MobileNet v1)
        [2] https://arxiv.org/abs/1801.04381 (MobileNet v2)
        [3] https://arxiv.org/abs/1905.02244 (MobileNet v3)
    """

    def __init__(self, block_args, global_params, image_size=None):
        super().__init__()
        self._block_args = block_args
        self._bn_mom = 1 - global_params.batch_norm_momentum  # pytorch's difference from tensorflow
        self._bn_eps = global_params.batch_norm_epsilon
        self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip  # whether to use skip connection and drop connect

        # Expansion phase (Inverted Bottleneck)
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            Conv2d = get_same_padding_conv2d(image_size=image_size)
            self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
            # image_size = calculate_output_image_size(image_size, 1) <-- this wouldn't modify image_size

        # Depthwise convolution phase
        k = self._block_args.kernel_size
        s = self._block_args.stride
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._depthwise_conv = Conv2d(
            in_channels=oup, out_channels=oup, groups=oup,  # groups makes it depthwise
            kernel_size=k, stride=s, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
        image_size = calculate_output_image_size(image_size, s)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            Conv2d = get_same_padding_conv2d(image_size=(1, 1))
            num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
            self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
            self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)

        # Pointwise convolution phase
        final_oup = self._block_args.output_filters
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()

    def forward(self, inputs, drop_connect_rate=None):
        """MBConvBlock's forward function.

        Args:
            inputs (tensor): Input tensor.
            drop_connect_rate (bool): Drop connect rate (float, between 0 and 1).

        Returns:
            Output of this block after processing.
        """

        # Expansion and Depthwise Convolution
        x = inputs
        if self._block_args.expand_ratio != 1:
            x = self._expand_conv(inputs)
            x = self._bn0(x)
            x = self._swish(x)

        x = self._depthwise_conv(x)
        x = self._bn1(x)
        x = self._swish(x)

        # Squeeze and Excitation
        if self.has_se:
            x_squeezed = F.adaptive_avg_pool2d(x, 1)
            x_squeezed = self._se_reduce(x_squeezed)
            x_squeezed = self._swish(x_squeezed)
            x_squeezed = self._se_expand(x_squeezed)
            x = torch.sigmoid(x_squeezed) * x

        # Pointwise Convolution
        x = self._project_conv(x)
        x = self._bn2(x)

        # Skip connection and drop connect
        input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters
        if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:
            # The combination of skip connection and drop connect brings about stochastic depth.
            if drop_connect_rate:
                x = drop_connect(x, p=drop_connect_rate, training=self.training)
            x = x + inputs  # skip connection
        return x

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export).

        Args:
            memory_efficient (bool): Whether to use memory-efficient version of swish.
        """
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()


class EfficientNet(nn.Module):


    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args

        # Batch norm parameters
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # Get stem static or dynamic convolution depending on image size
        image_size = global_params.image_size
        Conv2d = get_same_padding_conv2d(image_size=image_size)

        # Stem
        in_channels = 3  # rgb
        out_channels = round_filters(32, self._global_params)  # number of output channels
        self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
        image_size = calculate_output_image_size(image_size, 2)

        # Build blocks
        self._blocks = nn.ModuleList([])
        for block_args in self._blocks_args:

            # Update block input and output filters based on depth multiplier.
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters, self._global_params),
                output_filters=round_filters(block_args.output_filters, self._global_params),
                num_repeat=round_repeats(block_args.num_repeat, self._global_params)
            )

            # The first block needs to take care of stride and filter size increase.
            self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size))
            image_size = calculate_output_image_size(image_size, block_args.stride)
            if block_args.num_repeat > 1:  # modify block_args to keep same output size
                block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size))
                # image_size = calculate_output_image_size(image_size, block_args.stride)  # stride = 1

        # Head
        in_channels = block_args.output_filters  # output of final block
        out_channels = round_filters(1280, self._global_params)
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # Final linear layer
        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        if self._global_params.include_top:
            self._dropout = nn.Dropout(self._global_params.dropout_rate)
            self._fc = nn.Linear(out_channels, self._global_params.num_classes)

        # set activation to memory efficient swish by default
        self._swish = MemoryEfficientSwish()
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export).
        Args:
            memory_efficient (bool): Whether to use memory-efficient version of swish.
        """
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
        for block in self._blocks:
            block.set_swish(memory_efficient)

    def extract_endpoints(self, inputs):
        # """Use convolution layer to extract features
        # from reduction levels i in [1, 2, 3, 4, 5].
        #
        # Args:
        #     inputs (tensor): Input tensor.
        #
        # Returns:
        #     Dictionary of last intermediate features
        #     with reduction levels i in [1, 2, 3, 4, 5].
        #     Example:
        #         >>> import torch
        #         >>> from efficientnet.model import EfficientNet
        #         >>> inputs = torch.rand(1, 3, 224, 224)
        #         >>> model = EfficientNet.from_pretrained('efficientnet-b0')
        #         >>> endpoints = model.extract_endpoints(inputs)
        #         >>> print(endpoints['reduction_1'].shape)  # torch.Size([1, 16, 112, 112])
        #         >>> print(endpoints['reduction_2'].shape)  # torch.Size([1, 24, 56, 56])
        #         >>> print(endpoints['reduction_3'].shape)  # torch.Size([1, 40, 28, 28])
        #         >>> print(endpoints['reduction_4'].shape)  # torch.Size([1, 112, 14, 14])
        #         >>> print(endpoints['reduction_5'].shape)  # torch.Size([1, 320, 7, 7])
        #         >>> print(endpoints['reduction_6'].shape)  # torch.Size([1, 1280, 7, 7])
        # """
        endpoints = dict()

        # Stem
        x = self._swish(self._bn0(self._conv_stem(inputs)))
        prev_x = x

        # Blocks
        for idx, block in enumerate(self._blocks):
            drop_connect_rate = self._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(self._blocks)  # scale drop connect_rate
            x = block(x, drop_connect_rate=drop_connect_rate)
            if prev_x.size(2) > x.size(2):
                endpoints['reduction_{}'.format(len(endpoints) + 1)] = prev_x
            elif idx == len(self._blocks) - 1:
                endpoints['reduction_{}'.format(len(endpoints) + 1)] = x
            prev_x = x

        # Head
        x = self._swish(self._bn1(self._conv_head(x)))
        endpoints['reduction_{}'.format(len(endpoints) + 1)] = x

        return endpoints

    def forward(self, inputs):
        """use convolution layer to extract feature .

        Args:
            inputs (tensor): Input tensor.

        Returns:
            Output of the final convolution
            layer in the efficientnet model.
        """
        # Stem
        x = self._swish(self._bn0(self._conv_stem(inputs)))
        unique_tensors = {}
        # Blocks
        for idx, block in enumerate(self._blocks):
            drop_connect_rate = self._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(self._blocks)  # scale drop connect_rate
            x = block(x, drop_connect_rate=drop_connect_rate)
            width, height = x.shape[2], x.shape[3]
            unique_tensors[(width, height)] = x
        result_list = list(unique_tensors.values())[-4:]
        # Head
        return result_list

    @classmethod
    def from_name(cls, model_name, in_channels=3, **override_params):
        """Create an efficientnet model according to name.

        Args:
            model_name (str): Name for efficientnet.
            in_channels (int): Input data's channel number.
            override_params (other key word params):
                Params to override model's global_params.
                Optional key:
                    'width_coefficient', 'depth_coefficient',
                    'image_size', 'dropout_rate',
                    'num_classes', 'batch_norm_momentum',
                    'batch_norm_epsilon', 'drop_connect_rate',
                    'depth_divisor', 'min_depth'

        Returns:
            An efficientnet model.
        """
        cls._check_model_name_is_valid(model_name)
        blocks_args, global_params = get_model_params(model_name, override_params)
        model = cls(blocks_args, global_params)
        model._change_in_channels(in_channels)
        return model

    @classmethod
    def from_pretrained(cls, model_name, weights_path=None, advprop=False,
                        in_channels=3, num_classes=1000, **override_params):
        """Create an efficientnet model according to name.

        Args:
            model_name (str): Name for efficientnet.
            weights_path (None or str):
                str: path to pretrained weights file on the local disk.
                None: use pretrained weights downloaded from the Internet.
            advprop (bool):
                Whether to load pretrained weights
                trained with advprop (valid when weights_path is None).
            in_channels (int): Input data's channel number.
            num_classes (int):
                Number of categories for classification.
                It controls the output size for final linear layer.
            override_params (other key word params):
                Params to override model's global_params.
                Optional key:
                    'width_coefficient', 'depth_coefficient',
                    'image_size', 'dropout_rate',
                    'batch_norm_momentum',
                    'batch_norm_epsilon', 'drop_connect_rate',
                    'depth_divisor', 'min_depth'

        Returns:
            A pretrained efficientnet model.
        """
        model = cls.from_name(model_name, num_classes=num_classes, **override_params)
        load_pretrained_weights(model, model_name, weights_path=weights_path,
                                load_fc=(num_classes == 1000), advprop=advprop)
        model._change_in_channels(in_channels)
        return model

    @classmethod
    def get_image_size(cls, model_name):
        """Get the input image size for a given efficientnet model.

        Args:
            model_name (str): Name for efficientnet.

        Returns:
            Input image size (resolution).
        """
        cls._check_model_name_is_valid(model_name)
        _, _, res, _ = efficientnet_params(model_name)
        return res

    @classmethod
    def _check_model_name_is_valid(cls, model_name):
        """Validates model name.

        Args:
            model_name (str): Name for efficientnet.

        Returns:
            bool: Is a valid name or not.
        """
        if model_name not in VALID_MODELS:
            raise ValueError('model_name should be one of: ' + ', '.join(VALID_MODELS))

    def _change_in_channels(self, in_channels):
        """Adjust model's first convolution layer to in_channels, if in_channels not equals 3.

        Args:
            in_channels (int): Input data's channel number.
        """
        if in_channels != 3:
            Conv2d = get_same_padding_conv2d(image_size=self._global_params.image_size)
            out_channels = round_filters(32, self._global_params)
            self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)


def efficient(model_name='efficientnet-b0', pretrained=False):
    if pretrained:
        model = EfficientNet.from_pretrained('{}'.format(model_name))
    else:
        model = EfficientNet.from_name('{}'.format(model_name))
    return model

if __name__ == "__main__":


    # VALID_MODELS = (
    #     'efficientnet-b0', 'efficientnet-b1', 'efficientnet-b2', 'efficientnet-b3',
    #     'efficientnet-b4', 'efficientnet-b5', 'efficientnet-b6', 'efficientnet-b7',
    #     'efficientnet-b8',
    #     # Support the construction of 'efficientnet-l2' without pretrained weights
    #     'efficientnet-l2'
    # )

    # Generating Sample image
    image_size = (1, 3, 640, 640)
    image = torch.rand(*image_size)

    # Model
    model = efficient('efficientnet-b0')

    out = model(image)
    print(len(out))

四、手把手教你添加EfficientNetV1机制

这个主干的网络结构添加起来算是所有的改进机制里最麻烦的了,因为有一些网略结构可以用yaml文件搭建出来,有一些网络结构其中的一些细节根本没有办法用yaml文件去搭建,用yaml文件去搭建会损失一些细节部分(而且一个网络结构设计很多细节的结构修改方式都不一样,一个一个去修改大家难免会出错),所以这里让网络直接返回整个网络,然后修改部分 yolo代码以后就都以这种形式添加了,以后我提出的网络模型基本上都会通过这种方式修改,我也会进行一些模型细节改进。创新出新的网络结构大家直接拿来用就可以的。下面开始添加教程->

(同时每一个后面都有代码,大家拿来复制粘贴替换即可,但是要看好了不要复制粘贴替换多了)


修改一

我们复制网络结构代码到“ultralytics/nn/modules”目录下创建一个py文件复制粘贴进去 ,我这里起的名字是EfficientNetV1


修改二

找到如下的文件"ultralytics/nn/tasks.py" 在开始的部分导入我们的模型如下图。

from .modules.EfficientV1 import efficient


修改三 

添加如下两行代码!!!

​​


修改四

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名,我这里只添加了部分的版本,大家有兴趣这个EfficientNetV1还有更多的版本可以添加,看我给的代码函数头即可。

        elif m in {自行添加对应的模型即可,下面都是一样的}:
            m = m()
            c2 = m.width_list  # 返回通道列表
            backbone = True


修改五 

下面的两个红框内都是需要改动的。 

​​

        if isinstance(c2, list):
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type


        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type


修改六 

如下的也需要修改,全部按照我的来。

​​

代码如下把原先的代码替换了即可。 

        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print

        save.extend(x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            if len(c2) != 5:
                ch.insert(0, 0)
        else:
            ch.append(c2)


修改七

修改七和前面的都不太一样,需要修改前向传播中的一个部分, 已经离开了parse_model方法了。

可以在图片中开代码行数,没有离开task.py文件都是同一个文件。 同时这个部分有好几个前向传播都很相似,大家不要看错了,是70多行左右的!!!,同时我后面提供了代码,大家直接复制粘贴即可,有时间我针对这里会出一个视频。

​​

代码如下->

    def _predict_once(self, x, profile=False, visualize=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5: # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1] # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

到这里就完成了修改部分,但是这里面细节很多,大家千万要注意不要替换多余的代码,导致报错,也不要拉下任何一部,都会导致运行失败,而且报错很难排查!!!很难排查!!! 


修改八

我们找到如下文件'ultralytics/utils/torch_utils.py'按照如下的图片进行修改,否则容易打印不出来计算量。

​​

五、EfficientNetV1的yaml文件

复制如下yaml文件进行运行!!! 

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, efficient, []]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)

  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)


六、成功运行记录 

下面是成功运行的截图,已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。 


七、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1344092.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

68.乐理基础-打拍子-大附点与变体

上一节内容&#xff1a;66.乐理基础-打拍子-小切分-CSDN博客&#xff0c;只所以没有67因为67可以不用知道&#xff0c;67节内容在&#xff1a;※-打拍子&#xff08;8&#xff09;-一拍内的变体1-乐理教程-腾讯课堂 (qq.com) 大附点&#xff1a;大附点这个名字不是通用的&…

通过AWS Endpoints从内网访问S3

AWS S3作为非结构化数据的存储&#xff0c;经常会有内网中的app调用的需求。S3默认是走公网访问的&#xff0c;如果内网app通过公网地址访问S3并获取数据会消耗公网带宽费用。如下图所示&#xff1a; AWS 提供了一种叫做endpoints的资源&#xff0c;这种资源可以后挂S3服务&a…

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK设置相机的固定帧率(C#)

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK设置相机的固定帧率&#xff08;C#&#xff09; Baumer工业相机Baumer工业相机的固定帧率功能的技术背景CameraExplorer如何查看相机固定帧率功能在NEOAPI SDK里通过函数设置相机固定帧率 Baumer工业相机通过NEOAPI SDK设置相机固…

TSR勾画学习

1&#xff1a;勾画建议 文献&#xff1a;Scoring the tumor-stroma ratio in colon cancer: procedure and recommendations 主要讲述的是结肠癌(CRC)的勾画建议和流程。 1&#xff0c;切片选择建议&#xff1a; 原发肿瘤的载玻片最具侵袭性的部分&#xff08;即常规病理学…

golang 图片加水印,字体文件从哪里找

鼠标左键双击此电脑图标在此电脑文本框输入电脑默认字体地址&#xff1a;C:\Windows\Fonts找到需要用到的字体文件&#xff0c;复制到指定文件夹

jQuery-Validate验证插件的使用步骤【详解】

jQuery-Validate验证插件的使用步骤详解 1. 写在前面2. 效果展示3. Validate环境的搭建4. Validate基本方法的使用5. 实现错误消息的本地化6. 实现远程验证7. 自定义验证方法8. 验证表单完整版8.1 Html表单8.2 表单验证js逻辑8.3 表单验证css样式 1. 写在前面 我们知道&#x…

如何编译代码,把RustDesk主页面背景白色改成自己想要的图片

环境&#xff1a; RustDesk1.1.9自建服务器 问题描述&#xff1a; 如何编译代码&#xff0c;把RustDesk主页面背景白色改成自己想要的图片 解决方案&#xff1a; 详细方案&#xff0c;有需要私聊

鸿蒙OS应用开发之气泡提示

前面学习了弹窗提示,其实有时候只是想在旁边做一些说明,那么采用弹窗的方式就比较麻烦一些,这时可以采用系统里面的气泡提示方式。 系统也提供了几种方式弹出气泡提示,最简单的一种是采用bindPopup属性。它的定义如下: 在后面的参数设置里,也是比较复杂的形式。我们先来演…

Live800:客户体验策略是什么?企业如何制定客户体验策略?

客户体验策略是企业为了提升顾客对产品或服务的感知和满意度而采取的一系列措施和方法。它关注的是如何创造一个积极、愉悦和有价值的购买过程&#xff0c;从而建立长期的客户关系和忠诚度。客户体验策略是企业成功的关键之一&#xff0c;因为它能够帮助企业在竞争激烈的市场中…

【yolofastest上手】

一、前言 yolofastest网上资料比较少&#xff0c;也没有视频教学&#xff0c;所以想要使用参考了很多资料&#xff0c;只能说各资料都不尽全&#xff0c;让刚接触的小白无从下手。 参考资料: github地址 yolo-fastest 快速上手 修改参数遇到的问题 能在ARM-CPU上实时识别图像的…

Halcon颜色通道的处理decompose3/image_to_channels/channels _to _image

Halcon颜色通道的处理 文章目录 Halcon颜色通道的处理一. 图像的通道二. 访问通道1.访问通道2.获取通道的数量 三. 通道分离与合并1. decompose3算子2. image_to_channels 算子3. compose3算子4. channels_to_image算子 四. 处理RGB信息 由于彩色图像通常包含不止一个通道&…

广播信道的局域网

目录 一. 局域网的数据链路层二. 广播信道局域网三. 以太网标准四. CSMA/CD协议五. 以太网最短的帧六. 冲突解决方法-―退避算法 \quad 一. 局域网的数据链路层 \quad 局域网的特点 \quad 局域网的拓扑结构 \quad 局域网传输媒体 \quad \quad 媒体共享技术 \quad 二. 广播信道…

【前端面经】即时设计

目录 前言一面git 常见命令跨窗口通信vue 响应式原理发布订阅模式翻转二叉树Promise.all()扁平化数组面试官建议 二面Event Loop 原理Promise 相关css 描边方式requestAnimationReact 18 新特性JSX 相关react 输出两次函数式编程React 批处理机制http请求头有哪些本地存储性能优…

交叉编译aarch64架构支持openssl的curl、libcurl

本文档旨在指导读者在x86_64平台上交叉编译curl和openssl库以支持aarch64架构。在开始之前&#xff0c;请确保您的系统环境已正确配置。 1. 系统环境准备 系统是基于Ubuntu 20.04 LTS&#xff0c;高版本可能会有问题。首页&#xff0c;安装必要的开发工具和库文件。打开终端并…

[足式机器人]Part4 南科大高等机器人控制课 CH12 Robotic Motion Control

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;CLEAR_LAB 笔者带更新-运动学 课程主讲教师&#xff1a; Prof. Wei Zhang 课程链接 &#xff1a; https://www.wzhanglab.site/teaching/mee-5114-advanced-control-for-robotics/ 南科大高等机器人控制课 Ch12 Robotic …

C++:第十一讲DFS深搜

Everyday English Your optimal career is simply this: Share the real you with physical world through th e process of creative self-expression. 你的最佳职业很简单&#xff0c;就是这样&#xff1a;通过创造性自我表达的途径和世界分享真实的你。 前言 今天带着大家…

【音视频 ffmpeg 学习】 跑示例程序 持续更新中

环境准备 在上一篇文章 把mux.c 拷贝到main.c 中 使用 attribute(unused) 消除警告 __attribute__(unused)/** Copyright (c) 2003 Fabrice Bellard** Permission is hereby granted, free of charge, to any person obtaining a copy* of this software and associated docu…

scanf函数返回值被忽略

心怀希望的前进 前言 最近在复习c语言&#xff0c;发现了许多之前不了解的知识&#xff0c;今天想来与大家分享一下scanf返回值值被忽略的问题。 很多人应该都在vs中见到过&#xff0c;我们先说原因&#xff0c;再说改进方法 原因&#xff1a; scanf函数在读取数据时不会检…

kafka实现延迟消息

背景 我们知道消息中间件mq是支持延迟消息的发送功能的&#xff0c;但是kafka不支持这种直接的用法&#xff0c;所以我们需要独立实现这个功能&#xff0c;以下是在kafka中实现消息延时投递功能的一种方案 kafka实现延时消息 主要的思路是增加一个检测服务&#xff0c;这个检…

Python武器库开发-武器库篇之上传本地仓库到Git(三十八)

武器库篇之上传本地仓库到Git(三十八) 当我们在Git中创建远程仓库和进行了SSH key免密登陆之后&#xff0c;我们点击 Your respositories 可以查看我们所创建的远程仓库&#xff0c;如图所示&#xff1a; 如果我们需要将本地的仓库上传到Git&#xff0c;首先我们需要建立一个本…