Redisson依赖冲突记录

news2024/12/22 19:47:29

前言:项目使用的springboot项目为2.7.X


依赖冲突一:springboot 与 redisson版本冲突

项目中依赖了 Lock4j,此为苞米豆开源的分布式锁组件

<dependency>
    <groupId>com.baomidou</groupId>
    <artifactId>lock4j-redisson-spring-boot-starter</artifactId>
    <version>${lock4j.version}</version>
</dependency>

用的当时Lock4j最新版本2.2.4,里面所依赖的是 redisson:redisson-spring-data-30 ,此版本对应springboot的是3.X,启动后报 NoClassDefFoundError, 找不到redisson某个类

解决方案:版本回退到2.2.4,其中引用的是 redisson:redisson-spring-data-23 ,适配成功

redisson-spring-data与Spring Boot version的版本对应关系


依赖冲突二:gateway 与 redisson依赖的包冲突 

redisson中依赖了Web包

<dependency>
     <groupId>org.springframework.boot</groupId>
     <artifactId>spring-boot-starter-web</artifactId>
</dependency>

 启动gateway时报错:

Description:
Spring MVC found on classpath, which is incompatible with Spring Cloud Gateway.

Action:
Please set spring.main.web-application-type=reactive or remove spring-boot-starter-web dependency.

问题所在: 

解决方案:排除依赖 

究其原因是:spring-boot-starter-web不支持非阻塞

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1343977.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《面向复杂仿真元建模的序贯近邻探索实验设计方法》论文复现

# peaks函数热力图 from matplotlib import pyplot as plot import numpy as np import math from mpl_toolkits.mplot3d import Axes3D#python绘图显示中文 plot.rcParams[font.sans-serif][SimHei] plot.rcParams[axes.unicode_minus] False#创建画布 fig plot.figure(figs…

GPT系列概述

OPENAI做的东西 Openai老窝在爱荷华州&#xff0c;微软投资的数据中心 万物皆可GPT下咱们要失业了&#xff1f; 但是世界不仅仅是GPT GPT其实也只是冰山一角&#xff0c;2022年每4天就有一个大型模型问世 GPT历史时刻 GPT-1 带回到2018年的NLP 所有下游任务都需要微调&#x…

sudo: /usr/bin/sudo must be owned by uid 0 and have the setuid bit set问题解决方案

sudo: /usr/bin/sudo must be owned by uid 0 and have the setuid bit set问题解决方案 当我们使用sudo su切换权限时提示错误&#xff1a; sudo: /usr/bin/sudo must be owned by uid 0 and have the setuid bit set该错误出现原因&#xff1a;是因为/usr/bin/sudo的权限被…

计算机网络复习5

传输层——端到端 文章目录 传输层——端到端功能传输层的寻址与端口UDPTCPTCP连接管理TCP可靠传输TCP流量控制TCP拥塞控制网络拥塞的处理 功能 从通信和信息处理的角度看&#xff0c;传输层向它上面的应用层提供通信服务&#xff0c;它属于面向通信部分的最高层&#xff0c;同…

再升级|川石教育鸿蒙应用开发4.0教程发布

全新鸿蒙蓄势待发 HarmonyOS是一款面向未来的全场景分布式智慧操作系统。 对于消费者而言&#xff0c;HarmonyOS用一个统一的软件系统从根本上解决消费者面对大量智能终端体验割裂的问题&#xff0c;为消费者带来统一、便利、安全的智慧化全场景体验。 对于开发者而言&#xf…

现在AI那么发达,还有必要系统地学习Excel吗?

随着人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;许多传统的工作和技能正在逐渐被自动化和取代。在这个背景下&#xff0c;一些人开始质疑学习Excel等传统技能的必要性。然而&#xff0c;我认为学习Excel仍然是非常有必要的&#xff0c;原因如下。 首先&…

.NET DevOps 接入指南 | 1. GitLab 安装

引言 容器、DevOps和微服务被称为驱动云原生快速发展的三架马车。而DevOps是其中非常重要的一环&#xff0c;DevOps 是由Developers&#xff08;Dev&#xff09;和Operations&#xff08;Ops&#xff09;两个单词简称组成&#xff0c;中文直译就是“开发运维一体化”。 DevOps…

python大于等于小于等于,python大于等于怎么写

大家好&#xff0c;小编为大家解答python中大于等于且小于等于的问题。很多人还不知道python大于号小于号如何运用&#xff0c;现在让我们一起来看看吧&#xff01; 大家好&#xff0c;小编来为大家解答以下问题&#xff0c;python中大于并小于一个数代码&#xff0c;python 大…

STL——stack容器

1.stack基本概念 概念&#xff1a;stack是一种先进后出&#xff08;First In Last Out,FILO&#xff09;的数据结构&#xff0c;它只有一个出口。 栈中只有顶端的元素才可以被外界使用&#xff0c;因此栈不允许有遍历行为。 栈中进入数据称为——入栈&#xff08;push&#x…

大模型系列:OpenAI使用技巧_自定义文本向量化embeding

文章目录 0. Imports1. 输入2. 加载和处理输入数据3. 将数据分成训练和测试集4. 生成合成的负样本5. 计算嵌入和余弦相似度6. 绘制余弦相似度的分布图7. 使用提供的训练数据优化矩阵。8. 绘制训练期间找到的最佳矩阵的前后对比图&#xff0c;展示结果 本笔记本演示了一种将Open…

计算每个月的天数

大家好呀&#xff0c;今天的每日一题来喽。准备好了吗亲。上车上车&#xff01;&#xff01;&#xff01; 文章目录 目录 文章目录 题目重现 输⼊y和m两个整数&#xff0c;y表⽰年份&#xff0c;m表⽰⽉份&#xff0c;计算y年m⽉有多少天&#xff0c;并输出天数。 一、解法思路…

k8s之陈述式资源管理

1.kubectl命令 kubectl version 查看k8s的版本 kubectl api-resources 查看所有api的资源对象的名称 kubectl cluster-info 查看k8s的集群信息 kubectl get cs 查看master节点的状态 kubectl get pod 查看默认命名空间内的pod的信息 kubectl get ns 查看当前集群所有的命…

遍历二叉树的Morris序

参考书&#xff1a;《程序员代码面试指南》 这种方法的好处在于&#xff0c;它做到了时间复杂度为O(n)&#xff0c;额外空间复杂度为O(1)&#xff08;只申请几个变量就可以完成整个二叉树的遍历&#xff09;。 Morris遍历时cur访问节点的顺序就是morris序&#xff0c;可以在M…

大模型系列:OpenAI使用技巧_在文本向量化的交易数据做多标签分类

本笔记本涵盖了数据未标记但具有可用于将其聚类为有意义的类别的特征的用例。聚类的挑战在于使那些使得这些聚类突出的特征可读&#xff0c;这就是我们将使用GPT-3生成有意义的聚类描述的地方。然后&#xff0c;我们可以使用这些描述来为以前未标记的数据集应用标签。 为了向模…

大数据技术16:数据湖和湖仓一体

前言&#xff1a;近几年大数据概念很多&#xff0c;数据库和数据仓库还没搞清楚&#xff0c;就又出了数据湖&#xff0c;现在又开始流行湖仓一体。互联网公司拼命造高大上概念来忽略小白买单的能力还是可以的。 1、数据库 数据库是结构化信息或数据的有序集合&#xff0c;一般以…

分享一款超强大的抖音数据采集工具

你好&#xff0c;我是坚持分享干货的 EarlGrey&#xff0c;翻译出版过《Python编程无师自通》、《Python并行计算手册》等技术书籍。 如果我的分享对你有帮助&#xff0c;请关注我&#xff0c;一起向上进击。 创作不易&#xff0c;希望大家给一点鼓励&#xff0c;把公众号设置为…

轮廓检测与处理

轮廓检测 先将图像转换成二值 gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 灰度图 ret, thresh cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 变为二值&#xff0c;大于127置为255&#xff0c;小于100置为0.使用cv2.findContours(thresh, cv2.RETR_TREE, cv2.…

【Unity入门】热更新框架之xLua

目录 一、xLua概述1.1xLua简介1.2xLua安装 二、Lua文件加载2.1执行字符串2.2加载Lua文件2.3自定义loader 三、xLua文件配置3.1打标签3.2静态列表3.3动态列表 四、Lua与C#交互4.1 C#访问Lua4.1.1 获取一个全局基本数据类型4.1.2 访问一个全局的table4.1.3 访问一个全局的functio…

【Unity美术】Unity工程师对3D模型需要达到的了解【一】

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…

机器学习之K-means聚类

概念 K-means是一种常用的机器学习算法,用于聚类分析。聚类是一种无监督学习方法,它试图将数据集中的样本划分为具有相似特征的组(簇)。K-means算法的目标是将数据集划分为K个簇,其中每个样本属于与其最近的簇中心。 以下是K-means算法的基本步骤: 选择簇的数量(K值)…