Large-Precision Sign using PBS

news2025/1/13 10:02:52

参考文献:

  1. [CLOT21] Chillotti I, Ligier D, Orfila J B, et al. Improved programmable bootstrapping with larger precision and efficient arithmetic circuits for TFHE[C]//Advances in Cryptology–ASIACRYPT 2021: 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 6–10, 2021, Proceedings, Part III 27. Springer International Publishing, 2021: 670-699.
  2. [LMP22] Liu Z, Micciancio D, Polyakov Y. Large-precision homomorphic sign evaluation using FHEW/TFHE bootstrapping[C]//International Conference on the Theory and Application of Cryptology and Information Security. Cham: Springer Nature Switzerland, 2022: 130-160.

文章目录

  • Homomorphic Floor Function
    • Using 2 PBS
    • Using 3 PBS
  • PBS of Arbitrary Function
  • Homomorphic Digit Decomposition
  • Parameter Selection

[CLOT21] 提出了 WoP-PBS,它基于事实 ( − 1 ) ⋅ ( − m ) = m (-1) \cdot (-m)=m (1)(m)=m,先将 m m m 扩展为 β ∥ m \beta\|m βm,然后使用 GenPBS 分别计算出 ( − 1 ) β ⋅ f ( m ) (-1)^\beta \cdot f(m) (1)βf(m) ( − 1 ) β (-1)^\beta (1)β,最后使用 FV-like 同态乘法,将它们组合成 f ( m ) f(m) f(m)。这需要底层的 LWE 同时支持加法和乘法,并且同态乘法导致了噪声增长。因此,模数(正确性)和维度(安全性)都会相应的变大,导致它比一般的 FHEW/TFHE 的效率更至少一倍。

[LMP22] 也是将 m m m 扩展到 β ∥ m \beta\|m βm,单它首先将 β \beta β 消除掉使之成为 0 ∥ m 0\|m 0∥m,接着使用原始的 PBS 就可以计算出正确的 f ( m ) f(m) f(m)。在这个过程中,并不需要使用同态乘法,因此它的噪声就是 PBS 本身的噪声,常规的参数就足够使用。

Homomorphic Floor Function

首先,[LMP22] 研究了如何对于高精度 LWE 密文执行自举。这里的 “精度” 指的是 MSD 编码的消息的比特长度。我们先给出一些参数定义:

  • LWE:
    • 维度 n n n,不需要是二的幂
    • 模数 Q Q Q,是二的幂,用于 LWE 同态运算
    • 模数 q q q,是二的幂,用于 PBS 自举
    • 缩放因子 α \alpha α,是二的幂,用于纠错
    • 噪声界 β \beta β,是二的幂
  • ACC:
    • 多项式长度 N N N,是二的幂
    • RLWE 密文模数 Q ′ Q' Q,是满足 2 N ∣ Q ′ − 1 2N \mid Q'-1 2NQ1 的素数
    • 输入 LWE 密文模数 q ∣ 2 N q \mid 2N q2N
    • 输出 LWE 密文模数 Q Q Q

FHEW/TFHE 要求 LWE 的密文模数满足 Q ∣ 2 N Q \mid 2N Q2N,随着明文精度的增加( k k k 比特),多项式长度 N N N 指数级增加( 2 k 2^k 2k 倍)。对于通常的参数集 N = 1024 / 2048 N=1024/2048 N=1024/2048,只能支持至多 3 , 4 3,4 3,4 比特的明文精度。[LMP22] 为了计算高精度的 Sign 函数,通过不断移除 LSD(保持 MSB 不变),直到密文模数 Q Q Q 倍缩减到 q q q 规模,从而可以使用常规参数集执行 PBS。

这个过程中,一个关键步骤是同态 Floor 函数。假设 LWE 密文 ( c , d ) ∈ Z Q n + 1 (c,d) \in \mathbb Z_Q^{n+1} (c,d)ZQn+1 的相位是:
ψ = α ⋅ m + e ( m o d Q ) \psi = \alpha \cdot m + e \pmod Q ψ=αm+e(modQ)
其中 ∣ e ∣ ≤ β ≪ q |e| \le \beta \ll q eβq m ∈ Z Q / α m \in \mathbb Z_{Q/\alpha} mZQ/α,根据不同的场景 α \alpha α 选取不同的值。

注意到 Q > q > α Q>q>\alpha Q>q>α 都是二的幂次。如果我们将 LWE 密文模掉 q q q,获得的 ( a , b ) ∈ Z q n + 1 (a,b) \in \mathbb Z_q^{n+1} (a,b)Zqn+1
[ m ′ ] q = α ⋅ [ m ] q / α + e ( m o d q ) [m']_q = \alpha \cdot [m]_{q/\alpha} + e \pmod q [m]q=α[m]q/α+e(modq)
使用 PBS 将它提升回 ( a ′ , b ′ ) ∈ Z Q n + 1 (a',b') \in \mathbb Z_Q^{n+1} (a,b)ZQn+1,并从原始密文中把它减掉,就清除了 m m m 的最低 log ⁡ q / α \log{q/\alpha} logq/α 比特。密文 ( c ′ , d ′ ) (c',d') (c,d) 的相位是:
ψ ′ = α ⋅ ( ⌊ α q m ⌋ ⋅ q α ) + e ′ ( m o d Q ) \psi' = \alpha \cdot \left(\left\lfloor \frac{\alpha}{q} m \right\rfloor \cdot \frac{q}{\alpha} \right) + e' \pmod Q ψ=α(qαmαq)+e(modQ)
现在,我们可以把 α , Q \alpha,Q α,Q 同时缩小 q / α q/\alpha q/α 倍,得到的密文 ( c ′ ′ , d ′ ′ ) ∈ Z ( α / q ) ⋅ Q n + 1 (c'',d'') \in \mathbb Z_{(\alpha/q) \cdot Q}^{n+1} (c′′,d′′)Z(α/q)Qn+1 相位的 MSB 保持和 ( c , d ) ∈ Z Q n + 1 (c,d) \in \mathbb Z_Q^{n+1} (c,d)ZQn+1 的一样。

我们将这个长度 log ⁡ ( q / α ) \log(q/\alpha) log(q/α) 的小块明文称为 LSD,我们的目标是将它清零。然而,函数 f : m ∈ Z q / α ↦ m ∈ Z Q / α f:m \in \mathbb Z_{q/\alpha} \mapsto m \in \mathbb Z_{Q/\alpha} f:mZq/αmZQ/α 并非反循环的,导致了原始的 PBS 无法实现从 ( a , b ) (a,b) (a,b) ( a ′ , b ′ ) (a',b') (a,b) 的自举过程。[LMP22] 给出了两种实现,通过 2 , 3 2,3 2,3 次 PBS 来实现它。用到的三个函数为:

在这里插入图片描述

为了构造 LUT 的方便,下面的推导中总是使得 PBS 输入的密文噪声是正整数,范围是 [ 0 , 2 β ) [0,2\beta) [0,2β)。这可通过 ( c , d ) → ( c , d + β ) (c,d) \to (c,d+\beta) (c,d)(c,d+β) 来实现。只要满足 α ≥ 2 β \alpha \ge 2\beta α2β,就可以准确解密。FHEW/TFHE 中的 LWE 私钥 s ∈ { 0 , ± 1 } n s \in \{0,\pm1\}^n s{0,±1}n 服从三元分布

Using 2 PBS

[LMP22] 的第一个方法:使用两次 PBS,但是对于噪声的约束较强, α ≥ 4 β \alpha \ge 4\beta α4β

基本思路:分别提取 ( [ c ] q , [ d ] q ) ([c]_q,[d]_q) ([c]q,[d]q) 相位(加密了 LSD)的 MSB 和其他位置,

  1. 先提取 ( [ c ] q , [ d ] q ) ([c]_q,[d]_q) ([c]q,[d]q) 的 MSB,将它从 ( c , d ) ∈ Z Q n + 1 (c,d) \in \mathbb Z_Q^{n+1} (c,d)ZQn+1 中移除。现在 ( [ c ′ ] q , [ d ′ ] q ) ([c']_q,[d']_q) ([c]q,[d]q) 的相位只位于半个环面上。
  2. 再提取 ( [ c ′ ] q , [ d ′ ] q ) ([c']_q,[d']_q) ([c]q,[d]q) 的消息,将它从 ( c ′ , d ′ ) ∈ Z Q n + 1 (c',d') \in \mathbb Z_Q^{n+1} (c,d)ZQn+1 中移除。现在 ( [ c ′ ′ ] q , [ d ′ ′ ] q ) ([c'']_q,[d'']_q) ([c′′]q,[d′′]q) 的相位是零。
  3. ( c ′ ′ , d ′ ′ ) (c'',d'') (c′′,d′′) 缩放 q / α q/\alpha q/α,降低密文模数。

在这里插入图片描述

假定 PBS 输出的噪声界是 β \beta β,初始输入 ( c , d ) c,d) c,d) 的噪声上界也是 β \beta β

  • HomFloor:
    • 输入噪声范围 ( − β , β ) (-\beta,\beta) (β,β),执行 step 2 噪声范围 ( 0 , 2 β ) (0,2\beta) (0,2β)
    • 执行 step 4,5,噪声范围是 ( 0 , 4 β ) (0,4\beta) (0,4β)这里需要 α ≥ 4 β \alpha \ge 4 \beta α4β,使得这个噪声不会影响到我们刚刚消除掉的 MSB,从而此时的 ( c , d ) (c,d) (c,d) 相位是 m ~ q + x \tilde mq+x m~q+x,其中 x ∈ [ 0 , q / 2 ) x \in [0,q/2) x[0,q/2) 包含了 LSD 以及噪声
    • 执行 step 6 和 step 7,获得相位 x + e x+e x+e 的密文,从 ( c , d ) (c,d) (c,d) 中减掉后,返回的相位是 m ~ q + e \tilde mq+e m~q+e(注意函数 f 1 : x ∈ Z q / 2 ↦ x ∈ Z q / 2 f_1:x\in \mathbb Z_{q/2} \mapsto x \in \mathbb Z_{q/2} f1:xZq/2xZq/2,整个 x x x 都被清零,包括本来的噪声),满足 ∣ e ∣ < β |e| < \beta e<β
  • HomSign:
    • 输入噪声范围 ( − β , β ) (-\beta,\beta) (β,β),执行 HomFloor 输出的噪声范围也是 ( − β , β ) (-\beta,\beta) (β,β)
    • 执行 step 13 的模切换,噪声规模是 α / q ⋅ β + ( ∥ s ∥ 1 + 1 ) / 2 \alpha/q \cdot \beta + (\|s\|_1+1)/2 α/qβ+(s1+1)/2
    • 假如满足 ∥ s ∥ 1 = O ( n ) ≤ β \|s\|_1=O(n)\le \beta s1=O(n)β,并且假设 q ≥ 4 α q\ge4\alpha q4α 以及 β ≥ 2 \beta\ge 2 β2,那么就有 α / q ⋅ β + ( ∥ s ∥ 1 + 1 ) / 2 < β \alpha/q \cdot \beta + (\|s\|_1+1)/2 < \beta α/qβ+(s1+1)/2<β,因此可以正确地执行 HomFloor
    • 执行 step 17 虽然噪声规模可能超过 α \alpha α,但是并不会影响 MSB 的值,因此可以正确地执行 Boot,最终的噪声范围是 ( − β , β ) (-\beta,\beta) (β,β)

当然,上述的分析是最坏情况的。如果使用平均情况,那么 ∥ s ∥ 2 = O ( n ) \|s\|_2 = O(\sqrt{n}) s2=O(n ),独立密文的加和噪声界 2 β \sqrt{2}\beta 2 β,可以将 β \beta β α \alpha α 都降低一些。

Using 3 PBS

为了给出通用的算法(尤其是 CKKS 的噪声和明文混合在一起),[LMP22] 给出了第二个方法:使用三次 PBS,支持任意的噪声, α ≥ 2 β \alpha \ge 2\beta α2β

基本思路:

  1. 首先消除 ( [ c ] q , [ d ] q ) ([c]_q,[d]_q) ([c]q,[d]q) 相位的第二高比特。现在(正的)噪声向上传播时,遇到被清零的第二高比特后,不再继续向 MSB 传递影响。
  2. 利用上一小节的算法,清理掉 LSD,然后模切换。

在这里插入图片描述

假定 PBS 输出的噪声界是 β \beta β,初始输入 ( c , d ) c,d) c,d) 的噪声上界也是 β \beta β

  • HomFloorAlt:
    • 输入噪声范围 ( − β , β ) (-\beta,\beta) (β,β),相位是 m ~ q + b q / 4 + x \tilde mq+bq/4+x m~q+bq/4+x,其中 b ∈ { 0 , 1 , 2 , 3 } , x ∈ [ 0 , q / 4 ) b \in \{0,1,2,3\},x \in [0,q/4) b{0,1,2,3},x[0,q/4),这里的 x x x 包含了噪声项
    • 执行 step 3,4 将 LSD 的第二高比特置为零,相位形如 m ~ q + b ~ q / 2 + x + e \tilde mq+\tilde bq/2+x+e m~q+b~q/2+x+e,其中 b ~ ∈ { 0 , 1 } \tilde b \in \{0,1\} b~{0,1},噪声为 e ∈ [ 0 , 2 β ) e \in [0,2\beta) e[0,2β)
    • 假设满足 q ≥ 8 β q \ge 8\beta q8β,那么 x + e < q / 4 + 2 β ≤ q / 2 x+e<q/4+2\beta\le q/2 x+e<q/4+2βq/2,它们不会改变 b b b 的值,因此并不会继续向更高的 m ~ \tilde m m~ 传播影响
    • 执行 step 6,7 清理掉 b b b 的值,现在的相位是 m ~ q + x + e + e ′ \tilde mq+x+e+e' m~q+x+e+e,它的 LSD 是 x + e + e ′ x+e+e' x+e+e,其中 e ′ ∈ [ 0 , 2 β ) e' \in [0,2\beta) e[0,2β)
    • 进一步假设 q ≥ 16 β q \ge 16\beta q16β,那么满足 x + e + e ′ < q / 4 + 4 β ≤ q / 2 x+e+e' < q/4+4\beta \le q/2 x+e+e<q/4+4βq/2,它落在了半环内
    • 执行 step 9 清理掉它们,新的噪声是 e ′ ′ ∈ ( − β , β ) e'' \in (-\beta,\beta) e′′(β,β)
  • HomSign:
    • 简单使用 HomFloorAlt 作为子例程,分析是一样的

PBS of Arbitrary Function

利用上述 HomFloor 的计算思路,为了利用 PBS 计算任意函数,我们可以将 m ∈ Z q / α m\in \mathbb Z_{q/\alpha} mZq/α 扩展到 b ∥ m ∈ { m , m + q / α } ⊆ Z 2 q / α b\|m\in\{m,m+q/\alpha\} \subseteq \mathbb Z_{2q/\alpha} bm{m,m+q/α}Z2q/α(随机的 b ∈ { 0 , 1 } b\in \{0,1\} b{0,1}),然后提取 sign 消除为 ( 0 ∥ m ) 2 = m (0\|m)_2=m (0∥m)2=m,接着使用半环上的函数执行 PBS 即可。

现在我们假定输入的 LWE 密文模数是 q q q,满足 2 q ∣ 2 N 2q \mid 2N 2q2N 可以被原始 PBS 支持。这导致相较于 HomFloor 中的 PBS,这里的 q q q 更小,明文精度丢失了 1 1 1 比特。

在这里插入图片描述

Homomorphic Digit Decomposition

为了执行 [GBA21] 的 Tree-based PBS(包括高精度 LWE 密文的自举),我们需要同态数字分解算法。因为 HomFloor 事实上就是在计算各个 Digit,并将它们从高精度 LWE 密文中减去的过程,因此仅需追踪此过程中产生的 ( [ c ] q , [ d ] q ) ([c]_q,[d]_q) ([c]q,[d]q) 即可。

在这里插入图片描述

输入 LWE 密文的相位 α ⋅ m + e \alpha \cdot m+e αm+e,输出 k = log ⁡ ( Q / α ) / log ⁡ ( q / α ) k=\log(Q/\alpha)/\log(q/\alpha) k=log(Q/α)/log(q/α) 个密文,它们的相位是 α ⋅ m i + e i \alpha \cdot m_i+e_i αmi+ei,满足 m = ∑ i = 0 k − 1 m i ⋅ ( q / α ) i m=\sum_{i=0}^{k-1} m_i \cdot (q/\alpha)^i m=i=0k1mi(q/α)i

Parameter Selection

略。。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1342543.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【强化学习】基于蒙特卡洛MC与时序差分TD的简易21点游戏应用

1. 本文将强化学习方法&#xff08;MC、Sarsa、Q learning&#xff09;应用于“S21点的简单纸牌游戏”。 类似于Sutton和Barto的21点游戏示例&#xff0c;但请注意&#xff0c;纸牌游戏的规则是不同且非标准的。 2. 为方便描述&#xff0c;过程使用代码截图&#xff0c;文末附链…

JavaSE基础50题:25. 查找数组中指定元素(顺序查找)

概述 给定一个数组&#xff0c;再给定一个元素&#xff0c;找出该元素在数组中的位置。 for循环遍历 【概述】 一个一个找&#xff0c;比较慢。 想要快一点的方法&#xff0c;可以使用二分查找&#xff0c;在后续《JavaSE基础50题》专栏中27题中详细讲解。 【代码】 public …

MySql篇——MySql使用常见问题及解决办法

这里汇总MySql使用常见问题及解决办法&#xff0c;会持续更新。 问题1.ERROR 1819 (HY000): Your password does not satisfy the current policy requirements。 含义&#xff1a;你设置的密码不符合当前的密码等级。 可使用 SHOW VARIABLES LIKE validate_password%; 查看…

C#中的Attribute详解(上)

C#中的Attribute详解&#xff08;上&#xff09; 一、Attribute是什么二、Attribute的作用三、Attribute与注释的区别四、系统Attribute范例1、如果不使用Attribute&#xff0c;为了区分这四类静态方法&#xff0c;我们只能通过注释来说明&#xff0c;但这样做会给系统带来很多…

计算机图形学光线追踪大作业C++基于Optix为框架实现的光线追踪算法合集,含直射光阴影效果、漫反射阴影效果、镜面反射效果等示例

MineRay 使用Optix为框架实现的光线追踪算法。 包含4个示例&#xff0c;直射光阴影效果、漫反射阴影效果、镜面反射效果、折射效果 环境需求 本项目在Windows 10中测试&#xff0c;以下环境为Windows中的环境 CUDA 10.1 OptiX 7 SDK cmake 编译方式 使用cmake编译 打开Mi…

分布式、CAP 和 BASE 理论

在计算机科学领域&#xff0c;分布式系统是一门极具挑战性的研究方向&#xff0c;也是互联网应用中必不可少的优化实践&#xff0c;而 CAP 理论和 BASE 理论则是分布式系统中的两个关键的概念。 什么是分布式系统 首先&#xff0c;让我们来谈谈分布式系统。你可以将分布式系统…

C++进阶--继承和多态常见题目

继承和多态常见题目 概念考查问答题 概念考查 下面哪种面向对象的方法可以让你变得富有( A) A: 继承   B: 封装   C: 多态   D: 抽象 这道题说哪种面向对象的方法可以让我们更富有&#xff0c;也就是东西更多&#xff0c;那么一定是继承无疑了&#xff0c;因为继承可以让…

ArcGIS高程点生成等高线

基本步骤&#xff1a;数据清洗→创建TIN→TIN转栅格→等值线→平滑线。 1.&#xff08;重要&#xff09;数据清理&#xff1a;删除高程点中的高程异常值数据。 2.创建TIN:系统工具→3D Analyst Tools→数据管理→TIN→创建TIN&#xff08;可直接搜索工具TIN&#xff09;。 单击…

移动机器人规划、控制算法初识

规划与控制PNC(PlanningandControl) 1 路径规划算法&#xff1a; 移动机器人路径规划算法总结_机器人运动轨迹算法-CSDN博客 2 控制算法&#xff1a; 机器人控制算法综述_机器人控制技术综述-CSDN博客 机器人控制算法简要概述_智能控制算法-CSDN博客 学习资源&#xff1a; …

VSCode 未装插件

EditorConfig for VS Code&#xff1a;自定义代码规范&#xff0c;按照自己指定的规则而不是编辑器默认的格式化。 ES7 React/Redux/React-Native snippets&#xff1a;款苏插入React代码片段。 Material Icon Theme&#xff1a;文件图标主题。 Prettier - Code formatte…

自然语言处理(第16课 机器翻译4、5/5)

一、学习目标 1.学习各种粒度的系统融合方法 2.学习两类译文评估标准 3.学习语音翻译和文本翻译的不同 4.学习语音翻译实现方法 二、系统融合 以一个最简单的例子来说明系统融合&#xff0c;就是相当于用多个翻译引擎得到不同的翻译结果&#xff0c;然后选择其中最好的作为…

在VMware安装CentOS 7:详细教程

安装准备工作 本地虚拟机&#xff1a;我这里使用的是VMware Workstation 17 Pro centos7系统ISO镜像&#xff1a;我这里使用的是CentOS-7-x86_64-DVD-2009.iso&#xff0c;具体的下载地址是在阿里云官方镜像站&#xff1a;centos-7.9.2009-isos-x86_64安装包下载_开源镜像站-阿…

k8s的资源管理

命令行: kubectl命令行工具优点: 90%以上的场景都可以满足 对资源的增&#xff0c;删&#xff0c;查比较方便&#xff0c;对改不是很友好缺点:命令比较冗长&#xff0c;复杂难记 声明方式&#xff1a;k8s当中的yaml文件实现资源管理----声明式GUI:图形化工具的管理。 查看k8s的…

AIGC时代下,结合ChatGPT谈谈儿童教育

引言 都2024年了&#xff0c;谈到儿童教育&#xff0c;各位有什么新奇的想法嘛 我觉得第一要务&#xff0c;要注重习惯养成&#xff0c;我觉得聊习惯养成这件事情范围有点太大了&#xff0c;我想把习惯归纳于底层逻辑&#xff0c;我们大家都知道&#xff0c;在中国式教育下&a…

SAP缓存 表缓存( Table Buffering)

本文主要介绍SAP中的表缓存在查询数据&#xff0c;更新数据时的工作情况以及对应概念。 SAP表缓存的工作 查询数据 更新数据 删除数据 表缓存的概念 表缓存技术设置属性 不允许缓冲&#xff1a; 允许缓冲&#xff0c;但已关闭&#xff1a; 缓冲已激活&#xff1a; 已…

腾讯云价格计算器,一键计算精准报价,好用!

腾讯云价格计算器&#xff1a;可以计算腾讯云服务器不同CVM实例规格、CPU内存、公网带宽和系统盘费用明细表&#xff0c;可以一键计算出精准报价明细表&#xff0c;腾讯云服务器网txyfwq.com分享大家腾讯云服务器价格计算器入口链接、使用方法及限制说明&#xff1a; 腾讯云服…

KSO-SAP,ABAP创建远程RFC函数

文章目录 概要创建rfc函数创建函数修改函数处理类型小结 概要 &#xff08;这是创建rfc &#xff0c;远程调用rfc请到 KSO-SAP ABAP调用远程RFC函数详细过程&#xff09; SAP RFC&#xff08;Remote Function Call&#xff09;是一种用于处理系统间通信的协议&#xff0c;允…

融汇贯通 —— 2023年技术与心灵的双重成长旅程

当我们站在2023年的岁末&#xff0c;回望这一年赋予我们的经历和挑战&#xff0c;心中涌动的感慨与启示像朝日初升的光芒&#xff0c;照亮脚下的路&#xff0c;亦照见心中的路。在此&#xff0c;我想分享几个方面的感悟和成长&#xff0c;愿它们能有所触动&#xff0c;成为您前…

【QT】QStringListModel类的应用介绍

目录 1 概述 2 QStringListModel常用方法 3 使用QStringListModel的步骤 4 QStringListModel的使用 4.1 Model/View结构对象和组件初始化 4.2 编辑、添加、删除项的操作 4.3 以文本显示数据模型的内容 4.4 其他功能 1 概述 QStringListModel用于处理字符串列表的数据模型…

Android Studio 如何实现软件英文变中文教程

目录 前言 一、确认版本号 二、下载汉化包 三、汉化包安装 四、如何实现中英文切换 五、更多资源 前言 Android Studio是一款功能强大的集成开发环境&#xff08;IDE&#xff09;&#xff0c;用于开发Android应用程序。默认情况下&#xff0c;Android Studio的界面和…