HBase 例行灾备方案:快照备份与还原演练

news2025/1/23 7:08:31
《大数据平台架构与原型实现:数据中台建设实战》博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,京东购书链接:https://item.jd.com/12677623.html,扫描左侧二维码进入京东手机购书页面。

该方案是为某用户定制的 HBase 灾备方案,方案本身具有很好的适用性,可以复用于常规 HBase 灾备场景。用户对 HBase 的灾备工作非常重视,每周会对 HBase 进行一次全量备份,将快照上传至 S3 保存,同时,在消息队列和其他数据库中保存着两周以内的增量数据,当 HBase 宕机时,会先还原快照将数据库恢复至一周内某一时刻的全量状态,然后再从其他系统读取一周内的增量数据进行补录,直至数据追平。本文将重点讨论 HBase 基于快照的例行备份和灾后恢复操作,并给出详细的解释和操作脚本。更多快照导入导出操作的详细介绍可参考本文姊妹篇:《HBase 超大表迁移、备份、还原、同步演练手册:全量快照 + 实时同步(Snapshot + Replication)不停机迁移方案》

1. 方案架构


由于 HBase 的快照导入、导出是一个基于 Yarn 的 Map-Reduce 作业,而生产集群是一个专职的 HBase 集群,不宜为 Yarn 分配过多资源,所以,直接使用 HBase 的生产集群执行快照导入、导出作业并不是一个明智的选择,推荐的做法是:为快照导入和导出创建专用集群,这样做的好处是:
  • HBase 的生产集群将不再需要为 Yarn 分配资源,可以将资源集中投放给 HBase;
  • 用于快照导入、导出的专用集群可以将全部资源分配给 Yarn,同时在配置上针对 Map-Reduce 进行定向性能调优,以最快速度完成快照导入、导出工作;
  • 在超大数据集下,无论是快照导出、导入还是还原,都需要对 HBase 做多项特定配置,包含超时和文件清理周期的调整,这些都不是正常生产集群上应有的配置,该方案可以规避修改配置并重启集群的问题;
  • 导入、导出执行完毕后,可随即释放集群,无额外支出

以下是快照备份场景的架构示意图:

请添加图片描述

在这一场景下,我们通过专用的快照导出集群从生产集群中导出快照(读取的是生产集群的 HDFS),然后将数据写入到 S3 并保存至少1周时间,从效果上等同于生产集群将自己的快照直接上传至 S3,但却不需要为此特别修改配置。

以下是灾后还原场景的架构示意图:

请添加图片描述

在这一场景下,我们通过专用的快照导入集群读取 S3 中的快照文件,然后将数据写入到还原集群中(写入的是还原集群的 HDFS),从效果上等同于还原集群直接从 S3 上下载快照并还原,但却不需要为此特别修改配置。

2. 环境说明


本次模拟演练使用的环境是:HBase 1.4.9 (EMR版本:5.23.0),全场景涉及4个 HBase 集群,分别是:

  • 生产集群:m5.4xlarge (16 vCore,64 GB),3 个 Master Node + 20 个 Core Node
  • 快照导出专用集群:r5.2xlarge (8 vCore,64 GB),1 个 Master Node + 32 个 Core Node
  • 快照导入专用集群:r5.2xlarge (8 vCore,64 GB),1 个 Master Node + 32 个 Core Node
  • 恢复集群:m5.4xlarge (16 vCore,64 GB),3 个 Master Node + 20 个 Core Node

以下是4个集群的详细信息:

信息项生产集群快照导出专用集群快照导入专用集群恢复集群
HBase 版本1.4.91.4.91.4.91.4.9
EMR 版本5.23.05.23.05.23.05.23.0
实例机型m5.4xlarger5.2xlarger5.2xlargem5.4xlarge
主节点3113
Core节点20<= 323220
存储介质HDFSHDFSHDFSHDFS

3. 前置条件


进行实操演练前,需要您的环境中已经创建了:

  1. 一个生产集群
  2. 一张演练用的测试表

如果只是进行演练,您可以根据自身账号情况灵活配置 HBase 生产集群的规模,不必拘泥于上述建议配置;创建测试用表可以参考 《AWS EMR HBase 超大表迁移、备份、还原、同步演练手册:全量快照 + 实时同步(Snapshot + Replication)不停机迁移方案 》一文的第 5.5 - 5.7 节。

进行正式演练前,需要提醒注意以下事项:

  • 本演练的多数命令都需执行较长时间,因此,命令都使用了 nohup ... & 形式转为了后台运行,以防 Linux 终端 Session 超时导致命令意外终止;

  • 本演练的操作必须按顺序执行,不可在前一个命令转为后台运行后,立即执行下一条命令;

  • 演练过程中需要在各个集群和 AWS Console 上来回切换,为了提醒操作者,本文特意使用 [ 执行环境 ] :: ... 形式的标题强调本节操作的执行环境

4. 全局变量


为了让脚本更具可移植性,我们将所有环境相关的信息抽离出来,以变量形式统一声明和维护(请注意替换脚本中出现的 `
export TABLE_NAME="<your-table-name>"
export SNAPSHOT_NAME="${TABLE_NAME}-$(date +'%Y%m%d')"
export SNAPSHOTS_REPO="s3://<your-snapshot-repo-bucket>"
export SNAPSHOT_S3_LOCATION="${SNAPSHOTS_REPO}/${SNAPSHOT_NAME}/"
export WORKER_NODES=32
export SNAPSHOT_EXPORT_MAPPERS=2040
export INUSE_CLUSTER_NAMENODES="<your-in-use-cluster-namenode>"
export SNAPSHOT_EXPORT_CLUSTER_NAMENODES="<your-snapshot-export-cluster-namenode>"
export SNAPSHOT_IMPORT_CLUSTER_NAMENODES="<your-snapshot-import-cluster-namenode>"
export RESTORED_CLUSTER_NAMENODES="<your-restored-cluster-namenode-namenode>"

5. 备份快照 ( 例行灾备作业 )


快照备份工作每周执行一次,快照文件会导出到 S3 上存储。本演练文档会给出详细的步骤说明和操作脚本,在实际运维中,该部分操作应提升为脚本或工作流由调度引擎每周触发执行。

5.1. [ 生产集群 ] :: 创建快照


由于生产环境的 HBase 集群不能停机,所以我们在创建快照时,不可以 disable table,而是直接创建快照:

# create snapshot
sudo -u hbase hbase snapshot create -n $SNAPSHOT_NAME -t $TABLE_NAME
# sleep for a while, snapshot may be NOT available immediately.
sleep 120
# check if snapshot is available
sudo -u hbase hbase snapshot info -list-snapshots

通过这种方式创建出来的快照叫:Online Snapshot,如果事先 disable table,则创建出来的就叫 Offline Snapshot。

5.2. [ AWS 控制台 ] :: 创建快照导出专用集群


对于快照导入、导出集群的机型和配置,我们做了多轮测试,最终选定了 r5.2xlarge,因为导入导出作业是一个内存和网络IO密集型作业,网络IO的上限已由生产集群的机型和节点数量决定了,所以,我们从内存上找到了一些优化空间,最终选定了 r5.2xlarge 机型,并将 60 GB 内存分配给 Yarn,单一 worker 节点切分 16 个 Container,Map 任务数量是 Container 的 4 倍,这样的配置在多种配置组合中,性能最佳。以下是具体配置 (请注意替换配置文件中的 <your-aws-access-key-id><your-aws-secret-access-key>):

[
  {
    "Classification": "hdfs-site",
    "Properties": {
      "dfs.replication": "1"
    }
  },
  {
    "Classification": "emrfs-site",
    "Properties": {
      "fs.s3.maxRetries": "50",
      "fs.s3.maxConnections": "500000"
    }
  },
  {
    "Classification": "core-site",
    "Properties": {
      "fs.s3n.multipart.uploads.split.size": "1073741824",
      "fs.s3.awsAccessKeyId": "<your-aws-access-key-id>",
      "fs.s3.awsSecretAccessKey": "<your-aws-secret-access-key>"
    }
  },
  {
    "Classification": "yarn-site",
    "Properties": {
      "yarn.nodemanager.resource.memory-mb": "61440",
      "yarn.scheduler.maximum-allocation-mb": "61440",
      "yarn.scheduler.minimum-allocation-mb": "1",
      "yarn.nodemanager.vmem-pmem-ratio": "10"
    }
  },
  {
    "Classification": "mapred-site",
    "Properties": {
      "mapred.job.jvm.num.tasks": "-1",
      "mapreduce.map.memory.mb": "3840",
      "mapreduce.map.java.opts": "-Xmx3072m",
      "mapreduce.map.cpu.vcores": "2",
      "mapreduce.reduce.memory.mb": "7680",
      "mapreduce.reduce.java.opts": "-Xmx6144m",
      "mapreduce.reduce.cpu.vcores": "4",
      "yarn.app.mapreduce.am.resource.mb": "7680",
      "yarn.app.mapreduce.am.resource.cpu-vcores": "4"
    }
  }
]

不同于生产集群,导入导出集群并不存储数据,所以无需增加磁盘存储,使用默认配置即可。此外,集群创建完毕后,须用 Primary Node 的 Private DNS 或 IP 为全局变量 INUSE_CLUSTER_NAMENODES赋值,并在 Master 节点上执行一次第 4 节的全局变量声明脚本。

5.3. [ 快照导出专用集群 ] :: 导出快照


在快照导出专用集群的主节点上,执行如下命令:

nohup sudo -u hbase hbase snapshot export \
    -snapshot $SNAPSHOT_NAME \
    -copy-from "hdfs://${INUSE_CLUSTER_NAMENODES}:8020/user/hbase/" \
    -copy-to ${SNAPSHOT_S3_LOCATION} \
    -mappers $SNAPSHOT_EXPORT_MAPPERS \
    -bandwidth $((2**31-1)) &> export-$SNAPSHOT_NAME.out &
tail -f /var/log/hbase/hbase.log

注意:

  • -mappers 参数的设定值 $SNAPSHOT_EXPORT_MAPPERS 是根据集群配置优化过的,如果不了解该配置项的细节,请勿随意修改,否则会影响性能
  • -bandwidth 参数用于限制带宽,默认值是 100,单位是 MBps,此处设定为 $((2**31-1)) ,是 Java 中的 Integer.MAX_VALUE,目的是不进行带宽限制,由于快照导出会对生成集群造成一定的压力,特别是会占用相当份额的网络带宽,所以是否需要限速可视实际情况进行调整,具体可参考第 7 节的详细说明。

5.4. [ 生产集群 ] :: 删除快照


快照导出后,须及时删除快照 !因为创建快照后,快照引用的 HFile 将不再被自动清理,随着时间推移,在经历了几轮 Compaction 后,HBase 的 archive 文件夹通常会有大幅增长,HDFS 会有被写满的危险。执行以下命令可删除快照:

sudo -u hbase hbase shell <<< "delete_snapshot '$SNAPSHOT_NAME'"

5.5. [ AWS 控制台 ] :: 终止快照导出专用集群


导出完成后,即可在控制台上终止快照导出专用集群。

6. 还原快照 ( 灾后恢复作业 )


快照还原仅发生在系统宕机后的恢复阶段,非例行作业,可以按本文档手动操作完成。

6.1. [ AWS 控制台 ] :: 创建恢复集群


恢复集群就是重建后的生产集群,其配置应完全参照原生产集群,但是,**要特别注意 hbase-site.xml 中的`hbase.master.cleaner.interval` ,这是还原集群的一个必配项(初始创建的生产集群通常不会配置该项),这个配置项的值应大于从启动恢复集群到完成全部快照导入和还原操作的总时间!**

此外,集群创建完毕后,须用 Primary Node 的 Private DNS 或 IP 为全局变量 RESTORED_CLUSTER_NAMENODES 赋值,并在 Master 节点上执行一次第 4 节的全局变量声明脚本。

6.2. [ AWS 控制台 ] :: 创建快照导入专用集群


快照还原专用集群的配置和操作与 5.2. 节:“创建快照导出专用集群” 完全一致,请参考此节。

6.3. [ 快照导入专用集群 ] :: 导入快照


在快照导入专用集群的主节点上,执行如下命令:
nohup sudo -u hbase hbase snapshot export \
    -snapshot $SNAPSHOT_NAME \
    -copy-from ${SNAPSHOT_S3_LOCATION} \
    -copy-to "hdfs://${INUSE_CLUSTER_NAMENODES}:8020/user/hbase/" \
    -mappers $SNAPSHOT_EXPORT_MAPPERS \
    -bandwidth $((2**31-1)) &> import-$SNAPSHOT_NAME.out &
tail -f /var/log/hbase/hbase.log

注意:

  • 这里是一个导入操作,但依旧使用的是 export 命令,导入和导出是一个相对概念,HBase 中没有 snapshot import 命令

  • -mappers 参数的设定值 $SNAPSHOT_EXPORT_MAPPERS 是根据集群配置优化过的,如果不了解该配置项的细节,请勿随意修改,否则会影响性能

  • -bandwidth 参数用于限制带宽,默认值是 100,单位是 MBps,此处设定为 $((2**31-1)) ,是 Java 中的 Integer.MAX_VALUE,目的是不进行带宽限制,还原阶段恢复集群尚未上线,可以全力接收导入的数据,因为无需限速。

6.4. [ 还原集群 ] :: 还原快照


快照导入完毕后,登录还原集群,检查快照是否已就绪:

sudo -u hbase hbase snapshot info -list-snapshots

确认快照已存在就可以执行快照还原了:

cat << EOF | nohup sudo -u hbase hbase shell &> restore-$SNAPSHOT_NAME.out &
restore_snapshot '$SNAPSHOT_NAME'
enable '$TABLE_NAME'
EOF
tail -f restore-$SNAPSHOT_NAME.out

6.5. [ 还原集群 ] :: 删除快照


快照还原后,同样应及时删除还原集群上的快照,原因与 4.4 节的解释一样。

sudo -u hbase hbase shell <<< "delete_snapshot '$SNAPSHOT_NAME'"

6.6. [ AWS 控制台 ] :: 终止快照导入专用集群


导入完成后,即可在控制台上终止快照导入专用集群。

7. 注意事项

7.1. 快照备份的带宽控制


在执行快照导出作业时,HBase 的生产集需要承担输出 HDFS 数据的任务,会占用较大份额的上行网络带宽,下图是执行 9 个批次(每个批次导出 10TB 数据)的导出作业时,源端集群(即本文档所指的生产集群)一个 Core 节点的负载情况。右下角的网络 IO 指标需要特别注意,因为 m5.4xlarge 的基准带宽是 4750Mbps,即:每秒最多可上传 593.75 MB 数据, 从上图可知:导出作业的上行带宽峰值已经逼近 600 MB。虽然导出作业会选择业务低估期执行,但如果认定此时占用的带宽已经影响到了线上生产,则需要缩减导出集群的规模或进行限速处理,但要注意的是:这就意味着导出时间会变长,相应地又会影响到 hbase.master.cleaner.interval 参数的设置。这是一个需要权衡的问题,应该根据生产环境的实际状况进行调整。

m5_4xlarge_20_nodes_1x1_source_node

7.2. 快照还原的带宽控制


在快照导入阶段,由于还原集群尚未接入生产,无其他负载,从尽量缩短故障恢复时间的角度出发,应以在最短时间内以最大吞吐率完成快照还原操作,所以,快照导入集群不应也不需要限速,推荐使用 32 节点的 r5.2xlarge 集群以最短时间完成导入作业。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1339222.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Oracle 12c rac 搭建 dg

环境 rac 环境 &#xff08;主&#xff09;byoradbrac 系统版本&#xff1a;Red Hat Enterprise Linux Server release 6.5 软件版本&#xff1a;Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit byoradb1&#xff1a;172.17.38.44 byoradb2&#xff1a;…

算法——哈希表

哈希表简介 **是什么&#xff1a;**存储数据的容器有什么用&#xff1a;快速查找某个元素&#xff0c;时间复杂度O(1)&#xff0c;空间复杂度O(n)**什么时候使用哈希表&#xff1a;**频繁查找某一个数&#xff08;这里不要忘了之前的二分&#xff0c;时间复杂度O(logN)&#x…

论文阅读:Large Language Models Are Zero-Shot Time Series Forecasters(2023NIPS)

摘要 文章涉及了两个时间序列的任务&#xff1a;forecasting&#xff0c;imputation. 对于预测任务&#xff1a;通过将时间序列编码为一系列数字&#xff0c;可以将时间序列预测任务转化为文本里面的next-token预测任务。在大规模预训练语言模型的基础上&#xff0c;文章提出了…

泰迪智能科技分享:AI大模型发展趋势分析

大规模预训练语言模型&#xff0c;也被称为“大模型”或“基座模型”&#xff0c;其特点在于拥有巨大的参数量&#xff0c;构成了复杂的人工神经网络模型。大模型具有规模性&#xff08;参数量大&#xff09;、涌现性&#xff08;产生预料之外的新能力&#xff09;以及通用性&a…

k8s二进制最终部署(网络 负载均衡和master高可用)

k8s中的通信模式 1、pod内部之间容器与容器之间的通信&#xff0c;在同一个pod 中的容器共享资源和网络&#xff0c;使用同一个网络命名空间&#xff0c;可以直接通信的 2、同一个node节点之内&#xff0c;不同pod之间的通信&#xff0c;每个pod都有一个全局的真实的IP地址&a…

最新国内使用GPT4教程,GPT语音对话使用,Midjourney绘画,ChatFile文档对话总结+DALL-E3文生图

一、前言 ChatGPT3.5、GPT4.0、GPT语音对话、Midjourney绘画&#xff0c;文档对话总结DALL-E3文生图&#xff0c;相信对大家应该不感到陌生吧&#xff1f;简单来说&#xff0c;GPT-4技术比之前的GPT-3.5相对来说更加智能&#xff0c;会根据用户的要求生成多种内容甚至也可以和…

ChatGPT在地学、GIS、气象、农业、生态、环境等领域中的高级应用

目录 ​专题一 开启大模型 专题二 基于ChatGPT大模型提问框架 专题三 基于ChatGPT大模型的数据清洗 专题四 基于ChatGPT大模型的统计分析 专题五 基于ChatGPT大模型的机器学习 专题六 基于ChatGPT大模型的科研绘图 专题七 基于ChatGPT大模型的GIS应用 专题八 基于基于C…

k8s集群etcd备份与恢复

一、前言 k8s集群使用etcd集群存储数据&#xff0c;如果etcd集群崩溃了&#xff0c;k8s集群的数据就会全部丢失&#xff0c;所以需要日常进行etcd集群数据的备份&#xff0c;预防etcd集群崩溃后可以使用数据备份进行恢复&#xff0c;也可用于重建k8s集群进行数据恢复 二、备份…

[C/C++]排序算法 快速排序 (递归与非递归)

目录 &#x1f6a9;概念: &#x1f6a9;实现: ⚡1.hoare ⚡2.挖坑法 ⚡3.双指针法 &#x1f6a9;快速排序递归实现 &#x1f6a9;快速排序非递归实现 &#x1f6a9;概念: 通过一趟排序将要排序的数据分割成独立的两部分&#xff0c;其中一部分的所有数据比另一部分的所有…

华为OD机试真题-手机App防沉迷系统-2023年OD统一考试(C卷)

题目描述&#xff1a; 智能手机方便了我们生活的同时&#xff0c;也侵占了我们不少的时间。“手机App防沉迷系统”能够让我们每天合理的规划手机App使用时间&#xff0c;在正确的时间做正确的事。 它的大概原理是这样的&#xff1a; 1、在一天24小时内&#xff0c;可注册每个Ap…

什么洗地机值得推荐?2024入门级智能洗地机

对于当代社畜&#xff0c;每天下班后回家已经疲惫不堪&#xff0c;但家务活仍然等待着处理。虽然外卖可以解决洗碗的问题&#xff0c;但地面的清洁却是无法回避的任务。传统的扫地、拖地流程让人感到腰酸背痛&#xff0c;因此人们纷纷寻找能够快速清洁地面的工具&#xff0c;如…

Shell命令与Linux操作系统:深入理解其原理和功能(2/2)

在当今数字化时代&#xff0c;操作系统的安全性和稳定性对于个人用户和企业都至关重要。Linux&#xff0c;作为一个广泛使用的操作系统&#xff0c;其强大的文件权限系统是保护系统安全的核心机制之一。无论是在服务器管理、软件开发还是日常使用中&#xff0c;有效地管理和理解…

scons_交叉编译arm64_sysroot基于根文件rootfs编译方法

文章目录 1.问题现象2.环境变量3.实例1:交编译arm64 hello.c解决方法1: 指定rootfs下的include头文件解决方法2: 下载开源arm64-linux-gnu-gcc小结 4.交叉编译依赖第3方库1.前言2.小知识: gcc默认搜索与支持的库3.实例: 交叉编译依赖ROS的程序gcc/g 编译流程gcc/g 链接流程 5.遇…

阿里云双11活动:如何通过客户端连接linux服务器?配置入门详解

前言 最近双11活动&#xff0c;发现阿里云有服务器活动&#xff0c;就买了一个&#xff0c;今天主要给大家介绍下&#xff0c;如何通过通过客户端进行连接linux服务器后&#xff0c;进行简单的操作。 配置服务器信息 打开浏览器登录到阿里云服务器页面上&#xff0c;找到个人…

uni-app/vue封装etc车牌照输入,获取键盘按键键值

先看下效果如下&#xff1a; 动态图如下 uniapp的keyup获取不到keyCode和compositionstart&#xff0c;compositionend&#xff0c;所以需要监听input节点的keyup事件&#xff0c; 思路以及代码如下&#xff1a; 1.将每一个字符用文本框输入&#xff0c;代码如下 <view …

ClickHouse基础知识(二):ClickHouse 安装教程

1. 准备工作 1.1 确定防火墙处于关闭状态 1.2 CentOS 取消打开文件数限制 &#xff08;1&#xff09;在 hadoop101 的 /etc/security/limits.conf 文件的末尾加入以下内容 sudo vim /etc/security/limits.conf&#xff08;2&#xff09;在 hadoop101 的/etc/security/limits.…

64.乐理基础-打拍子-前八后十六、前十六后八拍子

前置内容&#xff1a;63.乐理基础-打拍子-四十六-CSDN博客 前八后十六指的是前半拍是一个八分音符&#xff0c;后半怕是两个十六分音符的节奏型&#xff0c;如图1。 前十六后八刚好就与前八后十六反着&#xff0c;如图3。 图1&#xff1a;在以四分音符为一拍的时候这三个音符加…

Android下载gradle失败解决方法

1、在gradle-wrapper.properties文件中查看自己需要下载gradle什么版本的包和zip路径&#xff08;wrapper/dists&#xff09;。 2、在setting中查看Gradle的保存路径&#xff0c;如下图&#xff1a;C:/Users/Administrator/.gradle&#xff0c;加上第一步的zip路径得到下载grad…

chcp 65001

chcp 65001 DOS,BAT,CMD乱码 转UTF-8&#xff0c;就不会汉字乱码了 936 GBK 65001 UTF-8

C语言中关于if else的理解

if else我们可以理解为 if(条件1) //如果条件1成立 语句1&#xff1b; //执行语句1 else //如果条件1不成立 语句2; //执行语句2 这是一个经典的if els…