【数学建模美赛M奖速成系列】Matplotlib绘图技巧(一)

news2025/2/6 17:41:27

Matplotlib图像基础

  • 写在前面
  • 1 基本绘图实例:sin、cos函数图
  • 2 plot()函数详解
    • **kwargs参数:
  • 3 matplotlib中绘图的默认配置
  • 4 设置图的横纵坐标的上下界
  • 5 设置横纵坐标上的记号
  • 6 调整图像的脊柱
  • 7 添加图例
  • 8 给一些特殊点加注释
  • 9 子图
  • 最后

写在前面

前面我们讲过,好的图表在论文写作中是相当重要的,这里学姐为大家整理了一些Matplotlib快速入门内容以及论文绘图的技巧,帮助大家快速学习绘图。这里整理了完整的文档与技巧,有需要的同学看下面,另外,如果没有美赛经验想要获奖,欢迎咨询哦~

1 基本绘图实例:sin、cos函数图

from pylab import *
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, 256,
endpoint=True)
c, s = np.cos(x), np.sin(x)
plt.plot(x, c)
plt.plot(x, s)
show()

在这里插入图片描述

2 plot()函数详解

调用形式一般为:

plot([x], y, [fmt], data=None, *kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2],,
*kwargs)

其中可选参数[fmt]是一个字符串,用于定义图的基本属性:颜色(color)、点型(marker)、线型(linestyle)
具体形式为:

fmt = [color][marker][linestyle]
注意这里的三个属性只能是每个属性的单个字母缩写,若属性用的是全名则不能用[fmt]

**kwargs参数:

  • x: x轴数据
  • y: y轴数据
  • linewidth: 线宽
  • color:线条颜色

在这里插入图片描述

  • marker: 标记风格

在这里插入图片描述

  • linestyle: 线条样式

在这里插入图片描述

  • markerfacecolor 标记颜色
  • markersize 标记大小
from pylab import *
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, 256,
endpoint=True)
c, s = np.cos(x), np.sin(x)
plt.plot(x, c, 'b|-')
plt.plot(x, s)
show()

在这里插入图片描述

3 matplotlib中绘图的默认配置

from pylab import *
import numpy as np
import matplotlib.pylab as plt
# 创建一个8*6(point)的图,并设置分辨率为80
figure(figsize=(8, 6), dpi=80)
# 创建一个新的1*1的子图,接下来的图样绘制在其中的第一块中
subplot(1, 1, 1)
# 得到坐标点(x,y)坐标
X = np.linspace(-np.pi, np.pi, 256,
endpoint=True)
C, S = np.cos(X), np.sin(X)
# 绘制余弦曲线,使用蓝色的、连续的、宽度为1的线条
plot(X, C, color='blue', linewidth=2.5,
linestyle='-')
# 绘制正弦曲线,使用绿色的、连续的、宽度为1的线条
plot(X, S, color='green', linewidth=2.0,
linestyle='-')
# 设置横轴的上下限
xlim(-4.0, 4.0)
# 设置横轴记号
xticks(np.linspace(-4, 4, 9, endpoint=True),
fontproperties='Times New Roman', size=20)
# 设置纵轴记号
yticks(np.linspace(-1, 1, 5, endpoint=True))
#设置横纵坐标的名称以及对应字体格式
font = {'family' : 'Times New Roman',
'weight' : 'normal',
'size' : 20,
}
# 设置横轴标签
plt.xlabel('X axis', font)
# 设置纵轴标签
plt.ylabel('Y axis', font)
# 设置图像标题
plt.title('Demo Figure', font)
# 以分辨率72来保存图片
savefig('demo.png', dpi=72)
# 在屏幕上显示
show()

在这里插入图片描述

4 设置图的横纵坐标的上下界

xlim(), ylim()
from pylab import *
import numpy as np
# 得到坐标点(x,y)坐标
X = np.linspace(-np.pi, np.pi, 256,
endpoint=True)
C, S = np.cos(X), np.sin(X)
x_min, x_max = X.min(), X.max()
c_min, c_max = C.min(), C.max()
s_min, s_max = S.min(), C.max()
y_min, y_max = min(c_min, s_min), max(c_max,
s_max)
# 设置横纵坐标上下界的偏移量,这样能够完整的显示图像且最美观
dx = (x_max - x_min) * 0.2
dy = (y_max - y_min) * 0.2
# 设置上下限
xlim(x_min - dx, x_max + dx)
ylim(y_min - dy, y_max + dy)
# 绘制余弦曲线,使用蓝色的、连续的、宽度为2.5的线条
plot(X, C, color='blue', linewidth=2.5,
linestyle='-')
# 绘制正弦曲线,使用绿色的、连续的、宽度为2.0的线条
plot(X, S, color='green', linewidth=2.0,
linestyle='-')
show()

在这里插入图片描述

5 设置横纵坐标上的记号

xticks(), yticks()

这两个函数的用处在于指明横纵轴需要显示的内容和显示内容的位置,参数的值可以有两种情况:

  • 当横纵坐标的值为普通的数字时:参数为一个list,list中的元素为数字,此时两个函数的参数只需要这一个list
  • 当横纵坐标的值为公式(使用的latex中的公式表示,如’pipipi’)或其他和当前的坐标值不同的值时:参数为两个list,第一个list为普通数字对应的是纵坐标值,第二个list为第一个list中纵坐标位置对应要显示的值,可以是公式也可以是其他和当前纵坐标值不同的表示
from pylab import *
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, 256,
endpoint=True)
c, s = np.cos(x), np.sin(x)
xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
[r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$',
r'$+\pi$'])
yticks([-1, 0, +1],
[r'$-1$', r'$0$', r'$+1$'])
plt.plot(x, c)
plt.plot(x, s)
show()

在这里插入图片描述

6 调整图像的脊柱

坐标轴和上面的记号连在一起就形成了脊柱(Spines,一条线段上又一系列凸起,是不是很像脊柱),它记录了数据区域的范围,它们可以放在任意位置,不过默认是放在图的四边。
实际上每幅图都有四条脊柱(上下左右),为了将脊柱放在图的中间,我们必须将其中的两条(上和右)设置为无色,然后调整剩下的两条到合适的位置——数据空间的0点。

from pylab import *
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, 256,
endpoint=True)
c, s = np.cos(x), np.sin(x)
plt.plot(x, c)
plt.plot(x, s)
# 设置坐标轴gca(),获取坐标轴信息
ax = gca()
'''
使用ax.spines[]选定边框,使用set_color()将选定的边框的颜
色设为 none
'''
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
'''
移动坐标轴,将bottom即x坐标轴移动到y=0的位置
ax.xaixs为x轴,set_ticks_position()用于从上下左右
(top/bottom/left/right)四条脊柱中选择一个作为x轴
使用set_position()设置边框位置:y=0的位置。位置的所有属性
包括:outward、axes、data
'''
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
'''
将left 即y坐标轴设置到x=0的位置
'''
ax.yaxis.set_ticks_position('left') # 选定y轴
ax.spines['left'].set_position(('data', 0))
plt.show()

在这里插入图片描述

7 添加图例

在 plot() 函数中增加一个参数 label ,再通过 legend()函数显示图例

from pylab import *
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, 256,
endpoint=True)
c, s = np.cos(x), np.sin(x)
plt.plot(x, c, label='cosine')
plt.plot(x, s, label='sine')
plt.legend(loc='upper left')
plt.show()

在这里插入图片描述

8 给一些特殊点加注释

scatter(x, y, s=None, c=None, marker=None,
cmap=None, norm=None, vmin=None, vmax=None,
alpha=None, linewidths=None, verts=None,
edgecolors=None, hold=None, data=None, *kwargs)
x - x 值
向量
y - y 值
向量
sz - 标记面积
36 (默认) | 数值标量 | 行或列向量 | []
c - 标记颜色
[0 0 1] (默认) | RGB 三元数 |RGB 三元数组成的三列
矩阵 | 向量 | 'r' | 'g' | 'b' | .
mkr - 标记类型
'o' (默认) | '+' | '*' | '.' | 'x' | .
'filled' - 用于填充标记内部的选项
ax - 目标坐标区
Axes 对象 | PolarAxes 对象
'MarkerEdgeColor' - 标记轮廓颜色
'flat' (默认) | 'none' | RGB 三元数 | 'r' | 'g' |
'b' | .
'MarkerFaceColor' - 标记填充颜色
'none' (默认) | 'flat' | 'auto' | RGB 三元数 | 'r'
| 'g' | 'b' | .
'LineWidth' - 标记边缘的宽度
0.5 (默认) | 正值
s - Scatter 对象
Scatter 对象

函数用于在图像中绘制散点

参数:

  • x/y:都是向量形式,且维度相同,分别对应坐标点的横纵坐标
  • scalar: 标记大小,以平方磅为单位的标记面积,可以有一下形式:
    • 数值标量 : 以相同的大小绘制所有标记。
    • 行或列向量 : 使每个标记具有不同的大小。x、y 和 sz中的相应元素确定每个标记的位置和面积。sz 的长度必须等于 x 和 y 的长度。
    • [] : 使用 36 平方磅的默认面积。
  • color:标记的颜色,有下列不同的赋值方式:
    • RGB 三元数或颜色名称 - 使用相同的颜色绘制所有标记。
    • 由 RGB 三元数组成的三列矩阵 - 对每个标记使用不同的颜色。矩阵的每行为对应标记指定一种 RGB 三元数颜色。行数必须等于 x 和 y 的长度
    • 向量 - 对每个标记使用不同的颜色,并以线性方式将 c 中的值映射到当前颜色图中的颜色。c 的长度必须等于 x 和y 的长度。要更改坐标区的颜色图,请使用 colormap 函数。如果散点图中有三个点,并且您希望这些颜色成为颜色图的索引,请以三元素列向量的形式指定 c。
    • 在这里插入图片描述
cnames = {
'aliceblue': '#F0F8FF',
'antiquewhite': '#FAEBD7',
'aqua': '#00FFFF',
'aquamarine': '#7FFFD4',
'azure': '#F0FFFF',
'beige': '#F5F5DC',
'bisque': '#FFE4C4',
'black': '#000000',
'blanchedalmond': '#FFEBCD',
'blue': '#0000FF',
'blueviolet': '#8A2BE2',
'brown': '#A52A2A',
'burlywood': '#DEB887',
'cadetblue': '#5F9EA0',
'chartreuse': '#7FFF00',
'chocolate': '#D2691E',
'coral': '#FF7F50',
'cornflowerblue': '#6495ED',
'cornsilk': '#FFF8DC',
'crimson': '#DC143C',
'cyan': '#00FFFF',
'darkblue': '#00008B',
'darkcyan': '#008B8B',
'darkgoldenrod': '#B8860B',
'darkgray': '#A9A9A9',
'darkgreen': '#006400',
'darkkhaki': '#BDB76B',
'darkmagenta': '#8B008B',
'darkolivegreen': '#556B2F',
'darkorange': '#FF8C00',
'darkorchid': '#9932CC',
'darkred': '#8B0000',
'darksalmon': '#E9967A',
'darkseagreen': '#8FBC8F',
'darkslateblue': '#483D8B',
'darkslategray': '#2F4F4F',
'darkturquoise': '#00CED1',
'darkviolet': '#9400D3',
'deeppink': '#FF1493',
'deepskyblue': '#00BFFF',
'dimgray': '#696969',
'dodgerblue': '#1E90FF',
'firebrick': '#B22222',
'floralwhite': '#FFFAF0',
'forestgreen': '#228B22',
'fuchsia': '#FF00FF',
'gainsboro': '#DCDCDC',
'ghostwhite': '#F8F8FF',
'gold': '#FFD700',
'goldenrod': '#DAA520',
'gray': '#808080',
'green': '#008000',
'greenyellow': '#ADFF2F',
'honeydew': '#F0FFF0',
'hotpink': '#FF69B4',
'indianred': '#CD5C5C',
'indigo': '#4B0082',
'ivory': '#FFFFF0',
'khaki': '#F0E68C',
'lavender': '#E6E6FA',
'lavenderblush': '#FFF0F5',
'lawngreen': '#7CFC00',
'lemonchiffon': '#FFFACD',
'lightblue': '#ADD8E6',
'lightcoral': '#F08080',
'lightcyan': '#E0FFFF',
'lightgoldenrodyellow': '#FAFAD2',
'lightgreen': '#90EE90',
'lightgray': '#D3D3D3',
'lightpink': '#FFB6C1',
'lightsalmon': '#FFA07A',
'lightseagreen': '#20B2AA',
'lightskyblue': '#87CEFA',
'lightslategray': '#778899',
'lightsteelblue': '#B0C4DE',
'lightyellow': '#FFFFE0',
'lime': '#00FF00',
'limegreen': '#32CD32',
'linen': '#FAF0E6',
'magenta': '#FF00FF',
'maroon': '#800000',
'mediumaquamarine': '#66CDAA',
'mediumblue': '#0000CD',
'mediumorchid': '#BA55D3',
'mediumpurple': '#9370DB',
'mediumseagreen': '#3CB371',
'mediumslateblue': '#7B68EE',
'mediumspringgreen': '#00FA9A',
'mediumturquoise': '#48D1CC',
'mediumvioletred': '#C71585',
'midnightblue': '#191970',
'mintcream': '#F5FFFA',
'mistyrose': '#FFE4E1',
'moccasin': '#FFE4B5',
'navajowhite': '#FFDEAD',
'navy': '#000080',
'oldlace': '#FDF5E6',
'olive': '#808000',
'olivedrab': '#6B8E23',
'orange': '#FFA500',
'orangered': '#FF4500',
'orchid': '#DA70D6',
'palegoldenrod': '#EEE8AA',
'palegreen': '#98FB98',
'paleturquoise': '#AFEEEE',
'palevioletred': '#DB7093',
'papayawhip': '#FFEFD5',
'peachpuff': '#FFDAB9',
'peru': '#CD853F',
'pink': '#FFC0CB',
'plum': '#DDA0DD',
'powderblue': '#B0E0E6',
'purple': '#800080',
'red': '#FF0000',
'rosybrown': '#BC8F8F',
'royalblue': '#4169E1',
'saddlebrown': '#8B4513',
'salmon': '#FA8072',
'sandybrown': '#FAA460',
'seagreen': '#2E8B57',
'seashell': '#FFF5EE',
'sienna': '#A0522D',
'silver': '#C0C0C0',
'skyblue': '#87CEEB',
'slateblue': '#6A5ACD',
'slategray': '#708090',
'snow': '#FFFAFA',
'springgreen': '#00FF7F',
'steelblue': '#4682B4',
'tan': '#D2B48C',
'teal': '#008080',
'thistle': '#D8BFD8',
'tomato': '#FF6347',
'turquoise': '#40E0D0',
'violet': '#EE82EE',
'wheat': '#F5DEB3',
'white': '#FFFFFF',
'whitesmoke': '#F5F5F5',
'yellow': '#FFFF00',
'yellowgreen': '#9ACD32'}
  • marker: 标记样式

在这里插入图片描述

  • edgecolors: 轮廓颜色,参数形式和color类似
  • alpha: 透明度,值在[0, 1]范围内,1表示不透明,0表示透明
  • linewidths: 线宽,表示标记边缘的宽度,默认是"face"
  • cmap: 自定义色彩盘,实际上就是一个三列的矩阵,shape为 [N,3][N, 3][N,3],一个实例可以参考matplotlib使用自己想要的color map

annotate(s, xy, *args, **kwargs)
函数用于在图形上给数据点添加文本注解,而且支持带箭头的划线工具,方便我们在合适的位置添加描述信息。具体的内容可以参考Matplotlib中的annotate用法
参数:

  • s: 注释文本中的内容
  • color: 注释文本的颜色
  • xy: 被注释的坐标点,二维元组形式(x, y)
  • xytext: 注释文本的坐标点,也是二维元组(x, y)形式
  • xycoords: 被注释的坐标系属性,允许输入的值如下图:
    在这里插入图片描述
  • textcoords: 注释文本的坐标系属性,默认与xycoords属性值相同,除了允许输入xycoords的属性值,还允许输入以下两种:

在这里插入图片描述

  • arrowprops: 用于标注的箭头的样式,这个参数是一个dict类型的数据。如果该属性为空,则会在注释文本和被注释点之间画一个箭头。箭头的样式可以通过 arrowstyle 关键字来指定默认的可选类型, arrowstyle 关键字包含的默认类型包括以下:
    在这里插入图片描述
    如果没有 arrowstyle 关键字,则箭头的样式可以由以下关键字指定(注意 arrowstyle 和以下关键字不能同时存在)
    在这里插入图片描述
    箭头、坐标点和注释文本之间的关系属性包括如下图。其中connectionstyle属性用于控制注释点和注释文本之间的连接线的属性,比如弧度,角度之类的信息,这里还不是太清楚。
    在这里插入图片描述
from pylab import *
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, 256,
endpoint=True)
c, s = np.cos(x), np.sin(x)
plt.plot(x, c)
plt.plot(x, s)
# 调整图像的脊柱
ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left') # 选定y轴
ax.spines['left'].set_position(('data', 0))
# 在2*np.pi/3的位置给两条函数曲线加上一个注释
t = 2 * np.pi / 3
plt.plot([t, t], [0, np.cos(t)], color='blue',
linewidth=2.5,linestyle=' -')
scatter([t, ], [np.cos(t), ], 50, color='blue')
annotate(r'$\sin(\frac{2\pi}{3})=\frac{\sqrt{3}}
{2}$',
xy=(t, np.sin(t)), xycoords='data',
xytext=(+10, +30), textcoords='offset
points', fontsize=16,
arrowprops=dict(arrowstyle="->",
connectionstyle="arc3,rad=.2"))
plot([t,t],[0,np.sin(t)], color ='red',
linewidth=2.5, linestyle=" -")
scatter([t,],[np.sin(t),], 50, color ='red')
annotate(r'$\cos(\frac{2\pi}{3})=-\frac{1}
{2}$',color='green',
xy=(t, np.cos(t)), xycoords='data',
xytext=(-90, -50), textcoords='offset
points', fontsize=16,
arrowprops=dict(arrowstyle="->",
connectionstyle="arc3,rad=.2")) # arc, angle,
armA, rad
show()

在这里插入图片描述

9 子图

图像的属性包括以下几个:
在这里插入图片描述

from pylab import *
'''
subplot()函数的参数中,除最后一维的其他维表示子图的大小,最
后一维表示当前子图在图像中的位置,如下实例,在2*2的网格里,
第四个子图为(2, 2, 4)
创建横跨多个位置的子图用gridspec实现
'''
"""
添加多个固定大小的子图:
fig = plt.figure(figsize=(10, 10), dpi=80,
facecolor='red')
ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 4)
ax1.plot() .
ax2.plot() .
"""
subplot(2,2,1)
xticks([]), yticks([])
text(0.5,0.5,
'subplot(2,2,1)',ha='center',va='center',size=20,
alpha=.5)
subplot(2,2,2)
xticks([]), yticks([])
text(0.5,0.5,
'subplot(2,2,2)',ha='center',va='center',size=20,
alpha=.5)
subplot(2,2,3)
xticks([]), yticks([])
text(0.5,0.5,
'subplot(2,2,3)',ha='center',va='center',size=20,
alpha=.5)
subplot(2,2,4)
xticks([]), yticks([])
text(0.5,0.5,
'subplot(2,2,4)',ha='center',va='center',size=20,
alpha=.5)
# savefig(' ./figures/subplot-grid.png', dpi=64)
show()

在这里插入图片描述

from pylab import *
import matplotlib.gridspec as gridspec
# gridspec的用法,可以使图像横跨多个坐标
G = gridspec.GridSpec(3, 3)
axes_1 = subplot(G[0, :])
xticks([]), yticks([])
text(0.5,0.5, 'Axes
1',ha='center',va='center',size=24,alpha=.5)
axes_2 = subplot(G[1,:-1])
xticks([]), yticks([])
text(0.5,0.5, 'Axes
2',ha='center',va='center',size=24,alpha=.5)
axes_3 = subplot(G[1:, -1])
# 确定了这个子图的位置之后,就可以直接在上面画图,直到创建了
下个新的子图
x = np.linspace(-np.pi, np.pi, 256,
endpoint=True)
c, s = np.cos(x), np.sin(x)
plt.plot(x, c)
plt.plot(x, s)
#xticks([]), yticks([])
#text(0.5,0.5, 'Axes
3',ha='center',va='center',size=24,alpha=.5)
axes_4 = subplot(G[-1,0])
xticks([]), yticks([])
'''
text()函数用于在图像上的特定位置加上一些文本,用于注释
'''
text(0.5,0.5, 'Axes
4',ha='center',va='center',size=24,alpha=.5)
axes_5 = subplot(G[-1,-2])
xticks([]), yticks([])
text(0.5,0.5, 'Axes
5',ha='center',va='center',size=24,alpha=.5)
#plt.savefig(' ./figures/gridspec.png', dpi=64)
show()

在这里插入图片描述

from pylab import *
'''
使用axes()函数来确定当前子图的位置和大小,参数为一个
list[x, y, width, height],
x,y为当前子图的左下角坐标位置,width为子图的宽度,
height为子图的高度
'''
axes([0.1,0.1,0.8,0.8])
xticks([]), yticks([])
text(0.6,0.6,
'axes([0.1,0.1,.8,.8])',ha='center',va='center',s
ize=20,alpha=.5)
axes([0.2,0.2,.3,.3])
x = np.linspace(-np.pi, np.pi, 256,
endpoint=True)
c, s = np.cos(x), np.sin(x)
plt.plot(x, c)
plt.plot(x, s)
# xticks([]), yticks([])
# text(0.5,0.5,
'axes([0.2,0.2,.3,.3])',ha='center',va='center',s
ize=16,alpha=.5)
# plt.savefig(" ./figures/axes.png",dpi=64)
show()

在这里插入图片描述

from pylab import *
axes([0.1,0.1,.5,.5])
xticks([]), yticks([])
text(0.1,0.1,
'axes([0.1,0.1,.5,.5])',ha='left',va='center',siz
e=16,alpha=.5)
axes([0.2,0.2,.5,.5])
xticks([]), yticks([])
text(0.1,0.1,
'axes([0.2,0.2,.5,.5])',ha='left',va='center',siz
e=16,alpha=.5)
axes([0.3,0.3,.5,.5])
x = np.linspace(-np.pi, np.pi, 256,
endpoint=True)
c, s = np.cos(x), np.sin(x)
plt.plot(x, c)
plt.plot(x, s)
# xticks([]), yticks([])
# text(0.1,0.1,
'axes([0.3,0.3,.5,.5])',ha='left',va='center',siz
e=16,alpha=.5)
axes([0.4,0.4,.5,.5])
xticks([]), yticks([])
text(0.1,0.1,
'axes([0.4,0.4,.5,.5])',ha='left',va='center',siz
e=16,alpha=.5)
# plt.savefig(" ./figures/axes-2.png",dpi=64)
show()

最后

这里整理了完整的文档与技巧,有需要的同学看下面,另外,如果没有美赛经验想要获奖,欢迎咨询哦~
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1336662.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

轻松设置CentOS IP地址的最终指南:详细的分步说明

轻松设置CentOS IP地址的最终指南 一、引言二、准备工作三、手动设置IP地址四、自动分配IP地址(DHCP)五、使用网络管理工具设置IP地址5.1、使用nmtui工具进行图形化设置5.2、使用nmcli命令行工具进行设置 六、常见问题和解决方案七、总结 一、引言 CentOS操作系统是一种基于Li…

uni-app tabbar组件

锋哥原创的uni-app视频教程: 2023版uniapp从入门到上天视频教程(Java后端无废话版),火爆更新中..._哔哩哔哩_bilibili2023版uniapp从入门到上天视频教程(Java后端无废话版),火爆更新中...共计23条视频,包括:第1讲 uni…

AI+城市运行“一网统管”建设白皮书,核心建设目标和内容

“一网统管”是指依托智能城市运行管理中心的实体化运作,以物联网、大数据、人工智能、区块链等现代信息技术为手段,对城市运行进行全域的即时分析、指挥、调动、管理,实现对城市运行中各类事项“一网打尽”、城市治理“一屏通览”。 以下是A…

Jmeter 性能测试 —— 评估一个系统TPS与并发数!

问题:性能压测,如何评估一个系统的TPS和并发数? 1、对于新系统 由业务部门或开发人员预估交易量和TPS指标 可以参考公式:并发用户 在线用户数 * 10%。 当一个系统还没有上线时,我们可以预判的是这个系统准备要给多…

12.25

led.c #include "led.h" void all_led_init() {RCC_GPIO | (0X3<<4);//时钟使能GPIOE_MODER &(~(0X3<<20));//设置PE10输出GPIOE_MODER | (0X1<<20);//设置PE10为推挽输出GPIOE_OTYPER &(~(0x1<<10));//PE10为低速输出GPIOE_OSPEED…

关于“Python”的核心知识点整理大全43

目录 ​编辑 15.2.3 使2散点图并设置其样式 scatter_squares.py 15.2.4 使用 scatter()绘制一系列点 scatter_squares.py 15.2.5 自动计算数据 scatter_squares.py 15.2.6 删除数据点的轮廓 15.2.7 自定义颜色 15.2.8 使用颜色映射 scatter_squares.py 注意 15.2.9…

C# Winform教程(二):基础窗口程序

1、介绍 winform应用程序是一种智能客户端技术&#xff0c;我们可以使用winform应用程序帮助我们获得信息或者传输信息等。 2、常用属性 Name&#xff1a;在后台要获得前台的控件对象&#xff0c;需要使用Name属性。 Visible&#xff1a;指示一个控件是否可见、 Enable&…

超声系统前端理论与模拟仿真-续

作者&#xff1a;蒋志强 本人同意他人对我的文章引用&#xff0c;但请在引用时注明出处&#xff0c;谢谢&#xff0e;作者&#xff1a;蒋志强 前言 近期整理了一下彩超前端及波束合成相关的内容&#xff0c;很早以前已经有过一次&#xff0c;这次把其它的内容总结一下&#xf…

前端canvas项目实战——简历制作网站(一)——左侧工具栏

目录 前言一、效果展示二、实现步骤1. 拆分旧代码&#xff0c;优化项目结构2. 左侧工具栏3. 组合代码 三、Show u the code后记 前言 在fabric基础系列博文中&#xff0c;我们通过代码向画布canvas中添加矩形、圆形等对象。对于用户&#xff0c;我们不能指望他们可以理解代码&…

改变命运第一法

不与事争&#xff0c;你争不过因果&#xff1b;不与人争&#xff0c;会伤了感情&#xff1b;不与己争&#xff0c;会让人心累。平静淡泊、守望平和&#xff0c;不指责&#xff0c;不抱怨&#xff0c;不计较&#xff0c;永远做个善良清澈的自己&#xff0c;以善为本&#xff0c;…

Linux OpenEuler(欧拉系统)无公网ip实现SSH远程连接

&#x1f525;博客主页&#xff1a; 小羊失眠啦. &#x1f3a5;系列专栏&#xff1a;《C语言》 《数据结构》 《Linux》《Cpolar》 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;…

【MySQL】一文看懂MySQL所有常见问题

MySQL作为一款开源关系型数据库&#xff0c;如今绝对是占据关系型数据库的主导地位&#xff0c;不仅是面试中的常客&#xff0c;也是日常工作中最主要接触的数据库。因此&#xff0c;无论是背面试八股&#xff0c;还是工作使用&#xff0c;都是一定要深度掌握的一个知识点。今天…

云上安全责任共担模型

对于传统自建物理服务器模式&#xff0c;用户需要承担所有的安全责任&#xff0c;负责从物理基础设施到上层应用的所有层面的安全体系构建。 云服务器的安全责任确实与物理服务器不同&#xff0c;云上的安全性是一种责任共担模式&#xff0c;其中云服务器ECS的安全责任需要你&…

算法通关村第十关—归并排序(黄金)

归并排序 一、归并排序原理 归并排序(MERGE-SORT)简单来说就是将大的序列先视为若干个比较小的数组&#xff0c;分成几个比较小的结构&#xff0c;然后是利用归并的思想实现的排序方法&#xff0c;该算法采用经典的分治策略&#xff08;分就是将问题分(divide)成一些小的问题分…

阶段性复习(二)

阶段性复习第二弹&#xff01; 一.操作符 继上期复习了一部分&#xff0c;我们继续复习操作符&#xff0c;今天着重复习双目操作符 有一类题&#xff0c;通过结果分析反推求过程中的表达式 从这道题可以看出&#xff0c;t是4的时候&#xff0c;s要是2&#xff0c;所以a&…

飞天使-k8s知识点7-kubernetes升级

文章目录 验证新版本有没有问题需要安装的版本微微 1.20.6.0kubeadm upgrade plan 验证新版本有没有问题 查看可用版本的包 现有的状态 查看版本 yum list kubeadm --showduplicates |grep 1.20 yum list kubelet --showduplicates |grep 1.20 yum list kubectl --showduplic…

云渲染UE4像素流送搭建(winows、ubuntu单实例与多实例像素流送)

windows/ubuntu20.4下UE4.27.2像素流送 像素流送技术可以将服务器端打包的虚幻引擎应用程序在客户端的浏览器上运行&#xff0c;用户可以通过浏览器操作虚幻引擎应用程序&#xff0c;客户端无需下载虚幻引擎&#xff0c;本文实现两台机器通过物理介质网线实现虚幻引擎应用程序…

推荐3款高效又免费的MP4转MP3格式转换工具

在日常生活和工作中&#xff0c;我们经常会遇到需要将MP4视频文件转换成MP3音频文件的情况&#xff0c;以便在其他设备上播放或享受音频内容。如果你正在寻找一款高效又免费的MP4转MP3格式转换工具&#xff0c;那么你来对地方了&#xff01;本文将为你推荐3款最佳工具&#xff…

STM32使用printf重定向到USART

配置你想要重映射的串口&#xff0c;这里用串口1举例子&#xff0c;你完全可以定义成其他串口。 波特率和位数格式完全按照需要定义&#xff0c;这里不要开启dma和中断。 这里建议使用单独生成.c和.h&#xff0c;当然你不生成也完全可以。 /* USER CODE BEGIN 0 */ int __io_p…

重装系统后桌面图标没有了,“此电脑”怎么添加?

重装电脑系统对于使用电脑的用户来说是一种很常见的操作。但是有时在重装系统之后&#xff0c;我们会发现电脑桌面图标不见了&#xff0c;那么这时该怎么办呢&#xff1f;“此电脑”该怎么添加呢&#xff1f; 解决方法&#xff1a; 1.在桌面空白处单击鼠标右键&#xff0c;选择…