关于“Python”的核心知识点整理大全43

news2025/2/6 18:05:06


目录

​编辑

15.2.3 使2散点图并设置其样式

scatter_squares.py

15.2.4 使用 scatter()绘制一系列点

scatter_squares.py

15.2.5 自动计算数据

scatter_squares.py

15.2.6 删除数据点的轮廓

15.2.7 自定义颜色

15.2.8 使用颜色映射

scatter_squares.py

注意

15.2.9 自动保存图表

15.3 随机漫步

15.3.1 创建 RandomWalk()类

random_walk.py

15.3.2 选择方向

random_walk.py

15.3.3 绘制随机漫步图

rw_visual.py


15.2.3 使2散点图并设置其样式

有时候,需要绘制散点图并设置各个数据点的样式。例如,你可能想以一种颜色显示较小的 值,而用另一种颜色显示较大的值。绘制大型数据集时,你还可以对每个点都设置同样的样式, 再使用不同的样式选项重新绘制某些点,以突出它们。 要绘制单个点,可使用函数scatter(),并向它传递一对x和y坐标,它将在指定位置绘制一 个点:

scatter_squares.py
import matplotlib.pyplot as plt
plt.scatter(2, 4)
plt.show() 

下面来设置输出的样式,使其更有趣:添加标题,给轴加上标签,并确保所有文本都大到能 够看清:

import matplotlib.pyplot as plt
 plt.scatter(2, 4, s=200)
# 设置图表标题并给坐标轴加上标签
plt.title("Square Numbers", fontsize=24)
plt.xlabel("Value", fontsize=14)
plt.ylabel("Square of Value", fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
plt.show()

在Ø处,我们调用了scatter(),并使用实参s设置了绘制图形时使用的点的尺寸。如果此时 运行scatter_squares.py,将在图表中央看到一个点,如图15-4所示。

15.2.4 使用 scatter()绘制一系列点

要绘制一系列的点,可向scatter()传递两个分别包含x值和y值的列表,如下所示:

scatter_squares.py
import matplotlib.pyplot as plt
x_values = [1, 2, 3, 4, 5]
y_values = [1, 4, 9, 16, 25]
plt.scatter(x_values, y_values, s=100)
# 设置图表标题并给坐标轴指定标签
--snip-- 

列表x_values包含要计算其平方值的数字,而列表y_values包含前述每个数字的平方值。将 这些列表传递给scatter()时,matplotlib依次从每个列表中读取一个值来绘制一个点。要绘制的 点的坐标分别为 (1, 1)、(2, 4)、(3, 9)、(4, 16)和(5, 25),最终的结果如图15-5所示。

15.2.5 自动计算数据

手工计算列表要包含的值可能效率低下,需要绘制的点很多时尤其如此。可以不必手工计算 包含点坐标的列表,而让Python循环来替我们完成这种计算。下面是绘制1000个点的代码:

scatter_squares.py
import matplotlib.pyplot as plt
1 x_values = list(range(1, 1001))
y_values = [x**2 for x in x_values]
2 plt.scatter(x_values, y_values, s=40)
# 设置图表标题并给坐标轴加上标签
--snip--
# 设置每个坐标轴的取值范围
3 plt.axis([0, 1100, 0, 1100000])
plt.show()

我们首先创建了一个包含x值的列表,其中包含数字1~1000(见Ø)。接下来是一个生成y值 的列表解析,它遍历x值(for x in x_values),计算其平方值(x**2),并将结果存储到列表y_values中。然后,将输入列表和输出列表传递给scatter()(见)。 由于这个数据集较大,我们将点设置得较小,并使用函数axis()指定了每个坐标轴的取值范 围(见)。函数axis()要求提供四个值:x和y坐标轴的最小值和最大值。在这里,我们将x坐标 轴的取值范围设置为0~1100,并将y坐标轴的取值范围设置为0~1 100 000。结果如图15-6所示。

15.2.6 删除数据点的轮廓

matplotlib允许你给散点图中的各个点指定颜色。默认为蓝色点和黑色轮廓,在散点图包含的 数据点不多时效果很好。但绘制很多点时,黑色轮廓可能会粘连在一起。要删除数据点的轮廓, 可在调用scatter()时传递实参edgecolor='none':

plt.scatter(x_values, y_values, edgecolor='none', s=40)

将相应调用修改为上述代码后,如果再运行scatter_squares.py,在图表中看到的将是蓝色实 心点。

15.2.7 自定义颜色

要修改数据点的颜色,可向scatter()传递参数c,并将其设置为要使用的颜色的名称,如下 所示:

plt.scatter(x_values, y_values, c='red', edgecolor='none', s=40) 

你还可以使用RGB颜色模式自定义颜色。要指定自定义颜色,可传递参数c,并将其设置为一个元组,其中包含三个0~1之间的小数值,它们分别表示红色、绿色和蓝色分量。例如,下面 的代码行创建一个由淡蓝色点组成的散点图:

plt.scatter(x_values, y_values, c=(0, 0, 0.8), edgecolor='none', s=40)

值越接近0,指定的颜色越深,值越接近1,指定的颜色越浅

15.2.8 使用颜色映射

颜色映射(colormap)是一系列颜色,它们从起始颜色渐变到结束颜色。在可视化中,颜色 映射用于突出数据的规律,例如,你可能用较浅的颜色来显示较小的值,并使用较深的颜色来显 示较大的值。 模块pyplot内置了一组颜色映射。要使用这些颜色映射,你需要告诉pyplot该如何设置数据 集中每个点的颜色。下面演示了如何根据每个点的y值来设置其颜色:

scatter_squares.py
import matplotlib.pyplot as plt
x_values = list(range(1001))
y_values = [x**2 for x in x_values]
plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues,
 edgecolor='none', s=40)
# 设置图表标题并给坐标轴加上标签
--snip-- 

我们将参数c设置成了一个y值列表,并使用参数cmap告诉pyplot使用哪个颜色映射。这些代 码将y值较小的点显示为浅蓝色,并将y值较大的点显示为深蓝色,生成的图形如图15-7所示。


注意

要了解pyplot中所有的颜色映射,请访问http://matplotlib.org/,单击Examples,向下滚动 到Color Examples,再单击colormaps_reference。


15.2.9 自动保存图表

要让程序自动将图表保存到文件中,可将对plt.show()的调用替换为对plt.savefig()的 调用:

plt.savefig('squares_plot.png', bbox_inches='tight')

第一个实参指定要以什么样的文件名保存图表,这个文件将存储到scatter_squares.py所在的 目录中;第二个实参指定将图表多余的空白区域裁剪掉。如果要保留图表周围多余的空白区域, 可省略这个实参。

15.3 随机漫步

在本节中,我们将使用Python来生成随机漫步数据,再使用matplotlib以引人瞩目的方式将这 些数据呈现出来。随机漫步是这样行走得到的路径:每次行走都完全是随机的,没有明确的方向, 结果是由一系列随机决策决定的。你可以这样认为,随机漫步就是蚂蚁在晕头转向的情况下,每次都沿随机的方向前行所经过的路径。

在自然界、物理学、生物学、化学和经济领域,随机漫步都有其实际用途。例如,漂浮在水 滴上的花粉因不断受到水分子的挤压而在水面上移动。水滴中的分子运动是随机的,因此花粉在 水面上的运动路径犹如随机漫步。我们稍后将编写的代码模拟了现实世界的很多情形。

15.3.1 创建 RandomWalk()类

为模拟随机漫步,我们将创建一个名为RandomWalk的类,它随机地选择前进方向。这个类需 要三个属性,其中一个是存储随机漫步次数的变量,其他两个是列表,分别存储随机漫步经过的 每个点的x和y坐标。 RandomWalk类只包含两个方法:__init__ ()和fill_walk(),其中后者计算随机漫步经过的所 有点。下面先来看看__init__(),如下所示:

random_walk.py
1 from random import choice
class RandomWalk():
 """一个生成随机漫步数据的类"""
2 def __init__(self, num_points=5000):
 """初始化随机漫步的属性"""
 self.num_points = num_points
 # 所有随机漫步都始于(0, 0)
3 self.x_values = [0]
 self.y_values = [0] 

为做出随机决策,我们将所有可能的选择都存储在一个列表中,并在每次做决策时都使用 choice()来决定使用哪种选择(见1)。接下来,我们将随机漫步包含的默认点数设置为5000,这 大到足以生成有趣的模式,同时又足够小,可确保能够快速地模拟随机漫步(见2)。然后,在 3处,我们创建了两个用于存储x和y值的列表,并让每次漫步都从点(0, 0)出发。

15.3.2 选择方向

我们将使用fill_walk()来生成漫步包含的点,并决定每次漫步的方向,如下所示。请将这 个方法添加到random_walk.py中:

random_walk.py
 def fill_walk(self):
 """计算随机漫步包含的所有点"""
 # 不断漫步,直到列表达到指定的长度
1 while len(self.x_values) < self.num_points:
 # 决定前进方向以及沿这个方向前进的距离
2 x_direction = choice([1, -1])
 x_distance = choice([0, 1, 2, 3, 4])
3 x_step = x_direction * x_distance
 y_direction = choice([1, -1])
 y_distance = choice([0, 1, 2, 3, 4])
4 y_step = y_direction * y_distance
 # 拒绝原地踏步
5 if x_step == 0 and y_step == 0:
 continue
 # 计算下一个点的x和y值
6 next_x = self.x_values[-1] + x_step
 next_y = self.y_values[-1] + y_step
 self.x_values.append(next_x)
 self.y_values.append(next_y) 

在1处,我们建立了一个循环,这个循环不断运行,直到漫步包含所需数量的点。这个方法 的主要部分告诉Python如何模拟四种漫步决定:向右走还是向左走?沿指定的方向走多远?向上 走还是向下走?沿选定的方向走多远?

我们使用choice([1, -1])给x_direction选择一个值,结果要么是表示向右走的1,要么是表 示向左走的-1(见2)。接下来,choice([0, 1, 2, 3, 4])随机地选择一个0~4之间的整数,告诉 Python 沿指定的方向走多远(x_distance)。(通过包含0,我们不仅能够沿两个轴移动,还能够 沿y轴移动。)

在3和4处,我们将移动方向乘以移动距离,以确定沿x和y轴移动的距离。如果x_step为正, 将向右移动,为负将向左移动,而为零将垂直移动;如果y_step为正,就意味着向上移动,为负 意味着向下移动,而为零意味着水平移动。如果x_step和y_step都为零,则意味着原地踏步,我 们拒绝这样的情况,接着执行下一次循环(见5)。

为获取漫步中下一个点的x值,我们将x_step与x_values中的最后一个值相加(见6),对于y 值也做相同的处理。获得下一个点的x值和y值后,我们将它们分别附加到列表x_values和y_values 的末尾。

15.3.3 绘制随机漫步图

下面的代码将随机漫步的所有点都绘制出来:

rw_visual.py
import matplotlib.pyplot as plt
from random_walk import RandomWalk
# 创建一个RandomWalk实例,并将其包含的点都绘制出来
1 rw = RandomWalk()
rw.fill_walk()
2 plt.scatter(rw.x_values, rw.y_values, s=15)
plt.show() 

我们首先导入了模块pyplot和RandomWalk类,然后创建了一个RandomWalk实例,并将其存储 到rw中(见1),再调用fill_walk()。在2处,我们将随机漫步包含的x和y值传递给scatter(), 并选择了合适的点尺寸。图15-8显示了包含5000个点的随机漫步图(本节的示意图未包含 matplotlib查看器部分,但你运行rw_visual.py时,依然会看到)。


关于“Python”的核心知识点整理大全37-CSDN博客

关于“Python”的核心知识点整理大全25-CSDN博客

关于“Python”的核心知识点整理大全12-CSDN博客

往期快速传送门👆(在文章最后):

感谢大家的支持!欢迎订阅收藏!专栏将持续更新!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1336654.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C# Winform教程(二):基础窗口程序

1、介绍 winform应用程序是一种智能客户端技术&#xff0c;我们可以使用winform应用程序帮助我们获得信息或者传输信息等。 2、常用属性 Name&#xff1a;在后台要获得前台的控件对象&#xff0c;需要使用Name属性。 Visible&#xff1a;指示一个控件是否可见、 Enable&…

超声系统前端理论与模拟仿真-续

作者&#xff1a;蒋志强 本人同意他人对我的文章引用&#xff0c;但请在引用时注明出处&#xff0c;谢谢&#xff0e;作者&#xff1a;蒋志强 前言 近期整理了一下彩超前端及波束合成相关的内容&#xff0c;很早以前已经有过一次&#xff0c;这次把其它的内容总结一下&#xf…

前端canvas项目实战——简历制作网站(一)——左侧工具栏

目录 前言一、效果展示二、实现步骤1. 拆分旧代码&#xff0c;优化项目结构2. 左侧工具栏3. 组合代码 三、Show u the code后记 前言 在fabric基础系列博文中&#xff0c;我们通过代码向画布canvas中添加矩形、圆形等对象。对于用户&#xff0c;我们不能指望他们可以理解代码&…

改变命运第一法

不与事争&#xff0c;你争不过因果&#xff1b;不与人争&#xff0c;会伤了感情&#xff1b;不与己争&#xff0c;会让人心累。平静淡泊、守望平和&#xff0c;不指责&#xff0c;不抱怨&#xff0c;不计较&#xff0c;永远做个善良清澈的自己&#xff0c;以善为本&#xff0c;…

Linux OpenEuler(欧拉系统)无公网ip实现SSH远程连接

&#x1f525;博客主页&#xff1a; 小羊失眠啦. &#x1f3a5;系列专栏&#xff1a;《C语言》 《数据结构》 《Linux》《Cpolar》 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;…

【MySQL】一文看懂MySQL所有常见问题

MySQL作为一款开源关系型数据库&#xff0c;如今绝对是占据关系型数据库的主导地位&#xff0c;不仅是面试中的常客&#xff0c;也是日常工作中最主要接触的数据库。因此&#xff0c;无论是背面试八股&#xff0c;还是工作使用&#xff0c;都是一定要深度掌握的一个知识点。今天…

云上安全责任共担模型

对于传统自建物理服务器模式&#xff0c;用户需要承担所有的安全责任&#xff0c;负责从物理基础设施到上层应用的所有层面的安全体系构建。 云服务器的安全责任确实与物理服务器不同&#xff0c;云上的安全性是一种责任共担模式&#xff0c;其中云服务器ECS的安全责任需要你&…

算法通关村第十关—归并排序(黄金)

归并排序 一、归并排序原理 归并排序(MERGE-SORT)简单来说就是将大的序列先视为若干个比较小的数组&#xff0c;分成几个比较小的结构&#xff0c;然后是利用归并的思想实现的排序方法&#xff0c;该算法采用经典的分治策略&#xff08;分就是将问题分(divide)成一些小的问题分…

阶段性复习(二)

阶段性复习第二弹&#xff01; 一.操作符 继上期复习了一部分&#xff0c;我们继续复习操作符&#xff0c;今天着重复习双目操作符 有一类题&#xff0c;通过结果分析反推求过程中的表达式 从这道题可以看出&#xff0c;t是4的时候&#xff0c;s要是2&#xff0c;所以a&…

飞天使-k8s知识点7-kubernetes升级

文章目录 验证新版本有没有问题需要安装的版本微微 1.20.6.0kubeadm upgrade plan 验证新版本有没有问题 查看可用版本的包 现有的状态 查看版本 yum list kubeadm --showduplicates |grep 1.20 yum list kubelet --showduplicates |grep 1.20 yum list kubectl --showduplic…

云渲染UE4像素流送搭建(winows、ubuntu单实例与多实例像素流送)

windows/ubuntu20.4下UE4.27.2像素流送 像素流送技术可以将服务器端打包的虚幻引擎应用程序在客户端的浏览器上运行&#xff0c;用户可以通过浏览器操作虚幻引擎应用程序&#xff0c;客户端无需下载虚幻引擎&#xff0c;本文实现两台机器通过物理介质网线实现虚幻引擎应用程序…

推荐3款高效又免费的MP4转MP3格式转换工具

在日常生活和工作中&#xff0c;我们经常会遇到需要将MP4视频文件转换成MP3音频文件的情况&#xff0c;以便在其他设备上播放或享受音频内容。如果你正在寻找一款高效又免费的MP4转MP3格式转换工具&#xff0c;那么你来对地方了&#xff01;本文将为你推荐3款最佳工具&#xff…

STM32使用printf重定向到USART

配置你想要重映射的串口&#xff0c;这里用串口1举例子&#xff0c;你完全可以定义成其他串口。 波特率和位数格式完全按照需要定义&#xff0c;这里不要开启dma和中断。 这里建议使用单独生成.c和.h&#xff0c;当然你不生成也完全可以。 /* USER CODE BEGIN 0 */ int __io_p…

重装系统后桌面图标没有了,“此电脑”怎么添加?

重装电脑系统对于使用电脑的用户来说是一种很常见的操作。但是有时在重装系统之后&#xff0c;我们会发现电脑桌面图标不见了&#xff0c;那么这时该怎么办呢&#xff1f;“此电脑”该怎么添加呢&#xff1f; 解决方法&#xff1a; 1.在桌面空白处单击鼠标右键&#xff0c;选择…

九州金榜|家庭教育中注意孩子早起抑郁症征兆

在现代社会&#xff0c;心理健康问题越来越受到关注和重视。尤其是青少年&#xff0c;由于学业、人际关系等因素&#xff0c;可能会面临抑郁症的困扰。然而&#xff0c;很多家长对孩子的心理状况缺乏了解&#xff0c;未能及时发现他们心中的烦恼。以下是一些关于抑郁症早期征兆…

anaconda prompt进入虚拟环境 打开spyder

目录 1.查看有多少虚拟环境 2.conda create 指令创建新的虚拟环境 3.进入虚拟环境 4.spyder进入虚拟环境 5.退出虚拟环境 6.删除虚拟环境 1.查看有多少虚拟环境 打开anaconda prompt&#xff0c;输入 conda env list 2.conda create 指令创建新的虚拟环境 conda cre…

免费高清无水印视频素材在哪里下?

剪辑是一门创意工作&#xff0c;但很多初学者常常感到困惑&#xff0c;原因并不是因为他们不懂剪辑&#xff0c;而是因为他们不知道从哪里找到合适的素材。今天&#xff0c;我们将为大家盘点一些超全的剪辑素材资源&#xff0c;包括视频素材、音乐素材和图片素材等&#xff0c;…

Vue axios 拦截器

正常情况下打开浏览器前端页面向后端发起请求使用的是axios&#xff0c;无论是原生的axios还是自己封装的axios都看成是axios。发起请求之后后端去数据库里面拿数据&#xff0c;然后返回给前端。 发起请求的地方是axios&#xff0c;并且你能够封装这个axios&#xff0c;那么你…

R语言的极值统计学及其在相关领域中的实践技术应用

受到气候变化、温室效应以及人类活动等因素的影响&#xff0c;自然界中极端高温、极端环境污染、大洪水和大暴雨等现象的发生日益频繁&#xff1b;在人类社会中&#xff0c;股市崩溃、金融危机等极端情况也时有发生&#xff1b;今年的新冠疫情就是非常典型的极端现象。研究此类…

TensorFlow 2.0 深度学习实战 —— 浅谈卷积神经网络 CNN

卷积神经网络 CNN&#xff08;Convolutional Neural Networks&#xff0c;ConvNet&#xff09;是一种特殊的深度学习神经网络&#xff0c;近年来在物体识别、图像重绘、视频分析等多个层面得到了广泛的应用。 本文将以VGG16预训练模型为例子&#xff0c;从人脸识别、预训练模型…