CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)

news2025/2/8 4:43:47

目录

往期精彩内容:

前言

1 风速数据CEEMDAN分解与可视化

1.1 导入数据

1.2 CEEMDAN分解

2 数据集制作与预处理

2.1 划分数据集,按照8:2划分训练集和测试集, 然后再按照前7后4划分分量数据

2.2 设置滑动窗口大小为7,制作数据集

3 基于CEEMADN的BiLSTM-Attention模型预测

3.1 数据加载,训练数据、测试数据分组,数据分batch

3.2 定义CEEMDAN-BiLSTM-Attention预测模型

3.3 定义模型参数

3.4 模型训练

4 基于ARIMA的模型预测

4.1 数据加载,训练数据、测试数据分组,四个分量,划分四个数据集

4.2 介绍一个分量预测过程(其他分量类似)

5 结果可视化和模型评估

5.1 组合预测,加载各模型的预测结果

5.2 结果可视化

5.3 模型评估

代码、数据如下:


往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较-CSDN博客

风速预测(一)数据集介绍和预处理-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客

风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型-CSDN博客

前言

本文基于前期介绍的风速数据(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与混合预测模型(BiLSTM-Attention + ARIMA)的方法,以提高时间序列数据的预测性能。该方法的核心是使用CEEMDAN算法对时间序列进行分解,接着利用BiLSTM-Attention模型和ARIMA模型对分解后的数据进行建模,最终通过集成方法结合两者的预测结果。

风速数据集的详细介绍可以参考下文:

风速预测(一)数据集介绍和预处理-CSDN博客

1 风速数据CEEMDAN分解与可视化

1.1 导入数据

1.2 CEEMDAN分解

根据分解结果看,CEEMDAN一共分解出11个分量,我们大致把前7个高频分量作为BiLSTM-Attention模型的输入进行预测,后4个低频分量作为ARIMA模型的输入进行预测

2 数据集制作与预处理

2.1 划分数据集,按照8:2划分训练集和测试集, 然后再按照前7后4划分分量数据

2.2 设置滑动窗口大小为7,制作数据集

# 定义滑动窗口大小
window_size = 7
# 分量划分分界
imf_no  = 7  
 # 第一步,划分数据集
dataset1, dataset2 = make_wind_dataset(wind_emd_imfs, imf_no)
# 第二步,制作数据集标签  滑动窗口
# BiLSTM-Attention 模型数据
train_set1, train_label1 = data_window_maker(dataset1[0], window_size)
test_set1, test_label1 = data_window_maker(dataset1[1], window_size)

# ARIMA 模型数据
train_data_arima = dataset2[0]
test_data_arima = dataset2[1]

# 保存数据
dump(train_set1, 'train_set1')
dump(train_label1, 'train_label1')
dump(test_set1, 'test_set1')
dump(test_label1, 'test_label1')

dump(train_data_arima, 'train_data_arima')
dump(test_data_arima, 'test_data_arima')

分批保存数据,用于不同模型的预测

3 基于CEEMADN的BiLSTM-Attention模型预测

3.1 数据加载,训练数据、测试数据分组,数据分batch

# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 加载数据集
def dataloader(batch_size, workers=2):
    # 训练集
    train_set = load('train_set1')
    train_label = load('train_label1')
    # 测试集
    test_set = load('test_set1')
    test_label = load('test_label1')

    # 加载数据
    train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_set, train_label),
                                   batch_size=batch_size, num_workers=workers, drop_last=True)
    test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_set, test_label),
                                  batch_size=batch_size, num_workers=workers, drop_last=True)
    return train_loader, test_loader

batch_size = 64
# 加载数据
train_loader, test_loader = dataloader(batch_size)

3.2 定义CEEMDAN-BiLSTM-Attention预测模型

注意:输入风速数据形状为 [64, 7, 7], batch_size=64,  维度7维代表7个分量,7代表序列长度(滑动窗口取值)。

3.3 定义模型参数

# 定义模型参数
batch_size = 64
input_len = 48   # 输入序列长度为96 (窗口值)
input_dim = 7    # 输入维度为7个分量
hidden_layer_sizes = [32, 64] # LSTM 层 结构 隐藏层神经元个数
attention_dim = hidden_layer_sizes[-1]  # 注意力层维度 默认为 LSTM输出层维度
output_size = 1 # 单步输出

model = BiLSTMAttentionModel(batch_size, input_len, input_dim, attention_dim, hidden_layer_sizes, output_size=1)  

# 定义损失函数和优化函数
model = model.to(device)
loss_function = nn.MSELoss()  # loss
learn_rate = 0.003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

3.4 模型训练

训练结果

100个epoch,MSE 为0.00559,BiLSTM-Attention预测效果良好,适当调整模型参数,还可以进一步提高模型预测表现。

注意调整参数:

  • 可以适当增加BiLSTM层数和隐藏层的维度,微调学习率;

  • 调整注意力维度数,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

保存训练结果和预测数据,以便和后面ARIMA模型的结果相组合。

4 基于ARIMA的模型预测

传统时序模型(ARIMA等模型)教程如下:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较-CSDN博客

4.1 数据加载,训练数据、测试数据分组,四个分量,划分四个数据集

# 加载数据
from joblib import dump, load
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')

# 训练集
train_set = load('train_data_arima')
# 测试集
test_set = load('test_data_arima')

# IMF1-Model1
model1_train = train_set[0, :]
model1_test = test_set[0, :]
# IMF2-Model2
model2_train = train_set[1, :]
model2_test = test_set[1, :]
# IMF3-Model3
model3_train = train_set[2, :]
model3_test = test_set[2, :]
# IMF4-Model4
model4_train = train_set[3, :]
model4_test = test_set[3, :]

4.2 介绍一个分量预测过程(其他分量类似)

第一步,单位根检验和差分处理

ADF检验P值远小于0.05,故拒绝原假设,即数据是平稳的时间序列数据,也确定了d=0

第二步,模型识别,采用AIC指标进行参数选择

采用AIC指标进行参数选择,得到最小的AIC值的组合为p=2,q=0,选择其作为模型进行拟合,因此针对原数据可知最终确定模型为ARIMA(2,0,0)(结合代码指标结果来看)

第三步,模型预测

第四步,模型评估

保存预测的数据,其他分量预测与上述过程一致,保留最后模型结果即可。

5 结果可视化和模型评估

5.1 组合预测,加载各模型的预测结果

# 训练集
arima_train_set = load('train_data_arima')
# 测试集
arima_test_set = load('test_data_arima')

# IMF1-Model1
model1_imf_arima_pre = load('model1_imf_arima_pre')
# IMF2-Model2
model2_imf_arima_pre = load('model2_imf_arima_pre')
# IMF3-Model3
model3_imf_arima_pre = load('model3_imf_arima_pre')
# IMF4-Model4
model4_imf_arima_pre = load('model4_imf_arima_pre')

# BiLSTM-Attention
original_label_bilstmatt = load('original_label_bilstmatt')
pre_data_bilstmatt = load('pre_data_bilstmatt')

5.2 结果可视化

5.3 模型评估

由分量预测结果可见,前7个分量在BiLSTM-Attention预测模型下拟合效果良好,分量9在ARIMA模型的预测下,拟合程度比较好,其他低频分量拟合效果弱一点,调整参数可增强拟合效果。

代码、数据如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1336195.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SuperMap iClient3D for WebGL时序影像

文章目录 前言一、加载影像数据二、创建时间条1.这里使用Echarts来创建TimeLine,首先需要引入相关依赖2.初始化Echarts实例 三、设置不同年份影像交替显示四、效果 前言 时序影像可以用于对地球表面的变化进行定量分析和监测。 通过对多时相遥感影像的比较和分析&a…

【开源】基于Vue+SpringBoot的新能源电池回收系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户档案模块2.2 电池品类模块2.3 回收机构模块2.4 电池订单模块2.5 客服咨询模块 三、系统设计3.1 用例设计3.2 业务流程设计3.3 E-R 图设计 四、系统展示五、核心代码5.1 增改电池类型5.2 查询电池品类5.3 查询电池回…

铁山靠之——HarmonyOS组件 - 2.0

HarmonyOS学习第二章 一、HarmonyOS基础组件的使用1.1 组件介绍1.2 Text1.2.1 文本样式1.2.2 设置文本对齐方式1.2.3 设置文本超长显示1.2.4 设置文本装饰线 1.3 Image1.3.1 设置缩放类型1.3.2 加载网络图片 1.4 TextInput1.4.1 设置输入提示文本1.4.2 设置输入类型1.4.3 设置光…

了解基础魔法函数学会封装和继承新建模块和函数使用异常

一、魔法函数 1.1、概念: 魔法函数(magic methods)是指以双下划线开头和结尾的特殊方法,用于实现对象的特定行为和操作。这些魔法函数可以让我们自定义对象的行为,例如实现对象的比较、算术运算、属性访问等。常见的…

WPS复选框里打对号,显示小太阳或粗黑圆圈的问题解决方法

问题描述 WPS是时下最流行的字处理软件之一,是目前唯一可以和微软office办公套件相抗衡的国产软件。然而,在使用WPS的过程中也会出现一些莫名其妙的错误,如利用WPS打开docx文件时,如果文件包含复选框,经常会出…

博客摘录「 Apollo安装和基本使用」2023年11月27日

一、常见配置中心对比 Spring Cloud Config: https://github.com/spring-cloud/spring-cloud-configApollo: https://github.com/ctripcorp/apolloNacos: https://github.com/alibaba/nacos 对比项目/配置中心 spring cloud config apollo nacos(重点) 开源时间 2014.9 …

blender scripting 编写

blender scripting 编写 一、查看ui按钮对应的代码二、查看或修改对象名称三、案例:渲染多张图片并导出对应的相机参数 一、查看ui按钮对应的代码 二、查看或修改对象名称 三、案例:渲染多张图片并导出对应的相机参数 注:通过ui交互都设置好…

如何在Window系统下搭建Nginx服务器环境并部署前端项目

1.下载并安装Nginx 在nginx官网nginx: download 下载稳定版本至自己想要的目录。 解压后进入目录 2.启动Nginx服务器 启动方式有两种: (1)直接进入nginx安装目录下,双击nginx.exe运行,此时命令行窗口一闪而过&…

20231222给NanoPC-T4(RK3399)开发板的适配Android11的挖掘机方案并跑通AP6398SV

20231222给NanoPC-T4(RK3399)开发板的适配Android11的挖掘机方案并跑通AP6398SV 2023/12/22 7:54 简略步骤:rootrootrootroot-X99-Turbo:~/3TB$ cat Android11.0.tar.bz2.a* > Android11.0.tar.bz2 rootrootrootroot-X99-Turbo:~/3TB$ tar jxvf Android11.0.tar.…

【MySQL】数据库中为什么使用B+树不用B树

🍎个人博客:个人主页 🏆个人专栏: 数 据 库 ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 B树的特点和应用场景: B树相对于B树的优势: 结论: 结语 我的其他博客 前言 在数据…

超维空间S2无人机使用说明书——31、使用yolov8进行目标识别

引言:为了提高yolo识别的质量,提高了yolo的版本,改用yolov8进行物体识别,同时系统兼容了低版本的yolo,包括基于C的yolov3和yolov4,以及yolov7。 简介,为了提高识别速度,系统采用了G…

C# WPF上位机开发(子窗口通知父窗口更新进度)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 这两天在编写代码的时候,正好遇到一个棘手的问题,解决之后感觉挺有意义的,所以先用blog记录一下,后…

数组基础及相关例题

目录 1.一维数组的初始化 2.二维数组的初始化 3.字符数组 1.puts 2.gets 3.strcat 4.strcpy 5.strcmp 6.strlen ​编辑 7. strlwr与strupr 易错习题 1 2 3 4 5 6 1.一维数组的初始化 2.二维数组的初始化 注意 第一维的长度不用指定,第二维的…

WU反走样算法

WU反走样算法 由离散量表示连续量而引起的失真称为走样,用于减轻走样现象的技术成为反走样,游戏中称为抗锯齿。走样是连续图形离散为想想点后引起的失真,真实像素面积不为 零。走样是光栅扫描显示器的一种固有现象,只能减轻&…

FPGA分频电路设计(2)

实验要求: 采用 4 个开关以二进制形式设定分频系数(0-10),实现对已知信号的分频。 类似实验我之前做过一次,但那次的方法实在是太笨了: 利用VHDL实现一定系数范围内的信号分频电路 需要重做以便将来应对更…

B+树索引和哈希索引的区别?

B树是一个平衡的多叉树,从根节点到每个叶子节点的高度差值不超过1,而且同层级的节点间有指针相互链接,是有序的,如下图: 哈希索引就是采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类…

STM32独立看门狗

时钟频率 40KHZ 看门狗简介 STM32F10xxx 内置两个看门狗,提供了更高的安全性、时间的精确性和使用的灵活性。两个看 门狗设备 ( 独立看门狗和窗口看门狗 ) 可用来检测和解决由软件错误引起的故障;当计数器达到给 定的超时值时,触发一个中…

MyBatis中select语句中使用String[]数组作为参数

😇作者介绍:一个有梦想、有理想、有目标的,且渴望能够学有所成的追梦人。 🎆学习格言:不读书的人,思想就会停止。——狄德罗 ⛪️个人主页:进入博主主页 🗼专栏系列:无 &#x1f33c…

CMakeLists.txt

源码结构 生成可执行程序 # CMake最小版本号 cmake_minimum_required(VERSION 3.15.0)#增加-stdc11 set(CMAKE_CXX_STANDARD 11)#设置工程名称 project(calculate)#[[ #方法一&#xff1a;添加源码文件 #aux_source_directory(< dir > < variable >) #dir&#xf…

Netty组件基础

Netty入门简介 netty是一个异步、基于事件驱动的网络应用框架&#xff0c;用于快速开发可维护、高性能的网络服务器和客户端。 Netty优势 Netty解决了TCP传输问题&#xff0c;如黏包、半包问题&#xff0c;解决了epoll空轮询导致CPU100%的问题。并且Netty对API进行增强&#xf…