智能优化算法应用:基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2025/2/9 3:52:08

智能优化算法应用:基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.斑马算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用斑马算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.斑马算法

斑马算法原理请参考:https://blog.csdn.net/u011835903/article/details/130565746
斑马算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


斑马算法参数如下:

%% 设定斑马优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明斑马算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1335908.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【SpringCloud笔记】(10)消息总线之Bus

Bus 前言 戳我了解Config 学习Config中我们遇到了一个问题: 当我们修改了GitHub上配置文件内容,微服务需要配置动态刷新并且需要手动向客户端发送post请求刷新微服务之后才能获取到GitHub修改过后的内容 假如有多个微服务客户端3355/3366/3377…等等…

List那些坑

很多文章都介绍过这些坑,本文做个记录,并提供解决方案。 1.Arrays.asList的坑 1.1现象 情况1:通过Arrays.asList方法生成的List数据不支持添加操作 使用Arrays.asList方法生成的List数据,不能对其进行删除或者添加操作。代码示例…

【机器学习】Boosting算法-梯度提升算法(Gradient Boosting)

一、原理 梯度提升算法是一种集成学习方法,它可以将多个弱分类器或回归器组合成一个强分类器或回归器,提高预测性能。梯度提升算法的核心思想是利用损失函数的负梯度作为残差的近似值,然后用一个基学习器拟合这个残差,再将其加到之…

【NI-RIO入门】计算和测量cRIO系统的功耗

计算 您可以根据cRIO机箱的最大功耗、机箱和模块的平均功耗,最后通过经验测试cRIO和模块的功耗来计算散热量。每一种散热计算的精确度都逐渐上升,但安全系数也逐渐下降。 注意:请记住,热量输出以英国热量单位 (BTU…

如何学习VBA_3.2.10:人机对话的实现

我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的劳动效率,而且可以提高数据处理的准确度。我推出的VBA系列教程共九套和一部VBA汉英手册,现在已经全部完成,希望大家利用、学习。 如果…

【LeetCode刷题笔记】动态规划(四)

背包问题 0-1 背包问题 有一个背包,它的容量为 C现在有 n 种不同的物品,他们的编号分别是 0...n-1。每一种物品只有一个。在这 n 种物品中,第 i 个物品的重量是 w[i],它的价值为 v[i]问题是:可以向这个背包中放哪些物品,使得在不超过背包容量的基础上,背包中物品的总价…

Python 数据分析 Matplotlib篇 增加注释【plt.text() plt.annotate()】(第3讲)

Python 数据分析 Matplotlib篇 增加注释【plt.text() & plt.annotate()】(第3讲)         🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔…

FPGA-ZYNQ-7000 SoC在嵌入式系统中的优势

FPGA-ZYNQ-7000 SoC在嵌入式系统中的优势 本章节主要参考书籍《Xilinx Zynq-7000 嵌入式系统设计与实现 基于ARM Cortex-A9双核处理器和Vivado的设计方法 (何宾,张艳辉编著)》 本章节主要讲述FPGA-ZYNQ-7000 SoC在嵌入式系统中的优势,学习笔…

String 的特点是什么?它有哪些重要的方法?

几乎所有的 Java 面试都是以 String 开始的,如果第一个问题没有回答好,则会给面试官留下非常不好的第一印象,而糟糕的第一印象则会直接影响到自己的面试结果,就好像刚破壳的小鹅一样,会把第一眼看到的动物当成自己的母…

移动开发新的风口?Harmony4.0鸿蒙应用开发基础+实践案例

前段时间鸿蒙4.0引发了很多讨论,不少业内人士认为,鸿蒙将与iOS、安卓鼎足而三了。 事实上,从如今手机操作系统竞赛中不难看出,安卓与iOS的形态、功能逐渐趋同化,两大系统互相取长补短,综合性能等差距越来越…

【PySpark】Python 中进行大规模数据处理和分析

一、前言介绍 二、基础准备 三、数据输入 四、数据计算 五、数据输出 六、分布式集群运行 一、前言介绍 Spark概述 Apache Spark 是一个开源的大数据处理框架,提供了高效、通用、分布式的大规模数据处理能力。Spark 的主要特点包括: 速度快&#xff1…

【教程】从gitee或者github,下载单个文件或文件夹命令

1.打开git 2.初始化 git init 3.设置允许下载子目录 (不需要修改任何,只要原样复制,需要按照个人状况修改的话我会标注) git config core.sparseCheckout true 4. 选择要下载的单个文件夹的路径 这里单引号内部需要修改&…

C语言学习day10:while语句

while语句属于循环结构&#xff1b; while语句运行图&#xff1a; while语句表达式&#xff1a; while (表达式) {} 代码&#xff1a; int main() {//while (表达式) {//}int i 0;//死循环while (i < 10){printf("%d\n",i);i;}system("pause");ret…

[Python进阶] 操作注册表:winreg

5.22 操作注册表&#xff1a;winreg 5.22.1 注册表概念 在Windows系统中&#xff0c;注册表本质上就是一个数据库&#xff0c;其中存放着硬件、软件、用户、操作系统以及程序相关设置信息。我们除了使用Windows系统自带的regedit程序&#xff0c;也可以通过Python编程读取并操…

3分钟了解安全数据交换系统有什么用!

企业为了保护核心数据安全&#xff0c;都会采取一些措施&#xff0c;比如做网络隔离划分&#xff0c;分成了不同的安全级别网络&#xff0c;或者安全域&#xff0c;接下来就是需要建设跨网络、跨安全域的安全数据交换系统&#xff0c;将安全保障与数据交换功能有机整合在一起&a…

RK3588平台开发系列讲解(AI 篇)RKNN-Toolkit2 模型的加载转换

文章目录 一、Caffe 模型加载接口二、TensorFlow 模型加载接口三、TensorFlowLite 模型加载接口四、ONNX 模型加载五、DarkNet 模型加载接口六、PyTorch 模型加载接口沉淀、分享、成长,让自己和他人都能有所收获!😄 📢 RKNN-Toolkit2 目前支持 Caffe、TensorFlow、Tensor…

Navicat误删除生产环境SQLServer2012单表数据后恢复单表数据

背景&#xff1a; 1-后端更新功能部署到客户生产环境时误将测试环境数据保留&#xff0c;项目负责人发现后告知后端。 2-后端登录客户生产数据库使用navicat删除一张表的单表数据时多删了几条数据&#xff0c;判断弄乱了客户生产环境下自己产生的单表数据。 思路&#xff…

DML语言(重点)———update

格式&#xff1a;update 要修改的对象 set 原来的值新值 -- 修改学员名字,带了简介 代码案例&#xff1a; -- 修改学员名字,带了简介 UPDATE student SET name清宸 WHERE id 1; -- 不指定条件情况下&#xff0c;会改动所有表&#xff01; 代码案例…

【MySQL】数据库之存储引擎

目录 一、什么是存储引擎 MySQL 整个查询执行过程&#xff0c;即MySQL的工作原理&#xff1f; 二、MyISAM 与 InnoDB 的区别&#xff1f; 三、如何查看当前表的存储引擎&#xff1f; 1.查看当前的存储引擎 2.查看数据库支持哪些存储引擎 四、如何设置存储引擎&#xff1f;…

CentOS系统环境搭建(二十六)——使用nginx在无域名情况下使用免费证书设置https

centos系统环境搭建专栏&#x1f517;点击跳转 文章目录 使用nginx在无域名情况下使用免费证书设置https1.获取SSL证书1.1 生成SSL密钥1.2 生成SSL证书1.3 重命名密钥文件 2.nginx配置https2.1 放证书2.2 修改nginx.conf文件2.2.1 将80端口重定向到4432.2.2 端口443配置ssl证书…