pytorch应用(入门4)MLP实现MNIST手写数字分类

news2024/9/22 23:37:44

深层神经网络

前面一章我们简要介绍了神经网络的一些基本知识,同时也是示范了如何用神经网络构建一个复杂的非线性二分类器,更多的情况神经网络适合使用在更加复杂的情况,比如图像分类的问题,下面我们用深度学习的入门级数据集 MNIST 手写体分类来说明一下更深层神经网络的优良表现。

这里其实最有用的是看最后的画图是怎么画的。这里有篇文章:十分钟搞懂Pytorch如何读取MNIST数据集

MNIST 数据集

mnist 数据集是一个非常出名的数据集,基本上很多网络都将其作为一个测试的标准,其来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST)。 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员,一共有 60000 张图片。 测试集(test set) 也是同样比例的手写数字数据,一共有 10000 张图片。

每张图片大小是 28 x 28 的灰度图,如下

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ng8CYPRd-1672557766736)(null)]

所以我们的任务就是给出一张图片,我们希望区别出其到底属于 0 到 9 这 10 个数字中的哪一个。

多分类问题

前面我们讲过二分类问题,现在处理的问题更加复杂,是一个 10 分类问题,统称为多分类问题,对于多分类问题而言,我们的 loss 函数使用一个更加复杂的函数,叫交叉熵。

softmax

提到交叉熵,我们先讲一下 softmax 函数,前面我们见过了 sigmoid 函数,如下

s ( x ) = 1 1 + e − x s(x) = \frac{1}{1 + e^{-x}} s(x)=1+ex1

可以将任何一个值转换到 0 ~ 1 之间,当然对于一个二分类问题,这样就足够了,因为对于二分类问题,如果不属于第一类,那么必定属于第二类,所以只需要用一个值来表示其属于其中一类概率,但是对于多分类问题,这样并不行,需要知道其属于每一类的概率,这个时候就需要 softmax 函数了。

softmax 函数示例如下

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-I5UEmkTm-1672557766723)(null)]

对于网络的输出 z 1 , z 2 , ⋯ z k z_1, z_2, \cdots z_k z1,z2,zk,我们首先对他们每个都取指数变成 e z 1 , e z 2 , ⋯   , e z k e^{z_1}, e^{z_2}, \cdots, e^{z_k} ez1,ez2,,ezk,那么每一项都除以他们的求和,也就是

z i → e z i ∑ j = 1 k e z j z_i \rightarrow \frac{e^{z_i}}{\sum_{j=1}^{k} e^{z_j}} zij=1kezjezi

如果对经过 softmax 函数的所有项求和就等于 1,所以他们每一项都分别表示属于其中某一类的概率。

交叉熵

交叉熵衡量两个分布相似性的一种度量方式,前面讲的二分类问题的 loss 函数就是交叉熵的一种特殊情况,交叉熵的一般公式为

c r o s s _ e n t r o p y ( p , q ) = E p [ − log ⁡ q ] = − 1 m ∑ x p ( x ) log ⁡ q ( x ) cross\_entropy(p, q) = E_{p}[-\log q] = - \frac{1}{m} \sum_{x} p(x) \log q(x) cross_entropy(p,q)=Ep[logq]=m1xp(x)logq(x)

对于二分类问题我们可以写成

− 1 m ∑ i = 1 m ( y i log ⁡ s i g m o i d ( x i ) + ( 1 − y i ) log ⁡ ( 1 − s i g m o i d ( x i ) ) -\frac{1}{m} \sum_{i=1}^m (y^{i} \log sigmoid(x^{i}) + (1 - y^{i}) \log (1 - sigmoid(x^{i})) m1i=1m(yilogsigmoid(xi)+(1yi)log(1sigmoid(xi))

这就是我们之前讲的二分类问题的 loss,当时我们并没有解释原因,只是给出了公式,然后解释了其合理性,现在我们给出了公式去证明这样取 loss 函数是合理的

交叉熵是信息理论里面的内容,这里不再具体展开,更多的内容,可以看到下面的链接

下面我们直接用 mnist 举例,讲一讲深度神经网络

import numpy as np
import torch
from torchvision.datasets import mnist # 导入 pytorch 内置的 mnist 数据

from torch import nn
from torch.autograd import Variable
# 使用内置函数下载 mnist 数据集
train_set = mnist.MNIST('./data', train=True, download=True)
test_set = mnist.MNIST('./data', train=False, download=True)
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Processing...
Done!

我们可以看看其中的一个数据是什么样子的

a_data, a_label = train_set[0]
a_data

请添加图片描述

a_label
5

这里的读入的数据是 PIL 库中的格式,我们可以非常方便地将其转换为 numpy array

a_data = np.array(a_data, dtype='float32')
print(a_data.shape)
(28, 28)

这里我们可以看到这种图片的大小是 28 x 28

print(a_data)
[[  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   3.  18.
   18.  18. 126. 136. 175.  26. 166. 255. 247. 127.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.  30.  36.  94. 154. 170. 253.
  253. 253. 253. 253. 225. 172. 253. 242. 195.  64.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.  49. 238. 253. 253. 253. 253. 253.
  253. 253. 253. 251.  93.  82.  82.  56.  39.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.  18. 219. 253. 253. 253. 253. 253.
  198. 182. 247. 241.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.  80. 156. 107. 253. 253. 205.
   11.   0.  43. 154.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.  14.   1. 154. 253.  90.
    0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0. 139. 253. 190.
    2.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.  11. 190. 253.
   70.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.  35. 241.
  225. 160. 108.   1.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.  81.
  240. 253. 253. 119.  25.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
   45. 186. 253. 253. 150.  27.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.  16.  93. 252. 253. 187.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.   0.   0. 249. 253. 249.  64.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
   46. 130. 183. 253. 253. 207.   2.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.  39. 148.
  229. 253. 253. 253. 250. 182.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.  24. 114. 221. 253.
  253. 253. 253. 201.  78.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.  23.  66. 213. 253. 253. 253.
  253. 198.  81.   2.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.  18. 171. 219. 253. 253. 253. 253. 195.
   80.   9.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.  55. 172. 226. 253. 253. 253. 253. 244. 133.  11.
    0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0. 136. 253. 253. 253. 212. 135. 132.  16.   0.   0.
    0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.]]

我们可以将数组展示出来,里面的 0 就表示黑色,255 表示白色

对于神经网络,我们第一层的输入就是 28 x 28 = 784,所以必须将得到的数据我们做一个变换,使用 reshape 将他们拉平成一个一维向量

def data_tf(x):
    x = np.array(x, dtype='float32') / 255
    x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到
    x = x.reshape((-1,)) # 拉平
    x = torch.from_numpy(x)
    return x

train_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换
test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True)
a, a_label = train_set[0]
print(a.shape)
print(a_label)
torch.Size([784])
5
from torch.utils.data import DataLoader
# 使用 pytorch 自带的 DataLoader 定义一个数据迭代器
train_data = DataLoader(train_set, batch_size=64, shuffle=True)
test_data = DataLoader(test_set, batch_size=128, shuffle=False)

使用这样的数据迭代器是非常有必要的,如果数据量太大,就无法一次将他们全部读入内存,所以需要使用 python 迭代器,每次生成一个批次的数据

a, a_label = next(iter(train_data))
# 打印出一个批次的数据大小
print(a.shape)
print(a_label.shape)
torch.Size([64, 784])
torch.Size([64])
# 使用 Sequential 定义 4 层神经网络
net = nn.Sequential(
    nn.Linear(784, 400),
    nn.ReLU(),
    nn.Linear(400, 200),
    nn.ReLU(),
    nn.Linear(200, 100),
    nn.ReLU(),
    nn.Linear(100, 10)
)
net
Sequential(
  (0): Linear(in_features=784, out_features=400)
  (1): ReLU()
  (2): Linear(in_features=400, out_features=200)
  (3): ReLU()
  (4): Linear(in_features=200, out_features=100)
  (5): ReLU()
  (6): Linear(in_features=100, out_features=10)
)

交叉熵在 pytorch 中已经内置了,交叉熵的数值稳定性更差,所以内置的函数已经帮我们解决了这个问题

# 定义 loss 函数
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1
# 开始训练
losses = []
acces = []
eval_losses = []
eval_acces = []

for e in range(20):
    train_loss = 0
    train_acc = 0
    net.train()
    for im, label in train_data:
        im = Variable(im)
        label = Variable(label)
        # 前向传播
        out = net(im)
        loss = criterion(out, label)
        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 记录误差
        train_loss += loss.item()
        # 计算分类的准确率
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / im.shape[0]
        train_acc += acc
        
    losses.append(train_loss / len(train_data))
    acces.append(train_acc / len(train_data))
    # 在测试集上检验效果
    eval_loss = 0
    eval_acc = 0
    net.eval() # 将模型改为预测模式
    for im, label in test_data:
        im = Variable(im)
        label = Variable(label)
        out = net(im)
        loss = criterion(out, label)
        # 记录误差
        eval_loss += loss.item()
        # 记录准确率
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / im.shape[0]
        eval_acc += acc
        
    eval_losses.append(eval_loss / len(test_data))
    eval_acces.append(eval_acc / len(test_data))
    print('epoch: {}, Train Loss: {:.6f}, Train Acc: {:.6f}, Eval Loss: {:.6f}, Eval Acc: {:.6f}'
          .format(e, train_loss / len(train_data), train_acc / len(train_data), 
                     eval_loss / len(test_data), eval_acc / len(test_data)))
epoch: 0, Train Loss: 0.525527, Train Acc: 0.830690, Eval Loss: 0.214004, Eval Acc: 0.929292
epoch: 1, Train Loss: 0.169223, Train Acc: 0.948527, Eval Loss: 0.156571, Eval Acc: 0.951048
epoch: 2, Train Loss: 0.119509, Train Acc: 0.962537, Eval Loss: 0.141246, Eval Acc: 0.955301
epoch: 3, Train Loss: 0.093633, Train Acc: 0.970349, Eval Loss: 0.096926, Eval Acc: 0.970036
epoch: 4, Train Loss: 0.077827, Train Acc: 0.975413, Eval Loss: 0.088236, Eval Acc: 0.971025
epoch: 5, Train Loss: 0.062835, Train Acc: 0.980211, Eval Loss: 0.090155, Eval Acc: 0.973200
epoch: 6, Train Loss: 0.053678, Train Acc: 0.983109, Eval Loss: 0.084136, Eval Acc: 0.974189
epoch: 7, Train Loss: 0.056607, Train Acc: 0.982343, Eval Loss: 0.075727, Eval Acc: 0.976562
epoch: 8, Train Loss: 0.040552, Train Acc: 0.986774, Eval Loss: 0.065600, Eval Acc: 0.980024
epoch: 9, Train Loss: 0.034272, Train Acc: 0.989272, Eval Loss: 0.121962, Eval Acc: 0.963212
epoch: 10, Train Loss: 0.030490, Train Acc: 0.990005, Eval Loss: 0.067141, Eval Acc: 0.979233
epoch: 11, Train Loss: 0.027200, Train Acc: 0.991188, Eval Loss: 0.160441, Eval Acc: 0.953521
epoch: 12, Train Loss: 0.023948, Train Acc: 0.991904, Eval Loss: 0.076049, Eval Acc: 0.980123
epoch: 13, Train Loss: 0.018909, Train Acc: 0.993503, Eval Loss: 0.065272, Eval Acc: 0.980518
epoch: 14, Train Loss: 0.017229, Train Acc: 0.994386, Eval Loss: 0.067790, Eval Acc: 0.981309
epoch: 15, Train Loss: 0.014564, Train Acc: 0.995253, Eval Loss: 0.067104, Eval Acc: 0.981804
epoch: 16, Train Loss: 0.013621, Train Acc: 0.995819, Eval Loss: 0.076764, Eval Acc: 0.980716
epoch: 17, Train Loss: 0.012969, Train Acc: 0.995836, Eval Loss: 0.154731, Eval Acc: 0.963805
epoch: 18, Train Loss: 0.012531, Train Acc: 0.996202, Eval Loss: 0.098053, Eval Acc: 0.975574
epoch: 19, Train Loss: 0.010139, Train Acc: 0.996635, Eval Loss: 0.072089, Eval Acc: 0.982002

画出 loss 曲线和 准确率曲线

import matplotlib.pyplot as plt
%matplotlib inline
plt.title('train loss')
plt.plot(np.arange(len(losses)), losses)
[<matplotlib.lines.Line2D at 0x1132fb390>]

在这里插入图片描述

plt.plot(np.arange(len(acces)), acces)
plt.title('train acc')
<matplotlib.text.Text at 0x1134fad68>

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SHuXVo5Q-1672557764360)(output_27_1.png)]

plt.plot(np.arange(len(eval_losses)), eval_losses)
plt.title('test loss')
<matplotlib.text.Text at 0x1136d2860>

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-R7g7QbCx-1672557764360)(output_28_1.png)]

plt.plot(np.arange(len(eval_acces)), eval_acces)
plt.title('test acc')
<matplotlib.text.Text at 0x1137a9828>

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Tvhm2M4t-1672557764360)(output_29_1.png)]

可以看到我们的三层网络在训练集上能够达到 99.9% 的准确率,测试集上能够达到 98.20% 的准确率

下面是书中的代码的一部分

import torch
from torch import nn, optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets,transforms



# MLP

class simpleNet(nn .Module):
    def __init__(self, in_dim, n_hidden_1, n_hidden_2,out_dim): # 输入的维度,第一层网络的神经单元个数,第二层网络的神经单元个数,第三层……
        super (simpleNet,self).__init__()
        self.layer1 = nn.Linear(in_dim, n hidden_1)
        self.layer2 = nn.Linear(n_hidden_1, n_hidden_2)
        self.layer3 = nn.Linear(n_hidden_2,out_dim)
    def forward(self, x) :
        x = self.layer1(x)
        x = self.layer2(x) 
        x = self.layer3(x)
        return x

# 激活函数
class Activation_Net(nn.Module) :
    def __init__(self, in_dim, n_hidden_1, n_hidden_2,out_dim) :
        super(NeuralNetwork, self).__init__()
        self.layerl = nn.Sequential(nn.Linear(in_dim, n_hidden_1),nn.ReLU(True))
        self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.ReLU(True))
        self.layer3 = nn.Sequential(nn.Linear(n_hidden_2,out_dim)) # 最后一层不能添加激活函数
        # nn.Sequential()是将网络的层组合到一起
    def forward(self, x) :
        x = self.layerl(x)
        x = self.layer2(x)
        x = self.layer3(x)
        return x
    

# 添加批标准化
class Batch Net (nn .Module) :
    def __init__(self, in_dim, n_hidden_1,n_hidden_2,out_dim) :
        super(Batch_Net, self).__init__()
        self.layerl = nn.Sequential (nn.Linear(in_dim, n_ hidden_1),nn. BatchNormld(n_hidden_1) ,nn.ReLU(True))
        self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2),nn.BatchNorm1d(n_ hidden_2) ,nn.ReLU(True))
        self.layer3 = nn.Sequential(nn.Linear(n_hidden_2,out_dim) )
    def forward(self, x) :
        x = self.layerl(x)
        x = self.layer2(x)
        x = self.layer3(x)
        return x
    '''
    同样使用nn. Sequential()将nn. BatchNorm1d()组合到网络层中,注意批标
准化一般放在全连接层的后面、非线性层( 激活函数)的前面。    
    '''
# 这次的代码多了一个批标准化
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/133588.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MyBatisPlus ---- 条件构造器和常用接口

MyBatisPlus ---- 条件构造器和常用接口1. wapper介绍2. QueryWrappera>例1&#xff1a;组装查询条件b>例2&#xff1a;组装排序条件c>例3&#xff1a;组装删除条件d>例4&#xff1a;条件的优先级e>例5&#xff1a;组装select子句f>例6&#xff1a;实现子查询…

dubbo源码实践-SPI扩展-自适应扩展机制

目录 1 前提必备知识 2 术语定义 3 自适应扩展机制的特点 4 扩展点实践 4.1 用户自定义自适应扩展 4.2 dubbo生成自适应扩展 4 自适应扩展类的用途 1 前提必备知识 具体的使用和原理就不说了&#xff0c;网上有人写的挺好的了。 可以参考&#xff1a; Dubbo SPI之自适…

【北京理工大学-Python 数据分析-1.1】

数据维度 维度&#xff1a;一组数据的组织形式 一维数据&#xff1a;由对等关系的有序或无序数据构成&#xff0c;采用线性组织形式。包括列表、集合和数组&#xff08;python中不常见&#xff0c;但在C和Java中比较常见&#xff09;类型。 列表&#xff1a;数据类型可以不同…

讲座笔记:Representation Learning on Networks

1 传统机器学习 传统机器学习需要进行很多的特征工程 我们希望模型自动学习特征&#xff0c;而不是用人为特征工程的方式1.1 目标 1.2 难点 graph更复杂&#xff0c;CNN和RNN很难直接应用 ——>复杂的拓扑结构&#xff08;不像CNN有网格的概念&#xff09;——>没有固定…

国家队入场,中国数字资产交易市场或将迎来新一轮“洗牌”

‍‍数据智能产业创新服务媒体——聚焦数智 改变商业数字化已经成为中国文化产业的催化剂&#xff0c;一大批文化资源在数字技术的赋能下焕发了崭新的生机。随着数字化的升级与科技进步&#xff0c;数字经济正在成为改变全球竞争格局的关键力量&#xff0c;各国家都争先出台相…

【微服务】Nacos 健康检查机制

目录 一、前言 二、注册中心的健康检查机制 三、Nacos 健康检查机制 四、临时实例健康检查机制 五、永久实例健康检查机制 六、集群模式下的健康检查机制 七、小结 &#x1f496;微服务实战 &#x1f496; Spring家族及微服务系列文章 一、前言 在前文中&#xff0c;…

使用 Helm 安装 MQTT 服务器-EMQX

EMQX ℹ️ Info: 使用 EMQX 通过 Helm3 在 Kubernetes 上部署 EMQX 4.0 集群 | EMQ emqx/deploy/charts/emqx at main-v4.4 emqx/emqx (github.com) emqx/values.yaml at main-v4.4 emqx/emqx (github.com) emqx/emqx-operator: A Kubernetes Operator for EMQ X Broker (git…

Arch Linux/Manjaro安装pycharm

首先换清华源以加快速度 &#xff08;已经换源的小伙伴可以跳过这一步&#xff09; 首先安装vim&#xff0c;用来编辑文件&#xff0c;已经安装过的可以跳过这一步。 sudo pacman -S vim 然后使用vim编辑配置文件 sudo vim /etc/pacman.d/mirrorlist 打开文件以后按inser…

Javaweb——第二章 Jsp和Servlet

目录 2.1 JSP概述 2.2 Servlet概述 2.3 jsp和servlet的区别和联系&#xff1a; ​编辑 2.4 Jsp的生命周期 2.4.1 JSP编译 2.4.2 JSP初始化 2.4.3 JSP执行 2.4.4 JSP清理 2.5 Servlet 2.5.1 Servlet的工作模式 2.5.2 Servlet创建方式 2.5.3 Servlet生命周期 2.1 JS…

JAVA之网络编程学习

文章目录一 java网络编程初识1.1 概述1.2 C/S 架构&B/S架构认识1.2.1 C/S架构1.2.2 B/S架构1.3 网络通信两个要素1.4 IP(Inet Adderss)1.5 InetAddress演示1.6 端口号1.7 InetSocketAddress使用1.8 网络通信协议二 TCP网络编程2.1 信息通信案例2.1.1 TcpClientDemo2.1.2 Tc…

聊聊接口文档的事儿

1、前言 大家好&#xff0c;欢迎来到我的吉鹿&#xff08;记录&#xff09;空间。 最近在做一个前后端分离的项目时&#xff0c;由于后端提供的 API 接口文档实在是一言难尽&#xff0c;导致了开发的效率大大降低。于是我出手了&#xff0c;我决定薅完我20几年的头发来肝一下…

TC275——10GPT12_PWM_Generation

产生PWM的方式有很多&#xff0c;这里尝试使用TC275的GPT12模块&#xff0c;来产生具有固定频率和可变占空比的PWM信号。 GPT12就是General Purpose Timer Unit通用定时器模块&#xff0c;它包含5个16位定时器&#xff0c;被分给GPT1和GPT2。 这里使用GPT1&#xff08;T2、T3…

LinuxQQ3.0体验和下载方式

体验 2022年12月31日推出了LinuxQQ3.0版本&#xff0c;2.0版本特别复古 3.0特别丝滑 支持QQ空间 管理界面与WindowsQQ一致 支持截图和表情&#xff0c;传输文件图片很方便 下载方式 下载链接 im.qq.com/linuxqq/index.shtml 选择合适的版本下载即可 从下载文件夹中可以找到…

.Net 6实现旋转验证码

前几篇文章&#xff0c;介绍了.Net 6实现的滑动验证码功能&#xff0c;最近把滑动验证码的ImageSharp替换成了SkiaSharp&#xff0c;其中抠图部分参考了pojianbing大神的代码。滑动验证码完成之后&#xff0c;心想着。做一个旋转验证码。其实旋转验证码跟滑动验证码及其类似。 …

跨系统实时同步数据解决方案

数据量太大&#xff0c;单存储节点存不下&#xff0c;就只能把数据分片存储。 数据分片后&#xff0c;对数据的查询就没那么自由。如订单表按用户ID作为Sharding Key&#xff0c;就只能按用户维度查询。我是商家&#xff0c;我想查我店铺的订单&#xff0c;做不到。&#xff0…

ubuntu18.04下mysql数据库C语言API操作总结

通过C/C去操作数据库需要调用mysql客户端api&#xff0c;常用api和调用举例见后面。 目录 一.常用api 1.环境初始化 2.连接 mysql 的服务器 3.增删改查操作 4.事务处理 5.处理查询数据集合 6.释放资源&#xff0c;关闭连接 7.字符集相关 8.获取错误信息 二.api调用举…

Linux杂谈之sudo

一 sudo配置文件/etc/sudoers介绍 ① 什么是sudo 1) sudo 的英文全称是 super user do&#xff0c;即以超级用户root 用户的方式执行命令2) /etc/sudoers 是一个文本文件,只有root用户有该命令的执行权限 1) 允许普通用户以特权用户的权限去执行某些特权命令,访问和使用本…

优秀国土空间规划设计网络评选投票投票怎么进行小程序免费使用

如果通过一个小程序免费制作一个微信投票活动呢&#xff1f;文章详细讲解如何利用一款免费好用的微信小程序“活动星投票”小程序来制作投票活动&#xff0c;无需注册即可免费制作&#xff0c;非常的方便快捷&#xff0c;可以实现视频投票、分组投票、隐藏选手票数、导出投票数…

【Linux】进程概念(下)

​&#x1f320; 作者&#xff1a;阿亮joy. &#x1f386;专栏&#xff1a;《学会Linux》 &#x1f387; 座右铭&#xff1a;每个优秀的人都有一段沉默的时光&#xff0c;那段时光是付出了很多努力却得不到结果的日子&#xff0c;我们把它叫做扎根 目录&#x1f449;进程状态&…

手把手教你用Python和OpenCV搭建一个半自动标注工具(详细步骤 + 源码)

导 读 本文将手把手教你用Python和OpenCV搭建一个半自动标注工具&#xff08;包含详细步骤 源码&#xff09;。 背景介绍 样本标注是深度学习项目中最关键的部分&#xff0c;甚至在模型学习效果上起决定性作用。但是&#xff0c;标注工作往往非常繁琐且耗时。一种解决方案是…