H266/VVC帧内预测编码技术概述

news2025/2/11 14:14:59

预测编码技术

预测编码(Prediction Coding)是指利用已编码的一个或多个样本值,根据某种模型或方法,对当前的样本值进行预测,并对样本真实值和预测值之间的差值进行编码。

视频中的每个像素看成一个信源符号,它通常与空域上或时域上邻近的像素具有较强的相关性,因此视频是一种有记忆信源
预测编码技术通过预测模型消除像素间的相关性,得到的差值信号可以认为没有相关性,或者相关性很小,因此可以作为无记忆信源进行编码。

视频预测编码的主要思想是通过预测来消除像素间的相关性;主要分为帧内预测帧间预测
帧内预测:利用当前图像内已编码像素生成预测值。
帧间预测:利用当前图像之前已编码图像的重建像素生成预测值。

H266/VVC帧内预测编码过程

参考像素获取

参考像素值获取模块对当前CU相邻参考像素是否可用进行判断。H266沿用大范围边界像素作为当前CU的参考,当参考像素不可用或不存在时使用默认值填充的方式得等到参考像素值。
H266引用多参考行内预测(Multiple Reference Line Intra Prediction, MRLP)技术,领域像素可选范围扩展到当前CU上侧三行和左侧三列。
得到邻域像素后,进行平滑滤波或差值滤波,引入模式依赖的帧内平滑(Mode Dependent Smoothing,MDIS)技术,根据预测模式和CU尺寸进行不同的滤波处理。
在这里插入图片描述

参考像素范围

单参考行像素:
当参考像素不存在或者不可用时(比如图像边界、Slice边界、Tile边界或尚未编码块),H266使用最邻近的像素进行填充,比如下图A的参考像素不存在,则A所有像素都用B的最下方的像素进行填充。
在这里插入图片描述
如果所有区域参考像素都不可用,则用固定值填充;公式Mid=1<<(bitdepth-1);如果像素比特深度是8,则固定值是128,如果是10,则固定值是512;比如第一个CU的参考像素就是用固定值填充。

多参考行像素:
MRLP技术允许使用邻近的3行(列)参考像素,选择其中的1行(列)生成预测值,对于不存在或者不可用的像素,采用于单行相同的填充方式。
为了平衡性能,仅允许MPM列表中的模式使用MRLP技术。
在这里插入图片描述

参考像素滤波

MDIS 包含3种滤波器。满足条件下的整数平滑滤波非整像素下的三次插值滤波器非整像素的高斯插值滤波器
整数平滑滤波:
是否对参考像素进行滤波由当前CU的大小、预测模式等条件,需要同时满足如下表格中的五个条件才能使用平滑滤波。

序号条件
1参考行限制:预测过程使用单参考行像素
2大小限制:当前CU包含像素的个数大于32
3仅对亮度分量使用
4不使用ISP模式
5模式限制:当前CU选择的模式属于Planar模式或者对角模式

滤波方法为3抽头滤波器,抽头系数为[0.25, 0.5, 0.25]

三次插值滤波器:
在非整像素可以保留更多的细节纹理,满如条件中(使用了MRLP技术或ISP技术、使用了Planar模式或对角模式Dist~min~ <=Thr[n])其中一个即可使用。

高斯插值滤波器:
滤波效果更加平滑,应用更加广泛,不满足三次插值滤波器时使用。

预测值计算

根据参考像素值,采用特定的预测模式计算待编码CU每个像素的预测值。H266将角度预测模式扩展到了65种,加上DC模式和Planar模式一共67种模式称为传统预测模式。
针对宽高不等的方形CU,宽角度帧内预测(Wide Angle Intra Prediction,WAIP)技术表达了更多的预测方向,模式编码扩展[-14, 80]
H266还引入了基于矩阵的帧内预测(Matrix-based Intra Prediction,MIP)技术,借助神经网络离线训练得到的多个权重矩阵生成预测值,对传统预测模式有效补充。
在这里插入图片描述
Planar模式:
编号0,适用于像素值缓慢变化的区域,其预测像素可以看成是水平、垂直两个方向预测值的平均值。

DC模式:
编号1,适用于大面积平坦区域,DC模式需要计算出当前CU左侧及上方参考像素的平均值。

传统角度模式:
位于-135°~45°内,水平类模式编号为2 ~ 33,垂直类编号34 ~ 66;每种角度预测模式都相当于在水平或垂直方向做了角度偏移,如下表。
在这里插入图片描述
宽角度预测模式:
在H266中,二叉树划分和三叉树划分都会导致非方形CU的出现,传统的角度模式范围可能会限制非方形CU对参考像素的选择。相应的角度偏移如下表。
针对非方形CU,增加宽角度预测模式后,仍使用65重候选角度预测模式,即增加的宽角度预测模式替换了部分传统角度预测模式;一般会根据宽高比来替换不同的传统角度编号。
在这里插入图片描述
基于矩阵的预测模式:
传统预测模式及宽角度预测模式都是以像素映射或线性渐变方式计算预测值,无法对不规则纹理做出有效的预测。H266标准使用了MIP技术,采用离线训练神经网络的方法,得到多个固定的权重矩阵,进而利用权重矩阵计算预测值。
参考像素经过处理后得到输入向量,输入向量与权重矩阵相乘得到输出向量,经过进一步排列和上采样得到待编码CU的预测值,如下图流程。
在这里插入图片描述

预测值修正

基于像素距离对部分帧内预测模式的预测值进行修正,H266/VVC使用了位置相关的帧内预测组合(Position Dependent Intra Prediction Combination,PDPC)技术,借助不同位置的参考像素值修正预测值。

该技术将参考像素与预测像素之间的距离作为权重计算修正值,再与预测值加权计算的得到最终的预测值,该过程称为预测值修正

PDPC技术仅对部分预测模式进行修正,具体包括Planar模式DC模式编号[2, 18]编号[50, 66]内的角度预测模式。

帧内子区域划分(Intra Sub-Partitions, ISP)技术

ISP技术旨在充分利用与待预测像素距离相近的参考像素进行预测。根据编码块得到大小,将亮度帧内预测块垂直划分或水平划分为若干个子区域,并按照从左到右、从上到下的额顺序依次进行编码及重建。
ISP技术使得帧内预测编码可以基于CU子区域进行,前一个子区域编码之后的重建像素为下一个子区域提供参考,各子区域共用同一种帧内预测模式。
在这里插入图片描述

分量间线性模型预测(Cross-Component Linear Model Prediction, CCLM)技术

在H266中,CU色度分量进行预测编码前,亮度分量已经完成编码获得亮度重建值,因此亮度分量可以作为色度分量预测的参考信息。CCLM技术通过参考像素的亮度重建值和色度重建值建立分量间线性关系,根据待预测像素的亮度重建值计算色度预测值,过程如下图。
在这里插入图片描述

亮度分量的最可能模式(Most Probable Mode,MPM)技术

MPM技术充分利用相邻块预测模式之间的相关性,来进行亮度预测模式的编码。

色度分量亮度派生模式(Derived Mode,DM)技术

针对色度预测模式编码,H266使用了DM模式,即直接使用对应位置的亮度预测查模式信息。

H266/VVC帧内预测编码工具使用限制条件

帧内编码工具使用限制说明
MRLP仅在MPM模式中使用、禁用PDPC技术、ISP技术不应用
MDIS仅应用于亮度分量、仅部分模式应用、MIP技术不应用、CCLM技术不应用
WAIPCU宽高比不为1时可以应用
MIP色度分量受限使用、禁用MDIS技术、禁用MRLP技术、禁用PDPC技术、ISP技术不应用
PDPC仅部分模式应用、ISP技术受限应用、MRLP技术不应用、MIP模式不应用
ISP仅应用于亮度分量、禁用MRLP技术、禁用MIP技术、PDPC技术受限应用
CCLM仅应用于色度分量、禁用MDIS技术、禁用MRLP技术、禁用PDPC技术
MPM仅应用于亮度编码过程
DM仅应用于色度编码过程

参考

JVET输出文档: https://www.itu.int/wftp3/av-arch/jvet-site/
书籍: 新一代通用视频编码H266/VVC:原理、标准与实现[万帅 霍俊彦 马彦卓 杨付正/著]

备注

本系列博客主要是对《新一代通用视频编码H266/VVC:原理、标准与实现》的学习笔记。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1335549.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MFC读取文件数据,添加信息到列表并保存到文件

打开并读取文件信息 添加&#xff1a; BOOL infoDlg::OnInitDialog() {CDialogEx::OnInitDialog();// TODO: 在此添加额外的初始化AfxMessageBox("欢迎查看学生信息");SetList();return TRUE; // return TRUE unless you set the focus to a control// 异常: OCX 属…

Node 源项目定制化、打包并使用全过程讲解

&#x1f468;&#x1f3fb;‍&#x1f4bb; 热爱摄影的程序员 &#x1f468;&#x1f3fb;‍&#x1f3a8; 喜欢编码的设计师 &#x1f9d5;&#x1f3fb; 擅长设计的剪辑师 &#x1f9d1;&#x1f3fb;‍&#x1f3eb; 一位高冷无情的编码爱好者 大家好&#xff0c;我是全栈工…

分布式面试题-理论部分(十二道)

文章目录 分布式面试题&#xff08;十二道&#xff09;分布式理论1. 说说CAP原理2. 为什么CAP不可兼得呢&#xff1f;3. CAP对应的模型和应用&#xff1f;4. BASE理论了解吗&#xff1f; 分布式锁5. 有哪些分布式锁的实现方案呢&#xff1f;**5.1 MySQL分布式锁如何实现呢&…

[2023-年度总结]凡是过往,皆为序章

原创/朱季谦 2023年12月初&#xff0c;傍晚&#xff0c;在深圳的小南山看了一场落日。 那晚我们坐在山顶的草地上&#xff0c;拍下了这张照片——仿佛在秋天的枝头上&#xff0c;结出一颗红透的夕阳。 这一天很快就会随着夜幕的降临&#xff0c;化作记忆的碎片&#xff0c;然…

PoE交换机传输距离是多少?100米?250米?

你们好&#xff0c;我的网工朋友。 今天和你聊聊PoE交换机&#xff0c;之前有系统地给你讲解过一篇&#xff0c;可以先回顾一下哈&#xff1a;《啥样的交换机才叫高级交换机&#xff1f;这张图告诉你》 为什么都说PoE交换机好&#xff1f;它最显著的特点就是&#xff1a; 可…

openGauss学习笔记-173 openGauss 数据库运维-备份与恢复-导入数据-对表执行VACUUM

文章目录 openGauss学习笔记-173 openGauss 数据库运维-备份与恢复-导入数据-对表执行VACUUM openGauss学习笔记-173 openGauss 数据库运维-备份与恢复-导入数据-对表执行VACUUM 如果导入过程中&#xff0c;进行了大量的更新或删除行时&#xff0c;应运行VACUUM FULL命令&…

【2024 行人重识别最新进展】ReID3D:首个关注激光雷达行人 ReID 的工作!

【2024 行人重识别最新进展】ReID3D&#xff1a;首个关注激光雷达行人 ReID 的工作&#xff01; 摘要&#xff1a;数据集&#xff1a;方法模型&#xff1a;多任务预训练&#xff1a;ReID Network&#xff1a; 实验结果&#xff1a;结论&#xff1a; 来源&#xff1a;Arxiv 2023…

Jenkins的特殊操作定时自动执行任务以及测试报告调优

java -Dhudson.model.DirectoryBrowserSupport.CSP -jar Jenkins.war 测试报告 不美丽 执行上面的代码 重启jenkins 就好了

Ensp dhcp全局地址池(配置命令 + 实例)

使用DHCP的好处&#xff1a;减少管理员的工作量、避免输入错误的可能、避免ip冲突 DHCP报文类型&#xff1a; DHCP DISCOVER:客户端用来寻找DHCP服务器 DHCP OFFER:DHCP服务器用来响应DHCP DISCOVER报文&#xff0c;此报文携带了各种配置信息 DHCP REQUEST:客户端配置请求确…

8+WGCNA+免疫+实验,干湿结合的经典生信思路,可冲

今天给同学们分享一篇生信文章“Identifying the key genes of Epstein-Barr virus-regulated tumour immune microenvironment of gastric carcinomas”&#xff0c;这篇文章发表在Cell Prolif期刊上&#xff0c;影响因子为8.5。 结果解读&#xff1a; EBV感染改变了胃癌中的…

【Java注解的作用是什么?】

&#x1f341;Java注解的作用是什么&#xff1f; &#x1f341;典型解析&#x1f341;扩展知识仓&#x1f341;什么是元注解&#x1f341;Retention&#x1f341;Target&#x1f341;Documented&#x1f341;Inherited &#x1f341;典型解析 Java 注解用于为 Java 代码提供元数…

【DataGrip使用小技巧】2

【技巧1】要将活动编辑器与剪贴板内容进行比较&#xff0c;请右键单击编辑器中的任意位置&#xff0c;然后从上下文菜单中选择compare with Clipboard. 如图所示 剪贴板和编辑器的比较一目了然 【技巧2】若要创建表的备份副本&#xff0c;请将表拖到数据库树视图中同一数据源的…

AI项目十九:YOLOV8实现目标追踪

若该文为原创文章&#xff0c;转载请注明原文出处。 主要是学习一下实现目标追踪的原理&#xff0c;并测试一下效果。 目的是通过YOLOV8实现人员检测&#xff0c;并实现人员追踪&#xff0c;没个人员给分配一个ID&#xff0c;实现追踪的效果。 也可以统计人数。在小区办公楼…

Linux:线程优先级设置

目录 一、背景二、调整普通线程的优先级通过系统命令通过Linux C代码 三、调整实时线程的优先级通过系统命令通过Linux C代码 四、参考资料&#xff08;建议一定要阅读&#xff09; 在操作系统中&#xff0c;线程优先级决定了线程在 CPU 调度时的重要性。较高优先级的线程会在竞…

Python能做大项目(6)Poetry -- 项目管理的诗和远方之一

[Poetry] 是一个依赖管理和打包工具。Poetry 的作者解释开发 Poetry 的初衷时说&#xff1a; 通过前面的案例&#xff0c;我们已经提出了一些问题。但不止于此。 当您将依赖加入到 requirements.txt 时&#xff0c;没有人帮你确定它是否与既存的依赖能够和平共处&#xff0c;这…

java数据结构与算法刷题-----LeetCode633. 平方数之和

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 思路一&#xff1a;双指针 可以使用双指针&#xff0c;不断从两个方向匹配…

分享71个Java源码总有一个是你想要的

分享71个Java源码总有一个是你想要的 学习知识费力气&#xff0c;收集整理更不易。 知识付费甚欢喜&#xff0c;为咱码农谋福利。 链接&#xff1a;https://pan.baidu.com/s/1frK-W3GT8WrydSlQ-E3o6A?pwd6666 提取码&#xff1a;6666 UI代码 def __init__(self):import …

大数据技术学习笔记(十一)—— Flume

目录 1 Flume 概述1.1 Flume 定义1.2 Flume 基础架构 2 Flume 安装3 Flume 入门案例3.1 监控端口数据3.2 实时监控单个追加文件3.3 实时监控目录下多个新文件3.4 实时监控目录下的多个追加文件 4 Flume 进阶4.1 Flume 事务4.2 Flume Agent 内部原理4.3 Flume 拓扑结构4.3.1 简单…

C++之多层 if-else-if 结构优化(三)

C之多层 if-else-if 结构优化(二)-CSDN博客 接上面的内容继续讲解多层 if-else-if结构优化 8、利用规则执行器来进行优化 8.1 业务场景介绍 if (未注册用户){return false; }if (是否国外用户) {return false; }if (刷单用户) {return false; }if (未付费用户 && 不…

数据仓库【2】:架构

数据仓库【2】&#xff1a;架构 1、架构图2、ETL流程2.1、ETL -- Extract-Transform-Load2.1.1、数据抽取&#xff08;Extraction&#xff09;2.1.2、数据转换&#xff08;Transformation&#xff09;2.1.3、数据加载&#xff08; Loading &#xff09; 2.2、ETL工具2.2.1、结构…