路径规划最全综述+代码+可视化绘图(Dijkstra算法+A*算法+RRT算法等)

news2024/11/12 16:54:18

路径规划综述

在这里插入图片描述

1. 背景介绍

路径规划是指在给定的环境中找到从起点到终点的最佳路径的过程。它在现实生活中有着广泛的应用,包括无人驾驶、物流配送、机器人导航等领域。随着人工智能和计算机技术的发展,路径规划技术也在不断地得到改进和应用。
路径规划中常见的算法可以分为两类:基于搜索的规划和基于采样的规划。

基于搜索的规划包括

  • Breadth-First Searching (BFS)、
  • Depth-First Searching (DFS)、
  • Best-First Searching、
  • Dijkstra’s、
  • A*、
  • Bidirectional A*、
  • Anytime Repairing A*、
  • Learning Real-time A* (LRTA*)、
  • Real-time Adaptive A* (RTAA*)、
  • Lifelong Planning A* (LPA*)、
  • Dynamic A* (D*)、
  • D* Lite 和
  • Anytime D*

等算法。这些算法通过搜索图形结构来找到最短或最优的路径,其中 A* 是最为常用和经典的算法之一。

优缺点比较
  1. BFS(Breadth-First Searching)
    优点:可找到最短路径;适用于无权图。

缺点:时间复杂度高;空间复杂度高。

  1. DFS(Depth-First Searching)
    优点:空间复杂度低。
    在这里插入图片描述

缺点:可能会陷入死循环;不一定能找到最短路径。

  1. Best-First Searching
    优点:速度快;可以处理启发式信息。

缺点:可能会陷入局部最优解。

  1. Dijkstra’s
    优点:可以找到最短路径;适用于有权图。

缺点:时间复杂度高;不能处理负权边。

  1. A*
    优点:速度快;可以处理启发式信息;可以找到最短路径。

缺点:可能会陷入局部最优解。

  1. Bidirectional A*
    优点:速度快;可以找到最短路径。

缺点:需要存储两个搜索树;可能会出现问题,例如搜索空间过大或搜索树生长过慢。

  1. Anytime Repairing A*
    优点:可以在任何时候停止搜索并返回最佳路径;可以处理启发式信息。
    在这里插入图片描述

缺点:可能会陷入局部最优解。

  1. LRTA* (Learning Real-time A*)
    优点:可以处理动态环境;可以处理启发式信息。

缺点:需要进行实时计算,可能会导致性能问题。

  1. RTAA* (Real-time Adaptive A*)
    优点:可以处理动态环境;可以处理启发式信息。

缺点:需要进行实时计算,可能会导致性能问题。

  1. LPA* (Lifelong Planning A*)
    优点:可以在不同的时间段进行搜索;可以处理启发式信息。

缺点:需要存储大量的搜索树。

class Node:
    def __init__(self, n):
        self.x = n[0]
        self.y = n[1]
        self.parent = None


class RrtStarSmart:
    def __init__(self, x_start, x_goal, step_len,
                 goal_sample_rate, search_radius, iter_max):
        self.x_start = Node(x_start)
        self.x_goal = Node(x_goal)
        self.step_len = step_len
        self.goal_sample_rate = goal_sample_rate
        self.search_radius = search_radius
        self.iter_max = iter_max

        self.env = env.Env()
        self.plotting = plotting.Plotting(x_start, x_goal)
        self.utils = utils.Utils()

        self.fig, self.ax = plt.subplots()
        self.delta = self.utils.delta
        self.x_range = self.env.x_range
        self.y_range = self.env.y_range
        self.obs_circle = self.env.obs_circle
        self.obs_rectangle = self.env.obs_rectangle
        self.obs_boundary = self.env.obs_boundary

        self.V = [self.x_start]
        self.beacons = []
        self.beacons_radius = 2
        self.direct_cost_old = np.inf
        self.obs_vertex = self.utils.get_obs_vertex()
        self.path = None

    def planning(self):
        n = 0
        b = 2
        InitPathFlag = False
        self.ReformObsVertex()

        for k in range(self.iter_max):
            if k % 200 == 0:
                print(k)

            if (k - n) % b == 0 and len(self.beacons) > 0:
                x_rand = self.Sample(self.beacons)
            else:
                x_rand = self.Sample()

            x_nearest = self.Nearest(self.V, x_rand)
            x_new = self.Steer(x_nearest, x_rand)

            if x_new and not self.utils.is_collision(x_nearest, x_new):
                X_near = self.Near(self.V, x_new)
                self.V.append(x_new)

                if X_near:
                    # choose parent
                    cost_list = [self.Cost(x_near) + self.Line(x_near, x_new) for x_near in X_near]
                    x_new.parent = X_near[int(np.argmin(cost_list))]

                    # rewire
                    c_min = self.Cost(x_new)
                    for x_near in X_near:
                        c_near = self.Cost(x_near)
                        c_new = c_min + self.Line(x_new, x_near)
                        if c_new < c_near:
                            x_near.parent = x_new

                if not InitPathFlag and self.InitialPathFound(x_new):
                    InitPathFlag = True
                    n = k

                if InitPathFlag:
                    self.PathOptimization(x_new)
                if k % 5 == 0:
                    self.animation()

        self.path = self.ExtractPath()
        self.animation()
        plt.plot([x for x, _ in self.path], [y for _, y in self.path], '-r')
        plt.pause(0.01)
        plt.show()

    def PathOptimization(self, node):
        direct_cost_new = 0.0
        node_end = self.x_goal

        while node.parent:
            node_parent = node.parent
            if not self.utils.is_collision(node_parent, node_end):
                node_end.parent = node_parent
            else:
                direct_cost_new += self.Line(node, node_end)
                node_end = node

            node = node_parent

        if direct_cost_new < self.direct_cost_old:
            self.direct_cost_old = direct_cost_new
            self.UpdateBeacons()

    def UpdateBeacons(self):
        node = self.x_goal
        beacons = []

        while node.parent:
            near_vertex = [v for v in self.obs_vertex
                           if (node.x - v[0]) ** 2 + (node.y - v[1]) ** 2 < 9]
            if len(near_vertex) > 0:
                for v in near_vertex:
                    beacons.append(v)

            node = node.parent

        self.beacons = beacons

    def ReformObsVertex(self):
        obs_vertex = []

        for obs in self.obs_vertex:
            for vertex in obs:
                obs_vertex.append(vertex)

        self.obs_vertex = obs_vertex

    def Steer(self, x_start, x_goal):
        dist, theta = self.get_distance_and_angle(x_start, x_goal)
        dist = min(self.step_len, dist)
        node_new = Node((x_start.x + dist * math.cos(theta),
                         x_start.y + dist * math.sin(theta)))
        node_new.parent = x_start

        return node_new

    def Near(self, nodelist, node):
        n = len(self.V) + 1
        r = 50 * math.sqrt((math.log(n) / n))

        dist_table = [(nd.x - node.x) ** 2 + (nd.y - node.y) ** 2 for nd in nodelist]
        X_near = [nodelist[ind] for ind in range(len(dist_table)) if dist_table[ind] <= r ** 2 and
                  not self.utils.is_collision(node, nodelist[ind])]

        return X_near

    def Sample(self, goal=None):
        if goal is None:
            delta = self.utils.delta
            goal_sample_rate = self.goal_sample_rate

            if np.random.random() > goal_sample_rate:
                return Node((np.random.uniform(self.x_range[0] + delta, self.x_range[1] - delta),
                             np.random.uniform(self.y_range[0] + delta, self.y_range[1] - delta)))

            return self.x_goal
        else:
            R = self.beacons_radius
            r = random.uniform(0, R)
            theta = random.uniform(0, 2 * math.pi)
            ind = random.randint(0, len(goal) - 1)

            return Node((goal[ind][0] + r * math.cos(theta),
                         goal[ind][1] + r * math.sin(theta)))

    def SampleFreeSpace(self):
        delta = self.delta

        if np.random.random() > self.goal_sample_rate:
            return Node((np.random.uniform(self.x_range[0] + delta, self.x_range[1] - delta),
                         np.random.uniform(self.y_range[0] + delta, self.y_range[1] - delta)))

        return self.x_goal
  1. D* (Dynamic A*)
    优点:可以处理动态环境;可以处理启发式信息。

缺点:需要存储大量的搜索树。

  1. D* Lite
    优点:可以处理动态环境;可以处理启发式信息;空间复杂度低。

缺点:可能会陷入局部最优解。

  1. Anytime D*
    优点:可以在任何时候停止搜索并返回最佳路径;可以处理动态环境;可以处理启发式信息。

缺点:可能会陷入局部最优解。

基于采样的规划则是利用随机采样的方法来生成路径

其中最常见的算法是

  • RRT、

  • RRT-Connect、

  • Extended-RRT、

  • Dynamic-RRT、

  • RRT*、

  • Informed RRT*、

  • RRT* Smart、

  • Anytime RRT*、

  • Closed-Loop RRT*、

  • Spline-RRT*、

  • Fast Marching Trees (FMT*) 和

  • Batch Informed Trees (BIT*)

等算法。这些算法适用于复杂环境中的路径规划,如机器人导航、无人驾驶和物流配送等领域。

优缺点
  1. RRT (Rapidly-Exploring Random Trees)
    优点:适用于高维空间;能够有效处理复杂环境;运算速度较快。
    在这里插入图片描述

缺点:无法保证找到最优解;生成的路径可能不是最短路径。

  1. RRT-Connect
    优点:可以保证找到可行路径;适用于多机器人路径规划问题。

缺点:路径质量可能较差;可能收敛速度较慢。

  1. Extended-RRT
    优点:能够处理非完整动力学系统;适用于多机器人协同规划。

缺点:路径质量可能较差;运算速度较慢。

  1. Dynamic-RRT
    优点:能够处理动态环境中的路径规划问题;适用于移动机器人和无人机等领域。
    在这里插入图片描述

缺点:运算速度较慢;路径质量可能较差。

  1. RRT* (Rapidly-Exploring Random Trees Star)
    优点:能够找到最优路径;路径质量较高。

缺点:运算速度较慢;可能需要大量的存储空间。

  1. Informed RRT*
    优点:结合了启发式信息,能够加速搜索过程;能够找到近似最优解。

缺点:运算速度较慢;路径质量可能较差。

  1. RRT* Smart
    优点:通过智能采样策略提高搜索效率;能够找到最优路径。

缺点:运算速度较慢;路径质量可能较差。

  1. Anytime RRT*
    优点:可以在任何时候停止搜索并返回当前的最佳路径;能够找到近似最优解。

缺点:路径质量可能较差;需要进行实时计算。

  1. Closed-Loop RRT*
    优点:能够处理非完整动力学系统和约束条件;路径质量较高。
    在这里插入图片描述

缺点:运算速度较慢;可能需要大量的存储空间。

# --------Visualization specialized for dynamic RRT
    def visualization(self):
        if self.ind % 100 == 0 or self.done:
            V = np.array(self.V)
            Path = np.array(self.Path)
            start = self.env.start
            goal = self.env.goal
            # edges = []
            # for i in self.Parent:
            #     edges.append([i, self.Parent[i]])
            edges = np.array([list(i) for i in self.Edge])
            ax = plt.subplot(111, projection='3d')
            # ax.view_init(elev=0.+ 0.03*initparams.ind/(2*np.pi), azim=90 + 0.03*initparams.ind/(2*np.pi))
            # ax.view_init(elev=0., azim=90.)
            ax.view_init(elev=90., azim=0.)
            ax.clear()
            # drawing objects
            draw_Spheres(ax, self.env.balls)
            draw_block_list(ax, self.env.blocks)
            if self.env.OBB is not None:
                draw_obb(ax, self.env.OBB)
            draw_block_list(ax, np.array([self.env.boundary]), alpha=0)
            draw_line(ax, edges, visibility=0.75, color='g')
            draw_line(ax, Path, color='r')
            # if len(V) > 0:
            #     ax.scatter3D(V[:, 0], V[:, 1], V[:, 2], s=2, color='g', )
            ax.plot(start[0:1], start[1:2], start[2:], 'go', markersize=7, markeredgecolor='k')
            ax.plot(goal[0:1], goal[1:2], goal[2:], 'ro', markersize=7, markeredgecolor='k')
            # adjust the aspect ratio
            set_axes_equal(ax)
            make_transparent(ax)
            # plt.xlabel('s')
            # plt.ylabel('y')
            ax.set_axis_off()
            plt.pause(0.0001)


if __name__ == '__main__':
    rrt = dynamic_rrt_3D()
    rrt.Main()
  1. Spline-RRT*
    优点:通过样条插值提高路径质量;能够找到平滑的路径。

缺点:运算速度较慢;可能需要大量的存储空间。

  1. Fast Marching Trees (FMT*)
    优点:运算速度快;能够找到最短路径。
    在这里插入图片描述

缺点:路径质量可能较差;在高维空间中效果可能不理想。

  1. Batch Informed Trees (BIT*)
    优点:通过批量采样提高搜索效率;能够找到最优路径。

缺点:运算速度较慢;可能需要大量的存储空间。

2. 常见的路径规划算法

2.1 Dijkstra算法

Dijkstra算法是一种用于图中寻找最短路径的算法,它可以应用于有向图或无向图。该算法通过不断更新起点到各个顶点的最短路径来找到最终的最短路径。Dijkstra算法的时间复杂度为O(V^2),其中V为顶点数,但可以通过优先队列实现最小堆来优化时间复杂度。
在这里插入图片描述

2.2 A*算法

A算法是一种启发式搜索算法,它结合了Dijkstra算法和贪婪最佳优先搜索算法的优点。A算法通过估计从当前节点到目标节点的代价来动态调整搜索方向,从而更快地找到最佳路径。A*算法在很多实际应用中表现出色,并且具有较高的效率和准确性。
在这里插入图片描述

2.3 RRT算法

RRT(Rapidly-exploring Random Tree)算法是一种适用于高维空间的路径规划算法,它通过随机采样和不断扩展树形结构来搜索路径。RRT算法适用于具有复杂空间结构的环境,并且在机器人导航和运动规划中有着广泛的应用。

3. 路径规划在无人驾驶中的应用

无人驾驶技术作为当今人工智能领域的热点之一,路径规划在其中扮演着至关重要的角色。无人驾驶车辆需要通过传感器获取周围环境信息,并利用路径规划算法来决定车辆的行驶路线,以确保安全和高效地到达目的地。由于道路交通环境的复杂性,路径规划算法需要考虑到实时交通状况、障碍物避让、交通规则等因素,因此对路径规划算法的要求也更加严格。

4. 路径规划在物流配送中的应用

随着电商行业的快速发展,物流配送成为了一个备受关注的领域。路径规划在物流配送中的应用不仅可以提高配送效率,还可以降低成本。通过合理的路径规划,配送车辆可以在最短的时间内覆盖更多的配送点,从而提高送货效率。同时,路径规划算法还需要考虑到配送点的时效性、交通拥堵情况等因素,以提供最优的配送方案。
在这里插入图片描述

5. 路径规划的挑战与未来发展

随着人工智能和计算机技术的不断发展,路径规划领域也面临着一些挑战。例如,在复杂的城市环境中,路径规划需要考虑到人行道、交通信号灯、行人车辆等多种因素,这对算法的精度和实时性提出了更高的要求。未来,路径规划技术可能会结合更多的传感器数据和深度学习技术,以提高路径规划的效率和准确性。

结语

路径规划作为人工智能领域中的重要应用之一,对于实现智能化的交通系统和物流配送具有重要意义。随着技术的不断进步,路径规划算法将会在更多的领域发挥作用,为人们的生活带来便利和安全。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1334785.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

宠物智能喂养系统App重新定义养宠体验

​ 在科技蓬勃发展的当今世界&#xff0c;宠物照顾和护理的更多可能性也随之扩大。宠物智能喂养系统App正改变着我们对宠物看护的传统理解。 一、对宠物用品店的影响 作为一款集成了先进的摄像头、传感器和自动投喂功能的设备&#xff0c;智能喂养系统App使得宠物用品店可以…

龙迅LT8713SX适用于一路Type-C/DP1.4转三路Type-C/DP1.4/HDMI2.0应用方案,分辨率高达4K60HZ,支持SST/MST模式!

1. 概述 LT8713SX是一款高性能Type-C/DP1.4转Type-C/DP1.4/HDMI2.0转换器&#xff0c;具有三个可配置的DP1.4/HDMI2.0/DP输出接口和音频输出接口。LT8713SX支持 DisplayPort™ 单流传输 &#xff08;SST&#xff09; 模式和多流传输 &#xff08;MST&#xff09; 模式。当接收…

【SpringBoot】之Security进阶使用(登陆授权)

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是君易--鑨&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的博客专栏《SpringBoot开发之Security系列》。&#x1f3af…

C# Onnx yolov8 pokemon detection

目录 效果 模型信息 项目 代码 下载 C# Onnx yolov8 pokemon detectio 效果 模型信息 Model Properties ------------------------- date&#xff1a;2023-12-25T17:55:44.583431 author&#xff1a;Ultralytics task&#xff1a;detect license&#xff1a;AGPL-3.0 h…

4.9【共享源】流的多生产者和消费者

当一个系统中存在多个生产者和消费者时&#xff0c;情况可能会变得复杂。 了解生产者和消费者流之间支持的基数非常重要。 本质上&#xff0c;一个生产者流可以与多个消费者流连接&#xff0c;但一个消费者流只能连接到一个生产者流。请注意&#xff0c;基数关系仅限于单个流&…

竞赛保研 基于RSSI的室内wifi定位系统

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; wifi室内定位系统 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;…

asp.net mvc 重定向问题的解决方式

前端ajax发起请求&#xff0c;在后端接口中重定向&#xff0c;结果报错&#xff0c;无法跳转 Ajax实际上是通过XMLHttpRequest来向服务器发送异步请求的&#xff0c;从服务器获取数据&#xff0c;然后使用JS来更新页面&#xff0c;这也就是常说的局部刷新实现方式&#xff0c;所…

Linux部署MeterSphere结合内网穿透实现远程访问服务管理界面

文章目录 前言1. 安装MeterSphere2. 本地访问MeterSphere3. 安装 cpolar内网穿透软件4. 配置MeterSphere公网访问地址5. 公网远程访问MeterSphere6. 固定MeterSphere公网地址 前言 MeterSphere 是一站式开源持续测试平台, 涵盖测试跟踪、接口测试、UI 测试和性能测试等功能&am…

华为数通方向HCIP-DataCom H12-831题库(多选题:241-249)

第241题 (NEW) 以下哪些操作可能会影响客户网络的正常运行? A、从设备上下载日志 B、软件升级 C、路由协议配置变更 D、debug核心交换机上转发的所有IP报文 答案:ABCD 解析: 第242题 对于防火墙的默认安全区 Trust 和 Untrust 的说法,正确的有 A、从 Trust 区域访问 Untr…

安卓开发--RecyclerView快速上手【上】

效果图展示: 下面三个kml文件名即动态从服务器获取并列表加载。 RecyclerView简称 RV, 是作为 ListView 和 GridView 的加强版出现的,目的是在有限的屏幕之上展示大量的内容,因此 RecyclerView 的复用机制的实现是它的一个核心部分。 一般在动态获取服务器数据进行…

K8S理论

kubernetes&#xff1a;8个字母省略&#xff0c;就是k8s 自动部署自动扩展和管理容器化部署的应用程序的一个开源系统 k8s是负责自动化运维管理多个容器化程序的集群&#xff0c;是一个功能强大的容器编排工具 分布式和集群化的方式进行容器化管理 版本有1.15 .1.18 .1.20 …

ES5语法数组遍历、字符串、对象新增方法

ES5数组遍历forEach\filter\some\every\map、字符串trim、对象keys\defineProperty新增方法   Elasticsearch 是一个分布式、RESTful 风格的搜索和数据分析引擎&#xff0c;能够解决不断涌现出的各种用例。作为 Elastic Stack 的核心&#xff0c;它集中存储您的数据&#xff…

ssh工具 向指定的ssh服务器配置公钥

此文分享一个python脚本,用于向指定的ssh服务器配置公钥,以达到免密登录ssh服务器的目的。 效果演示 🔥完整演示效果 👇第一步,显然,我们需要选择功能 👇第二步,确认 or 选择ssh服务器 👇第三步,输入ssh登录密码,以完成公钥配置 👇验证,我们通过ssh登录…

PHP+MySQL组合开发:万能在线预约小程序源码系统 附带完整的搭建教程

近年来&#xff0c;线上服务逐渐成为市场主流。特别是在预约服务领域&#xff0c;用户越来越倾向于选择方便快捷的线上预约方式。传统的预约方式如电话预约和到店预约不仅效率低下&#xff0c;而且在信息传达上存在很大的误差。这使得用户常常需要反复确认&#xff0c;浪费了大…

java实现矩阵谱峰搜索算法

矩阵谱峰搜索算法&#xff0c;也称为矩阵谱峰查找算法&#xff0c;是一种用于搜索二维矩阵中谱峰的方法。谱峰是指在矩阵中的一个元素&#xff0c;它比其上下左右四个相邻元素都大或相等。 该算法的基本思想是从矩阵的中间列开始&#xff0c;找到该列中的最大元素&#xff0c;…

使用ImageJ将Raw格式图片批量转换为JPG

自动方法&#xff1a; 1&#xff0c;创建一个txt文本文档&#xff0c;然后将下面的代码复制粘贴进去。 2&#xff0c;将代码的第一行path修改为你的raw图片所在的路径, 3&#xff0c;第二行out修改为转换后jpg图片存储路径。 4&#xff0c;完成前2步后&#xff0c;如果你是win…

最新ChatGPT商业运营网站程序源码,支持Midjourney绘画,GPT语音对话+DALL-E3文生图+文档对话总结

一、前言 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作Ch…

华为云Windows Server服务器下,Node使用pm2-logrotate分割pm2日志,解决pm2日志内存占用过高的问题。

一、简介 PM2 是一个守护进程管理器&#xff0c;它将帮助您管理和保持您的应用程序在线。PM2 入门很简单&#xff0c;它以简单直观的 CLI 形式提供&#xff0c;可通过 NPM 安装。官网地址&#xff1a;https://pm2.keymetrics.io/ 二、问题&#xff1a;pm2日志内存占用过高&am…

《运维人员的未来:IT界的“万金油“如何继续闪耀光芒》

文章目录 每日一句正能量前言35岁被称为运维半衰期&#xff0c;究竟为何&#xff1f;如何顺利过渡半衰期运维的职业发展路径后记 每日一句正能量 凡事顺其自然&#xff0c;遇事处于泰然&#xff0c;得意之时淡然&#xff0c;失意之时坦然&#xff0c;艰辛曲折必然&#xff0c;历…

iOS - 真机调试的新经验

文章目录 获取真机 UDIDPlease reconnect the device.iOS 开发者模式Fetching debug symbols 很久没有在真机运行 iOS 测试了&#xff0c;今天帮忙调试&#xff0c;发现很多东西都变了&#xff0c;有些东西也生疏了&#xff0c;在这里记录下。 获取真机 UDID 创建Profile 需要…