事实验证文章分类 Papers Category For Fact Checking

news2025/2/26 23:05:05

事实验证文章分类 Papers Category For Fact Checking

By 2023.11

个人根据自己的观点花了很多时间整理的一些关于事实验证领域证据召回,验证推理过程的文献综合整理分类(不是很严谨)。

引用请注明出处

欢迎从事事实验证Fact Checking领域的友友们前来交流,讨论。可以私信我,也可以评论我,我都会看到滴,欢迎有合作意愿的朋友们!
欢迎从事事实验证Fact Checking领域的友友们前来交流,讨论。可以私信我,也可以评论我,我都会看到滴,欢迎有合作意愿的朋友们!
欢迎从事事实验证Fact Checking领域的友友们前来交流,讨论。可以私信我,也可以评论我,我都会看到滴,欢迎有合作意愿的朋友们!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

以上所有图片中标记的参考文献见下:

[1] Ou S, Liu Y. Learning to Generate Programs for Table Fact Verification via Structure-Aware Semantic Parsing[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022: 7624-7638.
[2] Yang Z, Ma J, Chen H, et al. A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection[J]. arXiv preprint arXiv:2209.14642, 2022.
[3] Kruengkrai C, Yamagishi J, Wang X. A multi-level attention model for evidence-based fact checking[J]. arXiv preprint arXiv:2106.00950, 2021.
[4] Li X, Burns G A, Peng N. A Paragraph-level Multi-task Learning Model for Scientific Fact-Verification[C]//SDU@ AAAI. 2021.
[5] Zeng X, Zubiaga A. Aggregating Pairwise Semantic Differences for Few-Shot Claim Veracity Classification[J]. arXiv preprint arXiv:2205.05646, 2022.
[6] Glockner M, Staliūnaitė I, Thorne J, et al. AmbiFC: Fact-Checking Ambiguous Claims with Evidence[J]. arXiv e-prints, 2021: arXiv: 2104.00640.
[7] Chamoun E, Saeidi M, Vlachos A. Automated Fact-Checking in Dialogue: Are Specialized Models Needed?[J]. arXiv preprint arXiv:2311.08195, 2023.
[8] Schlichtkrull M, Guo Z, Vlachos A. AVeriTeC: A dataset for real-world claim verification with evidence from the web[J]. arXiv e-prints, 2023: arXiv: 2305.13117.
[9] Soleimani A, Monz C, Worring M. Bert for evidence retrieval and claim verification[C]//Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II 42. Springer International Publishing, 2020: 359-366.
[10] DeHaven M, Scott S. BEVERS: A General, Simple, and Performant Framework for Automatic Fact Verification[J]. arXiv preprint arXiv:2303.16974, 2023.
[11] Wang G, Harwood K, Chillrud L, et al. Check-COVID: Fact-Checking COVID-19 News Claims with Scientific Evidence[J]. arXiv preprint arXiv:2305.18265, 2023.
[12] Hu X, Guo Z, Wu G, et al. CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking[J]. arXiv preprint arXiv:2206.11863, 2022.
[13] Ko M, Seong I, Lee H, et al. ClaimDiff: Comparing and Contrasting Claims on Contentious Issues[C]//Findings of the Association for Computational Linguistics: ACL 2023. 2023: 4711-4731.
[14] Funkquist M. Combining sentence and table evidence to predict veracity of factual claims using TaPaS and RoBERTa[C]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 92-100.
[15] Huang K H, Zhai C X, Ji H. CONCRETE: Improving Cross-lingual Fact-checking with Cross-lingual Retrieval[J]. arXiv preprint arXiv:2209.02071, 2022.
[16] Si J, Zhu Y, Zhou D. Consistent Multi-Granular Rationale Extraction for Explainable Multi-hop Fact Verification[J]. arXiv preprint arXiv:2305.09400, 2023.
[17] Saakyan A, Chakrabarty T, Muresan S. COVID-fact: Fact extraction and verification of real-world claims on COVID-19 pandemic[J]. arXiv preprint arXiv:2106.03794, 2021.
[18] Gupta P, Wu C S, Liu W, et al. DialFact: A benchmark for fact-checking in dialogue[J]. arXiv preprint arXiv:2110.08222, 2021.
[19] Hu N, Wu Z, Lai Y, et al. Dual-channel evidence fusion for fact verification over texts and tables[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022: 5232-5242.
[20] Yao B M, Shah A, Sun L, et al. End-to-end multimodal fact-checking and explanation generation: A challenging dataset and models[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023: 2733-2743.
[21] Xu W, Wu J, Liu Q, et al. Evidence-aware fake news detection with graph neural networks[C]//Proceedings of the ACM Web Conference 2022. 2022: 2501-2510.
[22] Sarrouti M, Abacha A B, M’rabet Y, et al. Evidence-based fact-checking of health-related claims[C]//Findings of the Association for Computational Linguistics: EMNLP 2021. 2021: 3499-3512.
[23] Chen Z, Hui S C, Zhuang F, et al. EvidenceNet: Evidence Fusion Network for Fact Verification[C]//Proceedings of the ACM Web Conference 2022. 2022: 2636-2645.
[24] Ma H, Xu W, Wei Y, et al. EX-FEVER: A Dataset for Multi-hop Explainable Fact Verification[J]. arXiv preprint arXiv:2310.09754, 2023.
[25] Yang J, Vega-Oliveros D, Seibt T, et al. Explainable fact-checking through question answering[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 8952-8956.
[26] Jiang K, Pradeep R, Lin J. Exploring listwise evidence reasoning with t5 for fact verification[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). 2021: 402-410.[27]
[28] Bouziane M, Perrin H, Sadeq A, et al. FaBULOUS: Fact-checking Based on Understanding of Language Over Unstructured and Structured information[C]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 31-39.
[29] Wadden D, Lin S, Lo K, et al. Fact or fiction: Verifying scientific claims[J]. arXiv preprint arXiv:2004.14974, 2020.
[30] Pan L, Wu X, Lu X, et al. Fact-Checking Complex Claims with Program-Guided Reasoning[J]. arXiv preprint arXiv:2305.12744, 2023.
[31] Rani A, Tonmoy S M, Dalal D, et al. FACTIFY-5WQA: 5W Aspect-based Fact Verification through Question Answering[J]. arXiv preprint arXiv:2305.04329, 2023.
[32] Kim J, Park S, Kwon Y, et al. FactKG: Fact Verification via Reasoning on Knowledge Graphs[J]. arXiv preprint arXiv:2305.06590, 2023.
[33] Cheung T H, Lam K M. FactLLaMA: Optimizing Instruction-Following Language Models with External Knowledge for Automated Fact-Checking[J]. arXiv preprint arXiv:2309.00240, 2023.
[34] Park J, Min S, Kang J, et al. FAVIQ: FAct Verification from Information-seeking Questions[J]. arXiv preprint arXiv:2107.02153, 2021.
[35] Aly R, Guo Z, Schlichtkrull M, et al. FEVEROUS: Fact extraction and VERification over unstructured and structured information[J]. arXiv preprint arXiv:2106.05707, 2021.
[36] Rangapur A, Wang H, Shu K. Fin-Fact: A Benchmark Dataset for Multimodal Financial Fact Checking and Explanation Generation[J]. arXiv preprint arXiv:2309.08793, 2023.
[37] Liu Z, Xiong C, Sun M, et al. Fine-grained fact verification with kernel graph attention network[J]. arXiv preprint arXiv:1910.09796, 2019.
[38] Zhou J, Han X, Yang C, et al. GEAR: Graph-based evidence aggregating and reasoning for fact verification[J]. arXiv preprint arXiv:1908.01843, 2019.
[39] Fan A, Piktus A, Petroni F, et al. Generating fact checking briefs[J]. arXiv preprint arXiv:2011.05448, 2020.
[40] Chen J, Sriram A, Choi E, et al. Generating literal and implied subquestions to fact-check complex claims[J]. arXiv preprint arXiv:2205.06938, 2022.
[41] Chen J, Zhang R, Guo J, et al. GERE: Generative evidence retrieval for fact verification[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2022: 2184-2189.
[42] Hu X, Guo Z, Wu G, et al. Give Me More Details: Improving Fact-Checking with Latent Retrieval[J]. arXiv preprint arXiv:2305.16128, 2023.
[43] Kotonya N, Spooner T, Magazzeni D, et al. Graph reasoning with context-aware linearization for interpretable fact extraction and verification[J]. arXiv preprint arXiv:2109.12349, 2021.
[44] Lin H, Fu X. Heterogeneous-Graph Reasoning and Fine-Grained Aggregation for Fact Checking[C]//Proceedings of the Fifth Fact Extraction and VERification Workshop (FEVER). 2022: 6-15.
[45] Subramanian S, Lee K. Hierarchical evidence set modeling for automated fact extraction and verification[J]. arXiv preprint arXiv:2010.05111, 2020.
[46] Wang H, Li Y, Huang Z, et al. IMCI: Integrate Multi-view Contextual Information for Fact Extraction and Verification[J]. arXiv preprint arXiv:2208.14001, 2022.
[47] Allein L, Saelens M, Cartuyvels R, et al. Implicit Temporal Reasoning for Evidence-Based Fact-Checking[J]. arXiv preprint arXiv:2302.12569, 2023.
[48] Ou S, Liu Y. Learning to Generate Programs for Table Fact Verification via Structure-Aware Semantic Parsing[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022: 7624-7638.
[49] Jin Z, Lalwani A, Vaidhya T, et al. Logical fallacy detection[J]. arXiv preprint arXiv:2202.13758, 2022.
[50] Chen J, Bao Q, Sun C, et al. Loren: Logic-regularized reasoning for interpretable fact verification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2022, 36(10): 10482-10491.
[51] Liu Y, Zhu C, Zeng M. Modeling Entity Knowledge for Fact Verification[C]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 50-59.
[52] Wadden D, Lo K, Wang L L, et al. MultiVerS: Improving scientific claim verification with weak supervision and full-document context[J]. arXiv preprint arXiv:2112.01640, 2021.
[53] Saeed M, Alfarano G, Nguyen K, et al. Neural re-rankers for evidence retrieval in the FEVEROUS task[C]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 108-112.
[54] Zeng F, Gao W. Prompt to be Consistent is Better than Self-Consistent? Few-Shot and Zero-Shot Fact Verification with Pre-trained Language Models[J]. arXiv preprint arXiv:2306.02569, 2023.
[55] Pan L, Lu X, Kan M Y, et al. QACHECK: A Demonstration System for Question-Guided Multi-Hop Fact-Checking[J]. arXiv preprint arXiv:2310.07609, 2023.
[56] Hu X, Hong Z, Guo Z, et al. Read it Twice: Towards Faithfully Interpretable Fact Verification by Revisiting Evidence[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023: 2319-2323.
[57] Zhong W, Xu J, Tang D, et al. Reasoning over semantic-level graph for fact checking[J]. arXiv preprint arXiv:1909.03745, 2019.
[58] Nikopensius G, Mayank M, Phukan O C, et al. Reinforcement learning-based knowledge graph reasoning for explainable fact-checking[J]. arXiv preprint arXiv:2310.07613, 2023.
[59] Rakotoson L, Letaillieur C, Massip S, et al. Science Checker: Extractive-Boolean Question Answering For Scientific Fact Checking[J]. arXiv preprint arXiv:2204.12263, 2022.
[60] Vladika J, Matthes F. Scientific Fact-Checking: A Survey of Resources and Approaches[J]. arXiv preprint arXiv:2305.16859, 2023.
[61] Wadden D, Lo K, Kuehl B, et al. SciFact-open: Towards open-domain scientific claim verification[J]. arXiv preprint arXiv:2210.13777, 2022.
[62] Li M, Peng B, Zhang Z. Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models[J]. arXiv preprint arXiv:2305.14623, 2023.
[63] Chen W, Wang H, Chen J, et al. Tabfact: A large-scale dataset for table-based fact verification[J]. arXiv preprint arXiv:1909.02164, 2019.
[64] Zhou Y, Liu X, Zhou K, et al. Table-based fact verification with self-adaptive mixture of experts[J]. arXiv preprint arXiv:2204.08753, 2022.
[65] Malon C. Team papelo at FEVEROUS: Multi-hop evidence pursuit[C]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 40-49.
[66] Si J, Zhou D, Li T, et al. Topic-aware evidence reasoning and stance-aware aggregation for fact verification[J]. arXiv preprint arXiv:2106.01191, 2021.
[67] Lee N, Bang Y, Madotto A, et al. Towards few-shot fact-checking via perplexity[J]. arXiv preprint arXiv:2103.09535, 2021.
[68] Bazaga A, Liò P, Micklem G. Unsupervised Fact Verification by Language Model Distillation[J]. arXiv preprint arXiv:2309.16540, 2023.
[69] Ousidhoum N, Yuan Z, Vlachos A. Varifocal Question Generation for Fact-checking[J]. arXiv preprint arXiv:2210.12400, 2022.
[70] Gi I Z, Fang T Y, Tsai R T H. Verdict Inference with Claim and Retrieved Elements Using RoBERTa[C]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 60-65.
[71] Khan K, Wang R, Poupart P. WatClaimCheck: A new dataset for claim entailment and inference[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022: 1293-1304.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1334196.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

「Vue3面试系列」Vue3.0里为什么要用 Proxy API 替代 defineProperty API ?

文章目录 一、Object.defineProperty为什么能实现响应式 小结 二、proxy三、总结参考文献 一、Object.defineProperty 定义:Object.defineProperty() 方法会直接在一个对象上定义一个新属性,或者修改一个对象的现有属性,并返回此对象 为什么…

单例模式(C++实现)

RAII运用 只能在栈上创建对象 只能在堆上创建的对象 单例模式 设计模式 懒汉模式 解决线程安全 优化 饿汉模式 饿汉和懒汉的区别 线程安全与STL与其他锁

共模电容:又一款EMC滤波神器?|深圳比创达电子(上)

传统共模滤波器的局限性 通常我们讨论EMC问题中的噪声及干扰,多是共模噪声、共模干扰;所以常见的滤波、防护器件,多是共模形式,典型的代表就是共模电感;共模电感因其对共模干扰呈高阻特性、而对差模信号几无损耗&…

iOS技术博客:App备案指南

📝 摘要 本文介绍了移动应用程序(App)备案的重要性和流程。备案是规范App开发和运营的必要手段,有助于保护用户权益、维护网络安全和社会秩序。为了帮助开发者更好地了解备案流程,本文提供了一份最新、最全、最详的备…

振弦采集仪在地质灾害监测中的作用与意义

振弦采集仪在地质灾害监测中的作用与意义 振弦采集仪是一种地质灾害监测仪器,用于测量地面的震动和振动。它可以记录地质灾害发生时地震波在地面上的传播情况,通过分析数据来评估地质灾害的严重程度和影响范围。振弦采集仪在地质灾害监测中发挥着重要的…

洛谷——【数据结构1-2】二叉树

文章目录 题目【深基16.例1】淘汰赛题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1基本思路:代码 【深基16.例3】二叉树深度题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1基本思路:代码 [USACO3.4] 美国血统 American Heritage题目描…

【阿里云盘替身“小白羊”,释放急速,做回自己】解除阿里云盘限速,开启云上人生

小白羊网盘 软件下载地址:https://github.com/gaozhangmin/aliyunpan/releases 界面略丑,但不限速 下载速度对比 阿里云盘 小白羊 近乎十倍的差距 近期阿里云盘更新了自动同步功能,能自动同步多个文件夹,多电脑工作者的福音&am…

基于Java SSM框架实现二手交易平台网站系统项目【项目源码+论文说明】

基于java的SSM框架实现二手交易平台网站系统演示 摘要 21世纪的今天,随着社会的不断发展与进步,人们对于信息科学化的认识,已由低层次向高层次发展,由原来的感性认识向理性认识提高,管理工作的重要性已逐渐被人们所认…

公众号推荐流量玩法的3个秘密

从微信生态的流量触点来看,公众号链接着私聊、朋友圈、微信群、小程序、视频号、搜一搜、看一看等一切与目标用户能接触到的中转站 流量的尽头是私域。而对于大部分普通人来说,公众号可以作为私域的第一站。且相比个人微信号,其有着深度价值…

抖店开通后只有零星的一些散单,是哪里出了问题?新手做店教程!

我是王路飞。 如果你的抖店开通后,只有零星的一些散单的话,大概率是选品和出单玩法上出现了问题。 要知道,我们只是在抖音开店卖货,所以我们所有的工作重心都应该围绕【店铺产品】展开的,而不要把时间和精力浪费在账…

分库分表之后,id 主键如何处理?

问:分库分表之后,id 主键如何处理? 其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1 开始累加,那肯定不对啊,需要一个全局唯一的…

武汉市东湖高新区管委会副主任李世庭一行调研中科驭数

近日,武汉市光谷东湖高新区管委会党工委委员、副主任李世庭一行莅临中科驭数,调研考察中科驭数DPU芯片研发和产业化进展,东湖高新区投促局、光谷金控相关负责人一同莅临调研。 中科驭数武汉研发中心是驭数DPU研发团队的重要力量之一。自2022…

Unity2017升级到Unity2018在Window7上输出空异常错误问题

Unity2017升级到Unity2018在Window7上输出空异常错误问题 一、环境Window7二、现象Unity报空异常(.NET 4.x Equivalent)三、日志四、解决方案第一种解决方案第二种解决方案 一、环境Window7 二、现象Unity报空异常(.NET 4.x Equivalent&…

Isaac Sim urdf文件导入

本教程展示如何在 Omniverse Isaac Sim 中导入 urdf 一. 使用内置插件导入urdf 安装urdf 插件 方法是转到“window”->“Extensions” 搜索框中输入urdf, 并启用 通过转至Isaac Utils -> Workflows -> URDF Importer菜单来访问 urdf 扩展。 表格中的 1,2,3 对应着…

单聊和群聊

TCP协议单聊服务端: import java.awt.BorderLayout; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket; import java.util.Vec…

Node.js(二)-模块化

1. 模块化的基本概念 1.1 什么是模块化 模块化是指解决一个复杂问题时,自顶向下逐层将系统拆分成若干模块的过程。对于整个系统来说,模块是可组合、分解和更换的单元。 1.2 编程领域中的模块化 编程领域中的模块化,就是遵守固定的规则&…

用CHAT了解更多知识点

问CHAT:什么是硅基生命和碳基生命? CHAT回复:硅基生命和碳基生命是两种理论性的生物体类型,这些生物体主要是由硅或碳元素以及其他元素构成的。 碳基生命是我们当前所熟知的生命形式。碳元素能够形成稳定且复杂的分子,…

圆中点算法

中心在原点,半径为 R 的圆的隐式函数方程为 F ( x , y ) x 2 y 2 − R 2 0 F(x, y) x^2 y^2 - R^2 0 F(x,y)x2y2−R20 把像素上的点的坐标代入上述隐式方程 八分法画圆算法 利用坐标轴和与坐标轴夹角 45 度的直线 原理 假设圆弧起点 x 0 x0 x0&#xff0…

乐吾乐大屏可视化前景和发展趋势

引言 在如今数智信息化时代,乐吾乐大屏可视化作为信息展示和决策支持的强大工具,正在迅速崛起,并在多个行业中发挥关键作用。本文将探讨乐吾乐大屏可视化的当前状态、未来前景以及发展趋势,以期为读者提供对这一技术的深入了解。 …

信号优先级与安全性

问题 对于同一个进程,如果存在两个不同的未决实时信号,那么先处理谁? 信号优先级的概念 信号的本质是一种软中断 (中断有优先级,信号也有优先级) 对于同一个未决实时信号,按照发送先后次序递送给进程 对于不同的未…