jvm_下篇_补充:浅堆深堆与内存泄露

news2024/9/29 1:19:18

笔记来源:尚硅谷 JVM 全套教程,百万播放,全网巅峰(宋红康详解 java 虚拟机)

同步更新:https://gitee.com/vectorx/NOTE_JVM

https://codechina.csdn.net/qq_35925558/NOTE_JVM

https://github.com/uxiahnan/NOTE_JVM

文章目录

  • 补充:浅堆深堆与内存泄露
    • 1. 浅堆(Shallow Heap)
    • 2. 保留集(Retained Set)
    • 3. 深堆(Retained Heap)
    • 4. 对象的实际大小
    • 5. 支配树(Dominator Tree)
    • 6. 内存泄漏(memory leak)
    • 7. 内存溢出(out of memory)
    • 8. Java 中内存泄露的 8 种情况
      • 8.1. 静态集合类
      • 8.2. 单例模式
      • 8.3. 内部类持有外部类
      • 8.4. 各种连接,如数据库连接、网络连接和 IO 连接等
      • 8.5. 变量不合理的作用域
      • 8.6. 改变哈希值
      • 8.7. 缓存泄露
      • 8.8. 监听器和其他回调
    • 9. 内存泄露案例分析

补充:浅堆深堆与内存泄露

1. 浅堆(Shallow Heap)

浅堆是指一个对象所消耗的内存。在 32 位系统中,一个对象引用会占据 4 个字节,一个 int 类型会占据 4 个字节,long 型变量会占据 8 个字节,每个对象头需要占用 8 个字节。根据堆快照格式不同,对象的大小可能会同 8 字节进行对齐。

以 String 为例:2 个 int 值共占 8 字节,对象引用占用 4 字节,对象头 8 字节,合计 20 字节,向 8 字节对齐,故占 24 字节。(jdk7 中)

inthash320
inthash0
refvalueC:\Users\Administrat

这 24 字节为 String 对象的浅堆大小。它与 String 的 value 实际取值无关,无论字符串长度如何,浅堆大小始终是 24 字节。

2. 保留集(Retained Set)

对象 A 的保留集指当对象 A 被垃圾回收后,可以被释放的所有的对象集合(包括对象 A 本身),即对象 A 的保留集可以被认为是只能通过对象 A 被直接或间接访问到的所有对象的集合。通俗地说,就是指仅被对象 A 所持有的对象的集合。

3. 深堆(Retained Heap)

深堆是指对象的保留集中所有的对象的浅堆大小之和。

注意:浅堆指对象本身占用的内存,不包括其内部引用对象的大小。一个对象的深堆指只能通过该对象访问到的(直接或间接)所有对象的浅堆之和,即对象被回收后,可以释放的真实空间。

4. 对象的实际大小

这里,对象的实际大小定义为一个对象所能触及的所有对象的浅堆大小之和,也就是通常意义上我们说的对象大小。与深堆相比,似乎这个在日常开发中更为直观和被人接受,但实际上,这个概念和垃圾回收无关。

下图显示了一个简单的对象引用关系图,对象 A 引用了 C 和 D,对象 B 引用了 C 和 E。那么对象 A 的浅堆大小只是 A 本身,不含 C 和 D,而 A 的实际大小为 A、C、D 三者之和。而 A 的深堆大小为 A 与 D 之和,由于对象 C 还可以通过对象 B 访问到,因此不在对象 A 的深堆范围内。

image-20210505151123427

5. 支配树(Dominator Tree)

支配树的概念源自图论。MAT 提供了一个称为支配树(Dominator Tree)的对象图。支配树体现了对象实例间的支配关系。在对象引用图中,所有指向对象 B 的路径都经过对象 A,则认为对象 A 支配对象 B。如果对象 A 是离对象 B 最近的一个支配对象,则认为对象 A 为对象 B 的直接支配者。支配树是基于对象间的引用图所建立的,它有以下基本性质:

  • 对象 A 的子树(所有被对象 A 支配的对象集合)表示对象 A 的保留集(retained set),即深堆。
  • 如果对象 A 支配对象 B,那么对象 A 的直接支配者也支配对象 B。
  • 支配树的边与对象引用图的边不直接对应。

如下图所示:左图表示对象引用图,右图表示左图所对应的支配树。对象 A 和 B 由根对象直接支配,由于在到对象 C 的路径中,可以经过 A,也可以经过 B,因此对象 C 的直接支配者也是根对象。对象 F 与对象 D 相互引用,因为到对象 F 的所有路径必然经过对象 D,因此,对象 D 是对象 F 的直接支配者。而到对象 D 的所有路径中,必然经过对象 C,即使是从对象 F 到对象 D 的引用,从根节点出发,也是经过对象 C 的,所以,对象 D 的直接支配者为对象 C。同理,对象 E 支配对象 G。到达对象 H 的可以通过对象 D,也可以通过对象 E,因此对象 D 和 E 都不能支配对象 H,而经过对象 C 既可以到达 D 也可以到达 E,因此对象 C 为对象 H 的直接支配者。

image-20210505151951136

6. 内存泄漏(memory leak)

可达性分析算法来判断对象是否是不再使用的对象,本质都是判断一个对象是否还被引用。那么对于这种情况下,由于代码的实现不同就会出现很多种内存泄漏问题(让 JVM 误以为此对象还在引用中,无法回收,造成内存泄漏)。

> 是否还被使用?是

> 是否还被需要?否

image-20210505152542224

严格来说,只有对象不会再被程序用到了,但是 GC 又不能回收他们的情况,才叫内存泄漏。但实际情况很多时候一些不太好的实践(或疏忽)会导致对象的生命周期变得很长甚至导致 00M,也可以叫做宽泛意义上的“内存泄漏”。

如下图,当 Y 生命周期结束的时候,X 依然引用着 Y,这时候,垃圾回收期是不会回收对象 Y 的;如果对象 X 还引用着生命周期比较短的 A、B、C,对象 A 又引用着对象 a、b、c,这样就可能造成大量无用的对象不能被回收,进而占据了内存资源,造成内存泄漏,直到内存溢出。

image-20210505152704141

申请了内存用完了不释放,比如一共有 1024M 的内存,分配了 512M 的内存一直不回收,那么可以用的内存只有 512M 了,仿佛泄露掉了一部分;通俗一点讲的话,内存泄漏就是【占着茅坑不拉 shi】

7. 内存溢出(out of memory)

申请内存时,没有足够的内存可以使用;通俗一点儿讲,一个厕所就三个坑,有两个站着茅坑不走的(内存泄漏),剩下最后一个坑,厕所表示接待压力很大,这时候一下子来了两个人,坑位(内存)就不够了,内存泄漏变成内存溢出了。可见,内存泄漏和内存溢出的关系:内存泄漏的增多,最终会导致内存溢出。

泄漏的分类

  • 经常发生:发生内存泄露的代码会被多次执行,每次执行,泄露一块内存;
  • 偶然发生:在某些特定情况下才会发生
  • 一次性:发生内存泄露的方法只会执行一次;
  • 隐式泄漏:一直占着内存不释放,直到执行结束;严格的说这个不算内存泄漏,因为最终释放掉了,但是如果执行时间特别长,也可能会导致内存耗尽。

8. Java 中内存泄露的 8 种情况

8.1. 静态集合类

静态集合类,如 HashMap、LinkedList 等等。如果这些容器为静态的,那么它们的生命周期与 JVM 程序一致,则容器中的对象在程序结束之前将不能被释放,从而造成内存泄漏。简单而言,长生命周期的对象持有短生命周期对象的引用,尽管短生命周期的对象不再使用,但是因为长生命周期对象持有它的引用而导致不能被回收。

public class MemoryLeak {
    static List list = new ArrayList();
    public void oomTests(){
        Object obj=new Object();//局部变量
        list.add(obj);
    }
}

8.2. 单例模式

单例模式,和静态集合导致内存泄露的原因类似,因为单例的静态特性,它的生命周期和 JVM 的生命周期一样长,所以如果单例对象如果持有外部对象的引用,那么这个外部对象也不会被回收,那么就会造成内存泄漏。

8.3. 内部类持有外部类

内部类持有外部类,如果一个外部类的实例对象的方法返回了一个内部类的实例对象。这个内部类对象被长期引用了,即使那个外部类实例对象不再被使用,但由于内部类持有外部类的实例对象,这个外部类对象将不会被垃圾回收,这也会造成内存泄漏。

8.4. 各种连接,如数据库连接、网络连接和 IO 连接等

在对数据库进行操作的过程中,首先需要建立与数据库的连接,当不再使用时,需要调用 close 方法来释放与数据库的连接。只有连接被关闭后,垃圾回收器才会回收对应的对象。否则,如果在访问数据库的过程中,对 Connection、Statement 或 ResultSet 不显性地关闭,将会造成大量的对象无法被回收,从而引起内存泄漏。

public static void main(String[] args) {
    try{
        Connection conn =null;
        Class.forName("com.mysql.jdbc.Driver");
        conn =DriverManager.getConnection("url","","");
        Statement stmt =conn.createStatement();
        ResultSet rs =stmt.executeQuery("....");
    } catchException e){//异常日志
    } finally {
        // 1.关闭结果集 Statement
        // 2.关闭声明的对象 ResultSet
        // 3.关闭连接 Connection
    }
}

8.5. 变量不合理的作用域

变量不合理的作用域。一般而言,一个变量的定义的作用范围大于其使用范围,很有可能会造成内存泄漏。另一方面,如果没有及时地把对象设置为 null,很有可能导致内存泄漏的发生。

public class UsingRandom {
    private String msg;
    public void receiveMsg(){
        readFromNet();//从网络中接受数据保存到msg中
        saveDB();//把msg保存到数据库中
    }
}

如上面这个伪代码,通过 readFromNet 方法把接受的消息保存在变量 msg 中,然后调用 saveDB 方法把 msg 的内容保存到数据库中,此时 msg 已经就没用了,由于 msg 的生命周期与对象的生命周期相同,此时 msg 还不能回收,因此造成了内存泄漏。实际上这个 msg 变量可以放在 receiveMsg 方法内部,当方法使用完,那么 msg 的生命周期也就结束,此时就可以回收了。还有一种方法,在使用完 msg 后,把 msg 设置为 null,这样垃圾回收器也会回收 msg 的内存空间。

8.6. 改变哈希值

改变哈希值,当一个对象被存储进 HashSet 集合中以后,就不能修改这个对象中的那些参与计算哈希值的字段了。

否则,对象修改后的哈希值与最初存储进 HashSet 集合中时的哈希值就不同了,在这种情况下,即使在 contains 方法使用该对象的当前引用作为的参数去 HashSet 集合中检索对象,也将返回找不到对象的结果,这也会导致无法从 HashSet 集合中单独删除当前对象,造成内存泄漏。

这也是 String 为什么被设置成了不可变类型,我们可以放心地把 String 存入 HashSet,或者把 String 当做 HashMap 的 key 值;

当我们想把自己定义的类保存到散列表的时候,需要保证对象的 hashCode 不可变。

/**
 * 例1
 */
public class ChangeHashCode {
    public static void main(String[] args) {
        HashSet set = new HashSet();
        Person p1 = new Person(1001, "AA");
        Person p2 = new Person(1002, "BB");

        set.add(p1);
        set.add(p2);

        p1.name = "CC";//导致了内存的泄漏
        set.remove(p1); //删除失败

        System.out.println(set);

        set.add(new Person(1001, "CC"));
        System.out.println(set);

        set.add(new Person(1001, "AA"));
        System.out.println(set);

    }
}

class Person {
    int id;
    String name;

    public Person(int id, String name) {
        this.id = id;
        this.name = name;
    }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (!(o instanceof Person)) return false;

        Person person = (Person) o;

        if (id != person.id) return false;
        return name != null ? name.equals(person.name) : person.name == null;
    }

    @Override
    public int hashCode() {
        int result = id;
        result = 31 * result + (name != null ? name.hashCode() : 0);
        return result;
    }

    @Override
    public String toString() {
        return "Person{" +
                "id=" + id +
                ", name='" + name + '\'' +
                '}';
    }
}
/**
 * 例2
 */
public class ChangeHashCode1 {
    public static void main(String[] args) {
        HashSet<Point> hs = new HashSet<Point>();
        Point cc = new Point();
        cc.setX(10);//hashCode = 41
        hs.add(cc);

        cc.setX(20);//hashCode = 51  此行为导致了内存的泄漏

        System.out.println("hs.remove = " + hs.remove(cc));//false
        hs.add(cc);
        System.out.println("hs.size = " + hs.size());//size = 2

        System.out.println(hs);
    }

}

class Point {
    int x;

    public int getX() {
        return x;
    }

    public void setX(int x) {
        this.x = x;
    }

    @Override
    public int hashCode() {
        final int prime = 31;
        int result = 1;
        result = prime * result + x;
        return result;
    }

    @Override
    public boolean equals(Object obj) {
        if (this == obj) return true;
        if (obj == null) return false;
        if (getClass() != obj.getClass()) return false;
        Point other = (Point) obj;
        if (x != other.x) return false;
        return true;
    }

    @Override
    public String toString() {
        return "Point{" +
                "x=" + x +
                '}';
    }
}

8.7. 缓存泄露

内存泄漏的另一个常见来源是缓存,一旦你把对象引用放入到缓存中,他就很容易遗忘。比如:之前项目在一次上线的时候,应用启动奇慢直到夯死,就是因为代码中会加载一个表中的数据到缓存(内存)中,测试环境只有几百条数据,但是生产环境有几百万的数据。

对于这个问题,可以使用 WeakHashMap 代表缓存,此种 Map 的特点是,当除了自身有对 key 的引用外,此 key 没有其他引用那么此 map 会自动丢弃此值。

public class MapTest {
    static Map wMap = new WeakHashMap();
    static Map map = new HashMap();

    public static void main(String[] args) {
        init();
        testWeakHashMap();
        testHashMap();
    }

    public static void init() {
        String ref1 = new String("obejct1");
        String ref2 = new String("obejct2");
        String ref3 = new String("obejct3");
        String ref4 = new String("obejct4");
        wMap.put(ref1, "cacheObject1");
        wMap.put(ref2, "cacheObject2");
        map.put(ref3, "cacheObject3");
        map.put(ref4, "cacheObject4");
        System.out.println("String引用ref1,ref2,ref3,ref4 消失");

    }

    public static void testWeakHashMap() {
        System.out.println("WeakHashMap GC之前");
        for (Object o : wMap.entrySet()) {
            System.out.println(o);
        }
        try {
            System.gc();
            TimeUnit.SECONDS.sleep(5);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("WeakHashMap GC之后");
        for (Object o : wMap.entrySet()) {
            System.out.println(o);
        }
    }

    public static void testHashMap() {
        System.out.println("HashMap GC之前");
        for (Object o : map.entrySet()) {
            System.out.println(o);
        }
        try {
            System.gc();
            TimeUnit.SECONDS.sleep(5);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("HashMap GC之后");
        for (Object o : map.entrySet()) {
            System.out.println(o);
        }
    }

}

上面代码和图示主演演示 WeakHashMap 如何自动释放缓存对象,当 init 函数执行完成后,局部变量字符串引用 weakd1,weakd2,d1,d2 都会消失,此时只有静态 map 中保存中对字符串对象的引用,可以看到,调用 gc 之后,HashMap 的没有被回收,而 WeakHashMap 里面的缓存被回收了。

8.8. 监听器和其他回调

内存泄漏第三个常见来源是监听器和其他回调,如果客户端在你实现的 API 中注册回调,却没有显示的取消,那么就会积聚。

需要确保回调立即被当作垃圾回收的最佳方法是只保存它的弱引用,例如将他们保存成为 WeakHashMap 中的键。

9. 内存泄露案例分析

public class Stack {
    private Object[] elements;
    private int size = 0;
    private static final int DEFAULT_INITIAL_CAPACITY = 16;

    public Stack() {
        elements = new Object[DEFAULT_INITIAL_CAPACITY];
    }

    public void push(Object e) { //入栈
        ensureCapacity();
        elements[size++] = e;
    }

    public Object pop() { //出栈
        if (size == 0)
            throw new EmptyStackException();
        return elements[--size];
    }

    private void ensureCapacity() {
        if (elements.length == size)
            elements = Arrays.copyOf(elements, 2 * size + 1);
    }
}

上述程序并没有明显的错误,但是这段程序有一个内存泄漏,随着 GC 活动的增加,或者内存占用的不断增加,程序性能的降低就会表现出来,严重时可导致内存泄漏,但是这种失败情况相对较少。

代码的主要问题在 pop 函数,下面通过这张图示展现。假设这个栈一直增长,增长后如下图所示

image-20210505160114618

当进行大量的 pop 操作时,由于引用未进行置空,gc 是不会释放的,如下图所示

image-20210505160158618

从上图中看以看出,如果栈先增长,再收缩,那么从栈中弹出的对象将不会被当作垃圾回收,即使程序不再使用栈中的这些队象,他们也不会回收,因为栈中仍然保存这对象的引用,俗称过期引用,这个内存泄露很隐蔽。

将代码中的 pop()方法变成如下方法:

public Object pop() {
    if (size == 0)
        throw new EmptyStackException();
    Object result = elements[--size];
    elements[size] = null;
    return result;
}

一旦引用过期,清空这些引用,将引用置空。

image-20210505160423289


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1333786.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

shell 如何调用多个脚本

简介 这篇文章主要描述如何通过主脚本去调用其他脚本中的方法&#xff0c;调用的过程中可能出现哪些坑&#xff0c;如何避免。 目录 1. 主脚本调用其他脚本的方法 1.1. bash方法 1.2. source方法 2. 避坑技巧 2.1. 路径配置无效 2.2. source变量冲突 3. 总结 1. 主脚本调…

工具系列:TensorFlow决策森林_(5)使用文本和神经网络特征

文章目录 设置使用原始文本作为特征使用预训练的文本嵌入同时训练决策树和神经网络构建模型训练和评估模型 欢迎来到 TensorFlow决策森林&#xff08; TF-DF&#xff09;的 中级教程。 在本文中&#xff0c;您将学习有关 TF-DF的一些更高级的功能&#xff0c;包括如何处理自…

SQL进阶理论篇(二十一):基于SQLMap的自动化SQL注入

文章目录 简介获取当前数据库和用户信息获取MySQL中的所有数据库名称查询wucai数据库中的所有数据表查看heros数据表中的所有字段查询heros表中的英雄信息总结参考文献 简介 从上一小节&#xff0c;可以发现&#xff0c;如果我们编写的代码存在着SQL注入的漏洞&#xff0c;后果…

HarmonyOS的装饰器之BuilderParam 理解

BuilderParam 装饰器 使用时间&#xff1a;当定义了一个子组件&#xff0c;并且子组件的build()中有一个布局在不同的父组件&#xff0c;实现效果不一样的时候&#xff0c;可以在子组件中用这个BuilderParam装饰器&#xff0c; 在父组件用Builder 装饰器进行实现&#xff0c;然…

Lua的垃圾回收机制详解

Lua 是一种轻量级的编程语言&#xff0c;广泛用于嵌入到其他应用程序中&#xff0c;尤其是在游戏开发领域。Lua 的内存管理机制采用了自动垃圾收集&#xff08;Garbage Collection&#xff09;的方法。以下是Lua内存管理的一些关键方面&#xff1a; 垃圾收集原理概述 Lua 使用…

我的软考之路

缘起 2016年&#xff0c;入职了一家业务相对稳定的公司。技术栈的切换使得刚入职的时光格外忙碌。然而当所有工作所需技术逐步掌握并渐渐精通&#xff0c;摸鱼的时间也相对多了起来。 这样的日子一多&#xff0c;危机感开始蔓延&#xff0c;毕竟35是谁都绕不过的一道坎。程序猿…

SQL实践篇(一):使用WebSQL在H5中存储一个本地数据库

文章目录 简介本地存储都有哪些&#xff1f;如何使用WebSQL打开数据库事务操作SQL执行 在浏览器端做一个英雄的查询页面如何删除本地存储参考文献 简介 WebSQL是一种操作本地数据库的网页API接口&#xff0c;通过它&#xff0c;我们可以操作客户端的本地存储。 WebSQL曾经是H…

【C++练级之路】【Lv.5】动态内存管理(都2023年了,不会有人还不知道new吧?)

目录 一、C/C内存分布二、new和delete的使用方式2.1 C语言内存管理2.2 C内存管理2.2.1 new和delete操作内置类型2.2.2 new和delete操作自定义类型 三、new和delete的底层原理3.1 operator new与operator delete函数3.2 原理总结3.2.1 内置类型3.2.2 自定义类型 四、定位new表达…

OpenAI开发者大会简介

文章目录 GPT-4 Turbo 昨天晚上 OpenAI的首届开发者大会召开 Sam Altman也做了公开演讲&#xff0c;应该说 这是继今年春天发布GPT-4之后 OpenAI在AI行业又创造的一个不眠夜 过去一年 ChatGPT绝对是整个科技领域最热的词汇 OpenAI 也依靠ChatGPT取得了惊人的成绩 ChatG…

模拟生物自然进化的基因遗传算法

基因遗传算法&#xff08;Genetic Algorithm&#xff0c;GA&#xff09;是一种通过模拟生物进化过程来寻找最优解的优化算法。它是一种常见的启发式搜索算法&#xff0c;常用于优化、搜索和机器学习等领域。 生物基因遗传 生物的基因遗传是指父母通过基因传递给子代的过程。基因…

基于STM32的DS1302实时时钟模块应用及原理介绍

在嵌入式系统中&#xff0c;实时时钟模块是一个常见的功能模块&#xff0c;用于记录和管理系统的时间信息。DS1302是一款低功耗、具有多种功能的实时时钟芯片&#xff0c;被广泛应用于各种电子产品中。本文将介绍基于STM32微控制器的DS1302实时时钟模块的应用及原理&#xff0c…

C++类的继承

目录 什么是继承&#xff1f; 父类与子类对象的赋值转换 继承中的作用域问题 子类的默认成员函数问题 如何使一个类不能被继承&#xff1f; 父类的友元和静态成员变量 多重继承与菱形继承 继承和组合 什么是继承&#xff1f; 继承 (inheritance) 机制是面向对象程序设…

基于FPGA的图像Robert变换实现,包括tb测试文件和MATLAB辅助验证

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 fpga的结果导入到matlab显示&#xff1a; 2.算法运行软件版本 vivado2019.2 matlab2022a 3.部分核心程序 ..................................…

obsidian使用分享

ob对比其他软件 上文提到obsidian&#xff0c;这里对obsidian做一个简要的总结 优点&#xff1a;对比notion&#xff0c;语雀这些软件&#xff0c;内容存储在应用商的服务器上。它是存在本地的。 对比思源笔记。说一下思源笔记的不足。思源是块来控制的&#xff0c;回车就是一…

基于Arduino和HC-SR04的超声波测距系统设计

本文介绍了如何使用Arduino和HC-SR04超声波传感器设计并构建一个简单的超声波测距系统。我们将详细讨论硬件连线和编程步骤&#xff0c;并提供完整的Arduino代码。此系统可以应用于各种需要测量距离的项目&#xff0c;例如智能车辆、机器人和安防系统。 引言&#xff1a; 超声…

【Python】pip管理Python包

命令&#xff1a;pip install <包名> 安装指定的包。 pip install ipython #或者 pip install ipython -i https://mirrors.aliyun.com/pypi/simple/ 命令&#xff1a;pip uninstall <包名> 删除指定的包。 pip uninstall ipython 命令&#xff1a;pip list 显…

XxIJob入门-示例

一、部署 xxlJob (一) 下载地址&#xff0c; git clone 到本地。 http://gitee.com/xuxueli0323/xxl-job https://github.com/xuxueli/xxl-job (二) 插入 xxl_job 的sql脚本&#xff1a; 在项目的 /xxl-job/doc/db/tables_xxl_job.sql &#xff0c;找到sql脚本&#xff0c…

使用ACL与prefix-list匹配路由 distribute-list过滤路由

一、实验拓扑 二、实验目的 熟练掌握ACL和prefix-list在ospf匹配路由的应用 三、实验配置 第一步&#xff1a;配置全局基本ip地址 R1 Ruijie(config)#hostname R1 Ruijie(config)#hostname R1 R1(config)#interface gigabitEthernet 0/0 R1(config-if-GigabitEthernet 0/0)#n…

nodejs微信小程序+python+PHP的4s店客户管理系统-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

反注入技术:防范非法 Call 调用的探讨

DLL 注入是一种常见的技术&#xff0c;用于向目标进程注入外部的动态链接库&#xff08;DLL&#xff09;&#xff0c;以执行某些特定的操作。这种技术在恶意软件、游戏作弊等场景中被广泛使用&#xff0c;因此&#xff0c;研究和实施一些反注入技术对于提高应用程序的安全性是至…