TokenFlow详解

news2024/11/26 19:52:20

https://github.com/omerbt/TokenFlow/issues/25
https://github.com/omerbt/TokenFlow/issues/31
https://github.com/omerbt/TokenFlow/issues/32
https://github.com/eps696/SDfu

    • register_extended_attention_pnp
      • 1. 为所有BasicTransformerBlock layer的attn1重构forward
      • 2. 对其中的部分attn1(8个)注入injection_schedule使用PnP操作
      • 3. sa_forward
      • 3. sa_3frame_forward
    • register_conv_injection
    • set_tokenflow
    • make_tokenflow_attention_block

本文主要讲解TokenFlow的Model部分是如何构造的,代码摘自TokenFlow/tokenflow_utils.py

tokenflow的Model构建逻辑是先加载原始的Stable Diffusion,然后重新注册需要修改的UNet的模块,修改操作的调用首先在run_tokenflow.py中:

self.init_method(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t)

想看懂后面的代码, 首先需要看懂SD的BasicTransformerBlock的源码,最好再看看PnP的源码 pnp-diffusers,因为TokenFlow就是基于PnP改进而来的。

    def init_method(self, conv_injection_t, qk_injection_t):
        self.qk_injection_timesteps = self.scheduler.timesteps[:qk_injection_t] if qk_injection_t >= 0 else []
        self.conv_injection_timesteps = self.scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else []
        
        register_extended_attention_pnp(self, self.qk_injection_timesteps)
        register_conv_injection(self, self.conv_injection_timesteps)
        set_tokenflow(self.unet)

init_method函数完成了3件事:
(1)register_extended_attention_pnp:replace unet 的 self attention(扩展为KV来自多帧,同时完成inject。
(2)register_conv_injection:replace conv 的 conv_injection (UpBlock的第二个resnet block,完成inject。
(3)set_tokenflow:replace unet 的 16 BasicTransformerBlock to TokenFlowBlock。
其中,qk_injection_timestepsconv_injection_timesteps是两个timestep list,用于控制PnP Inject操作只在前几个step执行。

除了这些对UNet Model的修改,源码中batched_denoise_step函数为了先编辑关键帧也进行了register_pivotal设置关键帧id。在编辑每个batch时前进行了register_batch_idx设置batch id。在预测噪声前register_time为UNet的某些layer设置step t。

接下来,我们将按照顺序一个一个解析,tokenflow在推理过程中,对原始Stable Diffusion模型做的修改。

register_extended_attention_pnp

register_extended_attention_pnp函数的作用:为UNet的所有BasicTransformerBlock layer的attn1(16个)重构forward函数为extend attention的sa_forward,但只对其中的部分attn1(8个)注入injection_schedule使用PnP操作。

由BasicTransformerBlock的结果可知:attn1虽然Class实现上是CrossAttention,但推理时不传入context做KV,本质上是SelfAttention

class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True):
        super().__init__()
        self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout)  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
                                    heads=n_heads, dim_head=d_head, dropout=dropout)  # cross attention
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)

    def forward(self, x, context=None):
        x = self.attn1(self.norm1(x)) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x

入参register_extended_attention_pnp函数传入的两个必须参数是unet modelinjection_scheduleinjection_schedule用于控制推理过程中PnP Injection执行的时间步,因为我们希望只在前几个timestep进行PnP操作

重构:因为原始tokenflow的extend_attention的forward是sa_forward,是对所有帧进行attention矩阵运算,消耗资源太大,于是我为其添加了sa_3frame_forward仅计算相邻3帧的attention。我重构过的register_extended_attention_pnp函数如下图,在原始基础上添加了一个is_3_frame参数用于选择是否使用sa_3frame_forward

在这里插入图片描述

首先我们先跳过sa_forwardsa_3frame_forward这两个函数,看一下如何找到UNet对应的模块并修改其forward方法。

1. 为所有BasicTransformerBlock layer的attn1重构forward

根据 register_forward_fun 判断使用那种sa_forward,然后遍历unet的每个模块,判断改模块是否继承自BasicTransformerBlock ,如果有则为其修改forward,但将其injection_schedule置空(即不执行PnP)。

    module_names = []
    register_forward_fun = sa_3frame_forward if is_3_frame else sa_forward
    for module_name, module in model.unet.named_modules():
        if isinstance_str(module, "BasicTransformerBlock"):
            module_names.append(module_name)
            # replace BasicTransformerBlock.attn1's forward with sa_forward
            module.attn1.forward = register_forward_fun(module.attn1)
            # set injection_schedule empty[] for BasicTransformerBlock.attn1
            setattr(module.attn1, 'injection_schedule', [])
    print(f"all change {len(module_names)} layer's BasicTransformerBlock.attn1.forward() for extended_attention_pnp...")
    print(module_names)  # up_blocks.1.attentions.0.transformer_blocks.0

isinstance_str 判断x的继承的类型列表中是否包含cls_name类:

def isinstance_str(x: object, cls_name: str):
    for _cls in x.__class__.__mro__:
        if _cls.__name__ == cls_name:
            return True
    return False

第一次重构了unet中如下16层attention的forward:6个down_block的,9个up_block,1个mid_block的。

down_blocks.0.attentions.0.transformer_blocks.0.attn1
down_blocks.0.attentions.1.transformer_blocks.0.attn1
down_blocks.1.attentions.0.transformer_blocks.0.attn1
down_blocks.1.attentions.1.transformer_blocks.0.attn1
down_blocks.2.attentions.0.transformer_blocks.0.attn1
down_blocks.2.attentions.1.transformer_blocks.0.attn1

up_blocks.1.attentions.0.transformer_blocks.0.attn1
up_blocks.1.attentions.1.transformer_blocks.0.attn1
up_blocks.1.attentions.2.transformer_blocks.0.attn1
up_blocks.2.attentions.0.transformer_blocks.0.attn1
up_blocks.2.attentions.1.transformer_blocks.0.attn1
up_blocks.2.attentions.2.transformer_blocks.0.attn1
up_blocks.3.attentions.0.transformer_blocks.0.attn1
up_blocks.3.attentions.1.transformer_blocks.0.attn1
up_blocks.3.attentions.2.transformer_blocks.0.attn1

mid_block.attentions.0.transformer_blocks.0.attn1

2. 对其中的部分attn1(8个)注入injection_schedule使用PnP操作

在res_dict 的指示下,对具体的attn1修改forward函数,同时为其注册injection_schedule,使用PnP操作。

    res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}  # upblock's self-attention layers
    # we are injecting attention in blocks 4 - 11 of the Unet UpBlock, so not in the first block of the lowest resolution
    for res in res_dict:  # res = 1
        for block in res_dict[res]:  # res_dict[res] = [1, 2]
            module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
            module.forward = sa_forward(module)
            setattr(module, 'injection_schedule', injection_schedule)

第二次重构8个up_blocks的:

model.unet.up_blocks.1.attentions.1.transformer_blocks.0.attn1
model.unet.up_blocks.1.attentions.2.transformer_blocks.0.attn1
model.unet.up_blocks.2.attentions.0.transformer_blocks.0.attn1
model.unet.up_blocks.2.attentions.1.transformer_blocks.0.attn1
model.unet.up_blocks.2.attentions.2.transformer_blocks.0.attn1
model.unet.up_blocks.3.attentions.0.transformer_blocks.0.attn1
model.unet.up_blocks.3.attentions.1.transformer_blocks.0.attn1
model.unet.up_blocks.3.attentions.2.transformer_blocks.0.attn1

3. sa_forward

PnP的操作:因为TokenFlow的输入同时考虑了PnPclassifer-free guidance,所以原本UNet输入的单个latent变成了3份source_latents + x + x(其中一个 x 对应edit_prompt一个 x 对应null_promptsource_latents对应了source_prompt)。

latent_model_input = torch.cat([source_latents] + ([x] * 2))  

这样就可以在Unet推理的时候,直接从输入的latents x中切片,分为3份将source_latents注入到uncond_latentscond_latents(PnP的注入就是直接替换),对于self-attention,我们只替换Q和K。

source_latents = x[:n_frames]
uncond_latents = x[n_frames:2*n_frames]
cond_latents = x[2*n_frames:]
# source inject uncond
q[n_frames:2*n_frames] = q[:n_frames]
k[n_frames:2*n_frames] = k[:n_frames]
# source inject cond
q[2*n_frames:] = q[:n_frames]
k[2*n_frames:] = k[:n_frames]

Extend_Attention:tokenflow实现扩展的self-attention使用,因为对于第i帧,计算self attention时,Q是第i帧的特征,KV要来自其他所有帧,所以要repeat一下K和V,方便后面计算。
T b a s e = S o f t m a x ( Q i ; [ K i 1 , . . . , K i k ] d ) ⋅ [ V i 1 , . . . , V i k ] T_{base}=Softmax(\frac{Q^i;[K^{i1},...,K^{ik}]}{\sqrt{d}})\cdot[V^{i1},...,V^{ik}] Tbase=Softmax(d Qi;[Ki1,...,Kik])[Vi1,...,Vik]

# KV reshape and repeat for extend_attention: Softmax(Q_i_frame @ K_all_frame) @ V_all_frame
# (n_frames, seq_len, dim) -> (1, n_frames * seq_len, dim) -> (n_frames, n_frames * seq_len, dim)
k_source = k[:n_frames]
k_uncond = k[n_frames:2 * n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
k_cond = k[2 * n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
v_source = v[:n_frames]
v_uncond = v[n_frames:2 * n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
v_cond = v[2 * n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)

因为逐帧进行计算,而且多头注意力逐头进行计算,构造双重for循环计算attention 得到第 i 帧第 j 头的 attention out,最后分别concat帧维度和头维度得到最终atention结果:

Q @ K -> sim:
(b, 1, seq_len, dim//head) @ (b, 1, dim//head, frame*seq_len) -> (b, 1, seq_len, frame*seq_len)

sim @ V -> out:
(b, 1, seq_len, frame*seq_len) @ (b, 1, frame*seq_len, dim//head) -> (b, 1, seq_len, dim//head)

cat each head's out:
(b->n_frames, 1, seq_len, dim//head) -> (n_frames, 1, seq_len, dim//head)

cat each frame's out:
(n_frames, 1, seq_len, dim//head) -> (n_frames, heads, seq_len, dim//heads)

sa_forward完整代码如下:

def sa_forward(self):
        to_out = self.to_out  # self.to_out = [linear, dropout]
        if type(to_out) is torch.nn.modules.container.ModuleList:
            to_out = self.to_out[0]
        else:
            to_out = self.to_out
        
        def forward(x, encoder_hidden_states=None, attention_mask=None):  
            is_cross = encoder_hidden_states is not None  # corss-attention or self-attention

            h = self.heads
            batch_size, sequence_length, dim = x.shape  # (3*n_frames, seq_len, dim)
            # batch: 前n_frames个样本为source feature, 中间n_frames个样本为uncond featur, 后n_frames个样本为cond feature
            n_frames = batch_size // 3
            # source_latents = x[:n_frames], uncond_latents = x[n_frames:2*n_frames], cond_latents = x[2*n_frames:]
                        
            encoder_hidden_states = encoder_hidden_states if is_cross else x
            q = self.to_q(x)
            k = self.to_k(encoder_hidden_states)
            v = self.to_v(encoder_hidden_states)

            # PnP Injection QK:只需要sample过程中的前几个timestep进行injection (判断t是否符合),且只在UpBlock进行inject
            if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
                # source inject into unconditional
                q[n_frames:2 * n_frames] = q[:n_frames]
                k[n_frames:2 * n_frames] = k[:n_frames]
                # source inject into conditional
                q[2 * n_frames:] = q[:n_frames]
                k[2 * n_frames:] = k[:n_frames]

            # KV reshape and repeat for extend_attention: Softmax(Q_i_frame @ K_all_frame) @ V_all_frame
            # (n_frames, seq_len, dim) -> (1, n_frames * seq_len, dim) -> (n_frames, n_frames * seq_len, dim)
            k_source = k[:n_frames]
            k_uncond = k[n_frames:2 * n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
            k_cond = k[2 * n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
            v_source = v[:n_frames]
            v_uncond = v[n_frames:2 * n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
            v_cond = v[2 * n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
            
            # project QKV's source, cond and uncond, respectively 
            q_source = self.reshape_heads_to_batch_dim(q[:n_frames])  # q (n_frames*heads, seq_len, dim//heads)
            q_uncond = self.reshape_heads_to_batch_dim(q[n_frames:2 * n_frames])
            q_cond = self.reshape_heads_to_batch_dim(q[2 * n_frames:])
            k_source = self.reshape_heads_to_batch_dim(k_source)  # kv (n_frames*heads, n_frames * seq_len, dim//heads)
            k_uncond = self.reshape_heads_to_batch_dim(k_uncond)
            k_cond = self.reshape_heads_to_batch_dim(k_cond)
            v_source = self.reshape_heads_to_batch_dim(v_source)
            v_uncond = self.reshape_heads_to_batch_dim(v_uncond)
            v_cond = self.reshape_heads_to_batch_dim(v_cond)
            
            # split heads
            q_src = q_source.view(n_frames, h, sequence_length, dim // h)
            k_src = k_source.view(n_frames, h, sequence_length, dim // h)
            v_src = v_source.view(n_frames, h, sequence_length, dim // h)
            q_uncond = q_uncond.view(n_frames, h, sequence_length, dim // h)
            k_uncond = k_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
            v_uncond = v_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
            q_cond = q_cond.view(n_frames, h, sequence_length, dim // h)
            k_cond = k_cond.view(n_frames, h, sequence_length * n_frames, dim // h)
            v_cond = v_cond.view(n_frames, h, sequence_length * n_frames, dim // h)

            out_source_all = []
            out_uncond_all = []
            out_cond_all = []
            
            # each frame or single_batch frames
            single_batch = n_frames<=12
            b = n_frames if single_batch else 1  # b=1
            # do attention for each frame respectively. frames [frame:frame=b]
            for frame in range(0, n_frames, b):
                out_source = []
                out_uncond = []
                out_cond = []
                # do attention for each head respectively. head j
                for j in range(h):
                    # do attention for source, cond and uncond respectively, (b, 1, seq_len, dim//head) @ (b, 1, dim//head, frame*seq_len) -> (b, 1, seq_len, frame*seq_len)
                    sim_source_b = torch.bmm(q_src[frame: frame+ b, j], k_src[frame: frame+ b, j].transpose(-1, -2)) * self.scale
                    sim_uncond_b = torch.bmm(q_uncond[frame: frame+ b, j], k_uncond[frame: frame+ b, j].transpose(-1, -2)) * self.scale
                    sim_cond = torch.bmm(q_cond[frame: frame+ b, j], k_cond[frame: frame+ b, j].transpose(-1, -2)) * self.scale
                    # append each head's out, (b, 1, seq_len, frame*seq_len) @ (b, 1, frame*seq_len, dim//head) -> (b, 1, seq_len, dim//head)
                    out_source.append(torch.bmm(sim_source_b.softmax(dim=-1), v_src[frame: frame+ b, j]))
                    out_uncond.append(torch.bmm(sim_uncond_b.softmax(dim=-1), v_uncond[frame: frame+ b, j]))
                    out_cond.append(torch.bmm(sim_cond.softmax(dim=-1), v_cond[frame: frame+ b, j]))
                # cat each head's out, (b->n_frames, 1, seq_len, dim//head) -> (n_frames, 1, seq_len, dim//head)
                out_source = torch.cat(out_source, dim=0)
                out_uncond = torch.cat(out_uncond, dim=0) 
                out_cond = torch.cat(out_cond, dim=0) 
                if single_batch: # if use single_batch, view single_batch frame's out
                    out_source = out_source.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
                    out_uncond = out_uncond.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
                    out_cond = out_cond.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
                # append each frame's out
                out_source_all.append(out_source)
                out_uncond_all.append(out_uncond)
                out_cond_all.append(out_cond)
            # cat each frame's out, (n_frames, 1, seq_len, dim//head) -> (n_frames, heads, seq_len, dim//heads)
            out_source = torch.cat(out_source_all, dim=0)
            out_uncond = torch.cat(out_uncond_all, dim=0)
            out_cond = torch.cat(out_cond_all, dim=0)
            # cat source, cond and uncond's out, (n_frames, heads, seq_len, dim//heads) -> (3*n_frames, heads, seq_len, dim//heads)
            out = torch.cat([out_source, out_uncond, out_cond], dim=0)
            out = self.reshape_batch_dim_to_heads(out)
            return to_out(out)
        return forward

3. sa_3frame_forward

因为使用了PnP:每次进行self attention不再是像sa_forward一样,对输入repeat重复n_frames,而是 source_latent 进行正常的KV来自单帧的self attention forward_originaluncond_latentcond_latent 进行 KV 来自相邻3帧 的self attention forward_extended

每次计算第 i 帧的attention时(window_size=3),以第 i 帧为中心 ,取下标=[i-1, i, i+1]的3帧作为KV:

 def sa_3frame_forward(self):  # self attention只是扩展到连续的 3 个关键帧,而不是所有关键帧。
        to_out = self.to_out
        if type(to_out) is torch.nn.modules.container.ModuleList:
            to_out = self.to_out[0]
        else:
            to_out = self.to_out
        
        # 原始的UNet attention forward
        def forward_original(q, k, v):
            n_frames, seq_len, dim = q.shape
            h = self.heads
            head_dim = dim // h
            
            q = self.head_to_batch_dim(q).reshape(n_frames, h, seq_len, head_dim)
            k = self.head_to_batch_dim(k).reshape(n_frames, h, seq_len, head_dim)
            v = self.head_to_batch_dim(v).reshape(n_frames, h, seq_len, head_dim)

            out_all = []
            
            for frame in range(n_frames):
                out = []
                for j in range(h):
                    sim = torch.matmul(q[frame, j], k[frame, j].transpose(-1, -2)) * self.scale # (seq_len, seq_len)                                            
                    out.append(torch.matmul(sim.softmax(dim=-1), v[frame, j])) # h * (seq_len, head_dim)

                out = torch.cat(out, dim=0).reshape(-1, seq_len, head_dim) # (h, seq_len, head_dim)
                out_all.append(out) # n_frames * (h, seq_len, head_dim)
            
            out = torch.cat(out_all, dim=0) # (n_frames * h, seq_len, head_dim)
            out = self.batch_to_head_dim(out) # (n_frames, seq_len, h * head_dim)
            return out
            
        # extend UNet attention forward(all frames)
        def forward_extended(q, k, v):
            n_frames, seq_len, dim = q.shape
            h = self.heads
            head_dim = dim // h
            
            q = self.head_to_batch_dim(q).reshape(n_frames, h, seq_len, head_dim)
            k = self.head_to_batch_dim(k).reshape(n_frames, h, seq_len, head_dim)
            v = self.head_to_batch_dim(v).reshape(n_frames, h, seq_len, head_dim)

            out_all = []
            window_size = 3
            
            for frame in range(n_frames):  # frame=32, window_size=3: window=[14, 15, 16, 17, 18]
                out = []
                # sliding window to improve speed.  以当前帧frame为中心,取window_size大小的帧,如frame_idx=1时, window: [0, 1, 2]
                window = range(max(0, frame-window_size // 2), min(n_frames, frame+window_size//2+1))  
                
                for j in range(h):
                    sim_all = []  # 存当前帧frame和window内3帧的sim,len(sim_all)=3
                    
                    for kframe in window:  # (1, 1, seq_len, head_dim) @ (1, 1, head_dim, seq_len) -> (1, 1, seq_len, seq_len)
                        # 当前帧frame 依次和window内的帧kframe,计算sim存入sim_all
                        sim_all.append(torch.matmul(q[frame, j], k[kframe, j].transpose(-1, -2)) * self.scale) # window * (seq_len, seq_len)
                        
                    sim_all = torch.cat(sim_all).reshape(len(window), seq_len, seq_len).transpose(0, 1) # (seq_len, window, seq_len)
                    sim_all = sim_all.reshape(seq_len, len(window) * seq_len) # (seq_len, window * seq_len)
                    out.append(torch.matmul(sim_all.softmax(dim=-1), v[window, j].reshape(len(window) * seq_len, head_dim))) # h * (seq_len, head_dim)

                out = torch.cat(out, dim=0).reshape(-1, seq_len, head_dim) # (h, seq_len, head_dim)
                out_all.append(out) # n_frames * (h, seq_len, head_dim)
            
            out = torch.cat(out_all, dim=0) # (n_frames * h, seq_len, head_dim)
            out = self.batch_to_head_dim(out) # (n_frames, seq_len, h * head_dim)

            return out
            
        def forward(x, encoder_hidden_states=None, attention_mask=None):
            batch_size, sequence_length, dim = x.shape
            h = self.heads
            n_frames = batch_size // 3
            
            is_cross = encoder_hidden_states is not None
            encoder_hidden_states = encoder_hidden_states if is_cross else x
            q = self.to_q(x)
            k = self.to_k(encoder_hidden_states)
            v = self.to_v(encoder_hidden_states)

            if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
                # inject unconditional
                q[n_frames:2 * n_frames] = q[:n_frames]
                k[n_frames:2 * n_frames] = k[:n_frames]
                # inject conditional
                q[2 * n_frames:] = q[:n_frames]
                k[2 * n_frames:] = k[:n_frames]

            # source_latent 正常的self attention, uncond 和 cond进行 KV来自相邻3帧的self attention
            out_source = forward_original(q[:n_frames], k[:n_frames], v[:n_frames])  
            out_uncond = forward_extended(q[n_frames:2 * n_frames], k[n_frames:2 * n_frames], v[n_frames:2 * n_frames])
            out_cond = forward_extended(q[2 * n_frames:], k[2 * n_frames:], v[2 * n_frames:])
                            
            out = torch.cat([out_source, out_uncond, out_cond], dim=0) # (3 * n_frames, seq_len, dim)

            return to_out(out)

        return forward

register_conv_injection

为UNet注册完SelfAttention的forward后,再来为其UNet的unet.up_blocks[1].resnets[1]的ResnetBlock2D注册新的forward,同时注册injection_schedule控制PnP注入时间步。

在这里插入图片描述

conv_forward中只比普通的ResnetBlock2D的forward多了一步PnP Inject的操作:

if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
                source_batch_size = int(hidden_states.shape[0] // 3)
                # inject unconditional
                hidden_states[source_batch_size:2 * source_batch_size] = hidden_states[:source_batch_size]
                # inject conditional
                hidden_states[2 * source_batch_size:] = hidden_states[:source_batch_size]

set_tokenflow

__class__就是返回自己的父类,set_tokenflow就是找到UNet中所有父类是BasicTransformerBlock的模块,对他们把BasicTransformerBlock作为父类,外面再套一层TokenFlowBlock类。

def set_tokenflow(model: torch.nn.Module):
    """
    Sets the tokenflow attention blocks in a model.
    """
    for _, module in model.named_modules():
        if isinstance_str(module, "BasicTransformerBlock"):
            # 16个 module.__class__ = <class 'diffusers.models.attention.BasicTransformerBlock'>
            make_tokenflow_block_fn = make_tokenflow_attention_block 
            # 将BasicTransformerBlock作为父类,外面再套一层TokenFlowBlock类
            module.__class__ = make_tokenflow_block_fn(module.__class__)

            # Something needed for older versions of diffusers
            if not hasattr(module, "use_ada_layer_norm_zero"):
                module.use_ada_layer_norm = False
                module.use_ada_layer_norm_zero = False
    return model

make_tokenflow_attention_block

这个函数就是定义了一个TokenFlowBlock类,然后返回TokenFlowBlock类。TokenFlowBlock就继承自BasicTransformerBlock类,只重写了forward函数

首先pivotal_pass判断是否是关键帧:

  • 关键帧,就存下pivot_hidden_states
  • 非关键帧,取非关键帧与关键帧的source_latent,计算其与关键帧的余弦相似度cosine_sim,shape=(n_frames * seq_len, len(batch_idxs) * seq_len),求得相似度最大的帧下标idx,然后为source、uncond、cond 堆叠3份。
    • 如果当前batch不是第一个batch,len(batch_idxs) =2, 分别保存最相似的帧下标到idx1和idx2
    • 如果是第一个batch,len(batch_idxs) =1,保存最相似的帧下标到idx1
			batch_size, sequence_length, dim = hidden_states.shape  # (batch, seq_len, dim)
            n_frames = batch_size // 3  # batch = 3 * n_frames: source + uncond + cond
            mid_idx = n_frames // 2
            hidden_states = hidden_states.view(3, n_frames, sequence_length, dim)  # (source + uncond + cond, n_frames, seq_len, dim)

            norm_hidden_states = self.norm1(hidden_states).view(3, n_frames, sequence_length, dim)

            if self.pivotal_pass:  # is_pivotal = True # 关键帧,存下
                self.pivot_hidden_states = norm_hidden_states  # (3, n_frames, sequence_length, dim) ,关键帧的n_frames=5
            else:  # is_pivotal = False # 非关键帧,与关键帧计算source_latent的cosine_sim
                idx1 = []
                idx2 = []
                batch_idxs = [self.batch_idx]  # 每batch_size帧进行一批处理,batch_idx是第几个batch,如32帧,batch_size=8,batch_idx可以为0或1或2或3或4
                if self.batch_idx > 0:  # 如果不是第一个batch
                    batch_idxs.append(self.batch_idx - 1)  # 加入前一个batch的idx,如当前batch_idx=1时,再加入0,则batch_idxs=[1,0]
                
                # 取source_latent的非关键帧与关键帧计算cosine_sim,如果batch_idxs=[1,0],则只拿第0个batch和第1个batch的关键帧和其norm_hidden_states计算sim
                sim = batch_cosine_sim(norm_hidden_states[0].reshape(-1, dim),  # (n_frames*sequence_length, dim)
                                        self.pivot_hidden_states[0][batch_idxs].reshape(-1, dim))  # (len(batch_idxs)*sequence_length, dim)
                if len(batch_idxs) == 2:  # 如果不是第一个batch, 分别保存最相似的帧下标到idx1和idx2
                    # sim: (n_frames * seq_len, len(batch_idxs) * seq_len),  len(batch_idxs)=2
                    sim1, sim2 = sim.chunk(2, dim=1) 
                    idx1.append(sim1.argmax(dim=-1))  # (n_frames * seq_len) 个数,每个数在[0,76]之间
                    idx2.append(sim2.argmax(dim=-1))  # (n_frames * seq_len) 个数,每个数在[0,76]之间
                else:  # 如果是第一个batch,保存最相似的帧下标到idx1
                    idx1.append(sim.argmax(dim=-1))

                # 为source、uncond、cond 堆叠3份
                idx1 = torch.stack(idx1 * 3, dim=0) # (3, n_frames * seq_len)
                idx1 = idx1.squeeze(1)
                if len(batch_idxs) == 2:
                    idx2 = torch.stack(idx2 * 3, dim=0) # (3, n_frames * seq_len)
                    idx2 = idx2.squeeze(1)

接下来依次进行Self-Attention attn1Cross-Attention attn2、和Feed-forward ff其中Cross-Attention和Feed-forward没有任何改变,唯一改变的就是Self-Attention过程

  • 对于关键帧,计算 self-attention 结果,并将其保存下来。
  • 对于非关键帧,将其与关键帧的 attention 结果进行融合。融合方式为加权平均,权重由帧与关键帧之间的距离决定。如果非关键帧是第一个 batch 中的帧,则直接使用关键帧的 attention 结果。如果非关键帧是第二个 batch 中的帧,则计算与第一个 batch 中的关键帧和第二个 batch 中的关键帧的 attention 结果,然后进行加权平均。权重由帧与两个关键帧之间的距离决定。具体公式如下:
    w e i g h t = ∣ s − p 1 ∣ / ( ∣ s − p 1 ∣ + ∣ s − p 2 ∣ ) weight = |s - p1| / (|s - p1| + |s - p2|) weight=sp1∣/(sp1∣+sp2∣)
    其中,s 表示帧的编号,p1 表示第一个关键帧的编号,p2 表示第二个关键帧的编号。
			# 1. Self-Attention
            cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
            if self.pivotal_pass:
                # norm_hidden_states.shape = 3, n_frames * seq_len, dim
                self.attn_output = self.attn1(
                        norm_hidden_states.view(batch_size, sequence_length, dim),
                        encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                        **cross_attention_kwargs,
                    )
                # 3, n_frames * seq_len, dim - > 3 * n_frames, seq_len, dim
                self.kf_attn_output = self.attn_output 
            else:
                batch_kf_size, _, _ = self.kf_attn_output.shape
                self.attn_output = self.kf_attn_output.view(3, batch_kf_size // 3, sequence_length, dim)[:,
                                   batch_idxs]  # 3, n_frames, seq_len, dim --> 3, len(batch_idxs), seq_len, dim

            # gather values from attn_output, using idx as indices, and get a tensor of shape 3, n_frames, seq_len, dim
            if not self.pivotal_pass:
                if len(batch_idxs) == 2:
                    attn_1, attn_2 = self.attn_output[:, 0], self.attn_output[:, 1]
                    attn_output1 = attn_1.gather(dim=1, index=idx1.unsqueeze(-1).repeat(1, 1, dim))
                    attn_output2 = attn_2.gather(dim=1, index=idx2.unsqueeze(-1).repeat(1, 1, dim))

                    s = torch.arange(0, n_frames).to(idx1.device) + batch_idxs[0] * n_frames
                    # distance from the pivot
                    p1 = batch_idxs[0] * n_frames + n_frames // 2
                    p2 = batch_idxs[1] * n_frames + n_frames // 2
                    d1 = torch.abs(s - p1)
                    d2 = torch.abs(s - p2)
                    # weight
                    w1 = d2 / (d1 + d2)
                    w1 = torch.sigmoid(w1)
                    
                    w1 = w1.unsqueeze(0).unsqueeze(-1).unsqueeze(-1).repeat(3, 1, sequence_length, dim)
                    attn_output1 = attn_output1.view(3, n_frames, sequence_length, dim)
                    attn_output2 = attn_output2.view(3, n_frames, sequence_length, dim)
                    attn_output = w1 * attn_output1 + (1 - w1) * attn_output2
                else:
                    attn_output = self.attn_output[:,0].gather(dim=1, index=idx1.unsqueeze(-1).repeat(1, 1, dim))

                attn_output = attn_output.reshape(
                        batch_size, sequence_length, dim)  # 3 * n_frames, seq_len, dim
            else:
                attn_output = self.attn_output
                
            hidden_states = hidden_states.reshape(batch_size, sequence_length, dim)  # 3 * n_frames, seq_len, dim
            hidden_states = attn_output + hidden_states  # res_connect

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1332317.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL 数据库系列课程 05:MySQL命令行工具的配置

一、Windows启动命令行工具 &#xff08;1&#xff09;打开 Windows 的开始菜单&#xff0c;找到安装好的 MySQL&#xff0c;点击MySQL 8.0 Command Line Client - Unicode&#xff0c;这个带有 Unicode 的&#xff0c;是支持中文的&#xff0c;允许在命令行中敲中文。 &…

C++的一些零散小知识

不定时更新一些 文章目录 1、空指针nullptr的类型为std::nullptr_t2、函数定义中&#xff0c;如果不需要使用参数的值&#xff0c;可以省略参数名3、静态成员变量在C17之后可以直接在类内定义并初始化了 1、空指针nullptr的类型为std::nullptr_t 一个毫无意义的例子&#xff1…

Python自动化办公,又双叒增加功能了!

大家好,这里是程序员晚枫,今天给大家分享一下Python自动化办公,最近更新的功能。 以下代码,全部都可以免费使用哦~! 彩色的输出 有没有觉得python自带的无色输出看腻了?增加了彩色输出的功能,可以实现无痛替换。 上面效果的实现代码如下,👇 自动收发邮件 这个12月发…

Python字符串处理全攻略(三):常用内置方法轻松掌握

目录 引言Python字符串常用内置方法str.index()功能介绍语法注意事项总结 str.startswith()功能介绍语法示例注意事项 str.expandtabs()功能介绍语法示例注意事项总结 str.splitlines()功能介绍语法示例注意事项总结 str.swapcase()功能介绍语法示例注意事项 结束语 引言 欢迎…

【Python】面向对象

一、初识对象 二、成员方法 三、类和对象 四、构造方法 五、其它内置方法 六、封装 七、继承 八、类型注解 九、多态 面向对象概念 面向对象编程&#xff08;Object-Oriented Programming&#xff0c;OOP&#xff09;是一种编程范式&#xff0c;它将数据和操作数据的方法组织…

【机器学习】【线性回归】梯度下降

文章目录 [toc]数据集实际值估计值估计误差代价函数学习率参数更新Python实现线性拟合结果代价结果 数据集 ( x ( i ) , y ( i ) ) , i 1 , 2 , ⋯ , m \left(x^{(i)} , y^{(i)}\right) , i 1 , 2 , \cdots , m (x(i),y(i)),i1,2,⋯,m 实际值 y ( i ) y^{(i)} y(i) 估计值 h …

HTML美化网页

使用CSS3美化的原因 用css美化页面文本,使页面漂亮、美观、吸引用户 可以更好的突出页面的主题内容,使用户第一眼可以看到页面主要内容 具有良好的用户体验 <span>标签 作用 能让某几个文字或者某个词语凸显出来 有效的传递页面信息用css美化页面文本&#xff0c;使页面漂…

事务相关知识

库存问题 先扣库存–>如果订单服务崩溃了&#xff0c;但是库存服务没有崩溃&#xff0c;这个时候库存扣减成功了&#xff0c;那么就会库存不能归还,&#xff0c;无法回滚。 后扣库存–>1&#xff1a;调用库存服务失败(比如网络抖动&#xff0c;库存服务挂了)–>回滚。…

VSCode运行时弹出powershell

问题 安装好了vscode并且装上code runner插件后&#xff0c;运行代码时总是弹出powershell,而不是在vscode底部终端 显示运行结果。 解决方法 打开系统cmd ,在窗口顶部条右击打开属性&#xff0c;把最下面的旧版控制台选项取消&#xff0c;即可

python区块链简单模拟【01】

完整代码 https://gitee.com/ihan1001 https://github.com/ihan1001 重点&#xff1a;时间戳&#xff0c;MD5哈希&#xff0c;SHA256哈希&#xff0c;base64一种用64个字符表示任意二进制数据的方法&#xff0c;ECC椭圆曲线算法 import time time.time()datetime.now().strfti…

Ignite内存配置

配置内存 #1.内存架构 #1.1.概述 Ignite内存架构通过可以同时在内存和磁盘上存储和处理数据及索引&#xff0c;得到了支持磁盘持久化的内存级性能。 多层存储的运行方式类似于操作系统&#xff08;例如Linux&#xff09;的虚拟内存。但是这两种类型架构之间的主要区别是&…

懒加载图片案例

整体效果&#xff1a; HTML部分&#xff1a; <div class"lazy-box"><img class"lazy" data-original"img/1.jpg" alt"1.jpg" width"960" height"540"><img class"lazy" data-original…

MySQL 数据库系列课程 04:MySQL Workbench的安装

Workbench 是 MySQL 官方推出的免费的强大的可视化工具&#xff0c;不熟悉命令行工具的人&#xff0c;可以安装这一款软件&#xff0c;通过编写 SQL 进行数据库中数据的增删改查操作&#xff0c;接下来我们详细说明一下 Workbench 的安装。 一、Windows安装Workbench &#x…

怎么为pdf文件添加水印?

怎么为pdf文件添加水印&#xff1f;PDF是一种很好用的文件格式&#xff0c;这种格式能够很有效的保护我们的文件&#xff0c;但有时可能还会被破解&#xff0c;这种时候在PDF上添加水印就是比较好的方法。 综上所述&#xff0c;PDF是保密性很强的文件&#xff0c;但添加水印能够…

深度学习入门(python)考试速成均方误差

均方误差 表示神经网络的输出&#xff0c;表示监督数据&#xff0c;表示数据的维度。 这里神经网络的输出y是softmax函数的输出 数组元素的索引从第一个开始依次对应数组“0”&#xff0c;“1”&#xff0c;“2”&#xff0c;...... 由于softmax函数的输出可理解为概率 由此…

华为云Stack 8.X 流量模型分析(二)

二、流量模型分析相关知识 1.vNIC ​ 虚拟网络接口卡(vNIC)是基于主机物理 NIC 的虚拟网络接口。每个主机可以有多个 NIC&#xff0c;每个 NIC 可以是多个 vNIC 的基础。 ​ 将 vNIC 附加到虚拟机时&#xff0c;Red Hat Virtualization Manager 会在虚拟机之间创建多个关联的…

LeetCode 剑指 Offer II 054. 所有大于等于节点的值之和

给定一个二叉搜索树&#xff0c;请将它的每个节点的值替换成树中大于或者等于该节点值的所有节点值之和。 提醒一下&#xff0c;二叉搜索树满足下列约束条件&#xff1a; 节点的左子树仅包含键 小于 节点键的节点。 节点的右子树仅包含键 大于 节点键的节点。 左右子树也必须…

网络监测之如何保障企业业务系统安全?

网络信息安全在网络时代的重要性不言而喻。随着互联网的普及和数字化进程的加速&#xff0c;网络已经成为人们生活、工作和学习的重要平台。在这个平台上&#xff0c;信息交流、数据存储、在线支付等都需要依赖于网络信息安全。其中企事业单位业务系统安全值得关注。 企事业单…

前端未死,顺势而生

随着人工智能和低代码的崛起&#xff0c;“前端已死”的声音逐渐兴起。前端已死&#xff1f;尊嘟假嘟&#xff1f;快来发表你的看法吧&#xff01; 一、“前端已死”因何而来&#xff1f; 在开始讨论之前&#xff0c;首先要明确什么是“前端”。 所谓前端&#xff0c;主要涉及…

计算机图形学理论(3):着色器编程

本系列根据国外一个图形小哥的讲解为本&#xff0c;整合互联网的一些资料&#xff0c;结合自己的一些理解。 CPU vs GPU CPU支持&#xff1a; 快速缓存分支适应性高性能 GPU支持&#xff1a; 多个 ALU快速板载内存并行任务的高吞吐量&#xff08;在每个片段、顶点上执行着色…