LangChain 31 模块复用Prompt templates 提示词模板

news2025/1/15 12:58:48

LangChain系列文章

  1. LangChain 实现给动物取名字,
  2. LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字
  3. LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄
  4. LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索Indexes for information retrieve
  5. LangChain 5易速鲜花内部问答系统
  6. LangChain 6根据图片生成推广文案HuggingFace中的image-caption模型
  7. LangChain 7 文本模型TextLangChain和聊天模型ChatLangChain
  8. LangChain 8 模型Model I/O:输入提示、调用模型、解析输出
  9. LangChain 9 模型Model I/O 聊天提示词ChatPromptTemplate, 少量样本提示词FewShotPrompt
  10. LangChain 10思维链Chain of Thought一步一步的思考 think step by step
  11. LangChain 11实现思维树Implementing the Tree of Thoughts in LangChain’s Chain
  12. LangChain 12调用模型HuggingFace中的Llama2和Google Flan t5
  13. LangChain 13输出解析Output Parsers 自动修复解析器
  14. LangChain 14 SequencialChain链接不同的组件
  15. LangChain 15根据问题自动路由Router Chain确定用户的意图
  16. LangChain 16 通过Memory记住历史对话的内容
  17. LangChain 17 LangSmith调试、测试、评估和监视基于任何LLM框架构建的链和智能代理
  18. LangChain 18 LangSmith监控评估Agent并创建对应的数据库
  19. LangChain 19 Agents Reason+Action自定义agent处理OpenAI的计算缺陷
  20. LangChain 20 Agents调用google搜索API搜索市场价格 Reason Action:在语言模型中协同推理和行动
  21. LangChain 21 Agents自问自答与搜索 Self-ask with search
  22. LangChain 22 LangServe用于一键部署LangChain应用程序
  23. LangChain 23 Agents中的Tools用于增强和扩展智能代理agent的功能
  24. LangChain 24 对本地文档的搜索RAG检索增强生成Retrieval-augmented generation
  25. LangChain 25: SQL Agent通过自然语言查询数据库sqlite
  26. LangChain 26: 回调函数callbacks打印prompt verbose调用
  27. LangChain 27 AI Agents角色扮演多轮对话解决问题CAMEL
  28. LangChain 28 BabyAGI编写旧金山的天气预报
  29. LangChain 29 调试Debugging 详细信息verbose
  30. LangChain 30 ChatGPT LLM将字符串作为输入并返回字符串Chat Model将消息列表作为输入并返回消息

在这里插入图片描述

Prompt templates 提示词模板

大多数LLM应用程序不会直接将用户输入传递给LLM。通常,它们会将用户输入添加到一个更大的文本片段中,称为提示模板,该模板提供有关特定任务的附加上下文。

在前面的示例中,我们传递给模型的文本包含生成公司名称的说明。对于我们的应用程序,如果用户只需提供公司/产品的描述而不必担心给模型提供说明,那将是很好的。

PromptTemplates正是为此而设计的!它们捆绑了从用户输入到完全格式化提示的所有逻辑。这可以非常简单地开始-例如,用于生成上述字符串的提示只是:

from langchain.prompts import PromptTemplate

prompt = PromptTemplate.from_template("制造{product}的公司取什么好名字?")
prompt.format(product="彩色袜子")
制造彩色袜子的公司取什么好名字?

然而,使用这些而不是原始字符串格式化的优势有几个。你可以“部分”地提取变量 - 例如,你可以一次只格式化一些变量。你可以将它们组合在一起,轻松地将不同的模板组合成单个提示。有关这些功能的详细说明,请参阅有关提示的部分。

PromptTemplates 也可以用于生成消息列表。在这种情况下,提示不仅包含有关内容的信息,还包含每条消息(其角色,其在列表中的位置等)的信息。在这里,最常见的情况是 ChatPromptTemplateChatMessageTemplates 的列表。每个 ChatMessageTemplate 包含有关如何格式化该 ChatMessage 的说明 - 其角色,以及其内容。让我们在下面看一下:

# 导入Langchain库中的OpenAI模块,该模块提供了与OpenAI语言模型交互的功能
from langchain.llms import OpenAI  

# 导入Langchain库中的PromptTemplate模块,用于创建和管理提示模板
from langchain.prompts import PromptTemplate  

# 导入Langchain库中的LLMChain模块,它允许构建基于大型语言模型的处理链
from langchain.chains import LLMChain  

# 导入dotenv库,用于从.env文件加载环境变量,这对于管理敏感数据如API密钥很有用
from dotenv import load_dotenv  

# 导入Langchain库中的ChatOpenAI类,用于创建和管理OpenAI聊天模型的实例。
from langchain.chat_models import ChatOpenAI

# 调用dotenv库的load_dotenv函数来加载.env文件中的环境变量。
# 这通常用于管理敏感数据,如API密钥。
load_dotenv()  

# 创建一个ChatOpenAI实例,配置它使用gpt-3.5-turbo模型,
# 设定温度参数为0.7(控制创造性的随机性)和最大令牌数为60(限制响应长度)。
chat = ChatOpenAI(
    model="gpt-3.5-turbo",
    temperature=0.7,
    max_tokens=120
)
# 导入Langchain库中的模板类,用于创建聊天式的提示。
from langchain.prompts import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    HumanMessagePromptTemplate
)

template = "你是一个很有帮助的助手,可以进行翻译语言从 {input_language} 到 {output_language}."
human_template = "{text}"

chat_prompt = ChatPromptTemplate.from_messages([
    ("system", template),
    ("human", human_template),
])

prompt = chat_prompt.format_messages(input_language="English", output_language="Chinese", text="I love programming.")
print('prompt >>> ', prompt)

# 使用chat函数(需要事先定义)发送生成的提示,获取结果。
result = chat(prompt)

# 打印聊天结果。
print('result >>> ', result)
[zgpeace@zgpeaces-MacBook-Pro langchain-llm-app (develop ✗)]$ python Basic/chat_llm_prompt_template.py                                  ──(Sat,Dec23)─┘
prompt >>>  [SystemMessage(content='你是一个很有帮助的助手,可以进行翻译语言从 English 到 Chinese.'), HumanMessage(content='I love programming.')]
result >>>  content='我热爱编程。'

ChatPromptTemplates也可以用其他方式构建 - 详细信息请参阅提示部分。

代码

https://github.com/zgpeace/pets-name-langchain/tree/develop

参考

https://python.langchain.com/docs/get_started/quickstart

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1331875.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HarmonyOS - 鸿蒙开发入门

文章目录 HarmonyOS核心资源特性:全场景终端HarmonyOS 版本 HarmonyOS 和 OpenHarmony教程资源开发环境开发工具 - DevEco开发语言 - ArkTS核心框架 - ArkUI 考证 HarmonyOS 开发交流秋秋群:23458659,V : ez-code,期待交流和合作 …

Arduino上U8g2库显示中文的经历

u8g2自带很多中文库&#xff1b;但是向u8g2_font_wqy12_t_chinese3 比较全的应该是u8g2_font_wqy12_t_gb2312 这个&#xff0c;只是我还没有调用成功 这个库&#xff0c;中文就显示不全&#xff1b;有些没有定义&#xff0c;如百家姓 #include <Arduino.h> #include <…

【微服务】:微服务最佳实践

关键需求 最大限度地提高团队的自主性&#xff1a;创建一个团队可以完成更多工作而不必与其他团队协调的环境。 优化开发速度&#xff1a;硬件便宜&#xff0c;人不是。使团队能够轻松快捷地构建强大的服务。 关注自动化&#xff1a;人们犯错误。更多的系统操作也意味着更多的…

大端和小端传输字节序

大端和小端传输字节序 大端和小端一、最高有效位、最低有效位1.MSB(Most significant Bit)最高有效位2.LSB(Least Significant Bit)最低有效位 二、内存地址三、大端和小端四、网络字节序和主机字节序五、C#位操作符六、C#中关于大端和小端的转换七、关于负数八、关于汉字编码以…

【内存泄漏】内存泄漏及常见的内存泄漏检测工具介绍

内存泄漏介绍 什么是内存泄漏 内存泄漏是指程序分配了一块内存&#xff08;通常是动态分配的堆内存&#xff09;&#xff0c;但在不再需要这块内存的情况下未将其释放。内存泄漏会导致程序浪费系统内存资源&#xff0c;持续的内存泄漏还导致系统内存的逐渐耗尽&#xff0c;最…

蓝牙技术在物联网中的应用

随着蓝牙技术的不断演进和发展&#xff0c;蓝牙已经从单一的传统蓝牙技术发展成集传统蓝牙。高速蓝牙和低耗能蓝牙于一体的综合技术&#xff0c;不同的应用标准更是超过40个越来越广的技术领域和越来越多的应用场景&#xff0c;使得目前的蓝牙技术成为包含传感器技术、识别技术…

Dash中 callback 5

app.callback 在Dash中&#xff0c;app.callback 被用于创建交互性应用程序&#xff0c;它用于定义一个回调函数&#xff0c;该函数在应用程序中发生特定事件时被触发。回调函数可以修改应用程序的布局或更新图表等内容&#xff0c;从而实现动态交互。 下面是一个简单的 app.…

vmware安装中标麒麟高级服务器操作系统软件 V7.0操作系统

vmware安装中标麒麟高级服务器操作系统软件 V7.0操作系统 1、下载中标麒麟高级服务器操作系统软件 V7.0镜像2、安装中标麒麟高级服务器操作系统软件 V7.0操作系统 1、下载中标麒麟高级服务器操作系统软件 V7.0镜像 官方提供使用通道 访问官网 链接: https://www.kylinos.cn/ 下…

网络协议-BIO实战和NIO编程

网络通信编程基本常识 原生JDK网络编程-BIO 原生JDK网络编程-NIO Buffer 的读写 向 Buffer 中写数据 写数据到 Buffer有两种方式: 1. 读取 Channel写到 Buffer。 2.通过 Buffer 的 put0方法写到 Buffer 里。 从 Channel 写到 Buffer …

css radial-gradient 径向渐变基本语法与使用

在之前的文章《深入理解Css linear-gradient线性渐变》我们了解了CSS中的线性渐变&#xff0c;本文将介绍CSS中的另一种渐变———径向渐变&#xff08;Radial Gradient&#xff09;&#xff1a; CSS中的径向渐变&#xff08;Radial Gradient&#xff09;允许你创建从一个颜色…

MATLAB - 四元数(quaternion)

系列文章目录 前言 一、简介 四元数是一种四元超复数&#xff0c;用于三维旋转和定向。 四元数的表示形式为 abicjdk&#xff0c;其中 a、b、c 和 d 为实数&#xff0c;i、j 和 k 为基元&#xff0c;满足等式&#xff1a;i2 j2 k2 ijk -1。 四元数集用 H 表示&#xff0c…

【React Native】第一个Android应用

第一个Android应用 环境TIP开发工具环境及版本要求建议官方建议 安装 Android Studio首次安装模板选择安装 Android SDK配置 ANDROID_HOME 环境变量把一些工具目录添加到环境变量 Path[可选参数] 指定版本或项目模板 运行使用 Android 模拟器编译并运行 React Native 应用修改项…

Java实现非对称加密【详解】

Java实现非对称加密 1. 简介2. 非对称加密算法--DH&#xff08;密钥交换&#xff09;3. 非对称加密算法--RSA非对称加密算法--EIGamal5. 总结6 案例6.1 案例16.2 案例2 1. 简介 公开密钥密码学&#xff08;英语&#xff1a;Public-key cryptography&#xff09;也称非对称式密…

“VR全景+”理念下的智慧教育,让VR教学成为趋势

随着VR技术的发展&#xff0c;“VR全景”理念下的智慧教育&#xff0c;从智慧学习环境和新型教学模式两个方面来促进教育进一步革新。VR技术应用在教育领域&#xff0c;对于教学来说是一个飞跃的发展&#xff0c;5G课堂、VR直播教学、沉浸式教学等教学模式的创新&#xff0c;让…

智能优化算法应用:基于爬行动物算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于爬行动物算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于爬行动物算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.爬行动物算法4.实验参数设定5.算法结果6.…

饥荒Mod 开发(二一):超大便携背包,超大物品栏,永久保鲜

饥荒Mod 开发(二十)&#xff1a;显示打怪伤害值 源码 游戏中的物品栏容量实在太小了&#xff0c;虽然可以放在箱子里面但是真的很不方便&#xff0c;外出一趟不容易看到东西都不能捡。实在是虐心。 游戏中的食物还有变质机制&#xff0c;时间长了就不能吃了&#xff0c;玩这个游…

DQL-基本查询

概念&#xff1a; 1&#xff0c;数据库管理系统一个重要功能就是数据查询&#xff0c;数据查询不应只是简单返回数据库中存储的数据&#xff0c;还应该根据需要对数据进行筛选以及确定数据以什么样的格式显示 2&#xff0c;MySQL提供了功能强大、灵活的语句来实现这些操作 3…

【SassVue】仿网易云播放器动画

简介 仿网易云播放动画 效果图&#xff08;效果图&#xff09; 最终成品效果 动画组件 src/components/musicPlay.vue <template><div class"music-play"><div></div><div></div><div></div></div> </te…

C语言中关于指针的理解

#include <stdio.h> int main() {int a11;int *p&a; //因为a是整型的&#xff0c;所以我们定义指针p的时候要和a的类型一样char b;char *pa&b; //同理&#xff0c;b是字符型&#xff0c;所以这里的pa也要用字符型return 0; }因为*p指向的是地址&…

Go 泛型之类型参数

Go 泛型之类型参数 文章目录 Go 泛型之类型参数一、Go 的泛型与其他主流编程语言的泛型差异二、返回切片中值最大的元素三、类型参数&#xff08;type parameters&#xff09;四、泛型函数3.1 泛型函数的结构3.2 调用泛型函数3.3 泛型函数实例化&#xff08;instantiation&…