【内存泄漏】内存泄漏及常见的内存泄漏检测工具介绍

news2025/1/15 13:01:41

内存泄漏介绍

什么是内存泄漏

内存泄漏是指程序分配了一块内存(通常是动态分配的堆内存),但在不再需要这块内存的情况下未将其释放。内存泄漏会导致程序浪费系统内存资源,持续的内存泄漏还导致系统内存的逐渐耗尽,最终导致程序或系统崩溃。

内存泄漏和常驻内存区别

常驻内存(Resident Set)是指进程在运行期间占用的内存大小,包括进程使用的代码、数据和其他资源。常驻内存是进程在运行期间一直驻留在内存中的部分,即使在进程不活动时也不会被释放。
常驻内存通常不会带来显著的负面影响。

程序与进程里的内存布局

下图是源码与 ELF(可执行可链接) 文件以及运行起来后内存布局的简易映射关系图。

程序中的初始化全局变量和局部静态变量被编译到 .data,未初始化的全局变量和局部静态变量编译后放在 .bss 段,代码主体和函数主题存放在 .text 段,ELF 文件内实际有很多段(参考《程序员的自我修养-链接,装载与库》第三章)。
当程序运行时,会将 ELF 文件加载到内存。不同的段会加载到内存布局中的不同位置,其中 heap 这部分就是程序员手动去动态申请和释放内存的部分。当程序员用 malloc 函数申请了一块内存,使用完之后却没有 free 它的时候,就会发生内存泄漏。内存泄漏得越多,进程中可以使用内存的空间就越少,时间长了就会导致系统响应慢,甚至程序崩溃。

如何“观察”内存泄漏是否发生?

在 Android 系统上通常可以用 dumpsys meminfo 命令查看进程的内存使用数据,重复 dump 后从数据的变化情况来大致判断是否有内存泄漏。

也可以借助python 或者其他一些工具将数据可视化方便查看数据变化趋势。

但这只能大致的给你展示数据变化的趋势,而非直接明白的告诉你是否发生了内存泄漏。因此我们需要更精确的工具来检测是否也有内存泄漏。

常见的内存检测工具介绍

本节我们将依次介绍 Malloc Debug, libmemunreachable, Asan, HwASan, MTE, Heapprofd, Memcheck(Valigrind)
内存泄漏检测工具(https://source.android.com/docs/core/tests/debug/native-memory?hl=zh-cn)

Malloc Debug

简介

Malloc Debug 是一种调试本机内存问题的方法。 它可以帮助检测内存损坏、内存泄漏和释放后使用问题。
Malloc Debug 通过对常规的 allocation 函数包装了一层来记录和分析内存的申请和释放。这些函数包括:malloc, free, calloc, realloc, posix_memalign, memalign, aligned_alloc, malloc_usable_size

使用方法

运行程序前的设置

adb shell setprop libc.debug.malloc.options "\"backtrace guard leak_track backtrace_dump_on_exit backtrace_dump_prefix=/sdcard/heap"\"
adb shell setprop libc.debug.malloc.program xxx(进程名)

参数介绍:

  • backtrace: 开启堆栈记录。
  • guard: 开启内存越界检测。
  • leak_track: 程序在退出时,如有内存泄漏,而不产生abort。
  • backtrace_dump_on_exit: 程序退出时dump堆栈和内存信息。
  • backtrace_dump_prefix: dump文件存放的路径和文件名的开头字符。如本处生成的文件放在/sdcard/目录下,文件名开头为heap字样,注意指定的路径要有写权限。
  • libc.debug.malloc.program: 用于设置检测的程序,不设置则检测所有的运行的程序。

执行待测试程序

  1. 离线程序
    离线程序运行完成后会在 backtrace_dump_prefix 设定的路径下存储 dump 文件
  2. 在线程序
    需要先停掉程序所在的进程,再重启该进程才会生效。
    由于在线程序一般不会主动退出(如 camerahalserver),需要使用命令来主动触发 dump。
    命令:kill -47 xxx(进程ID),注意多次触发新文件覆盖之前的文件。
    当你的程序有内存泄漏问题的话,输出如下报告:
E malloc_debug: +++ memtest leaked block of size 48 at 0x7a4a6a42e0 (leak 1 of 2)
E malloc_debug: Backtrace at time of allocation:
E malloc_debug:           #00  pc 000000000004461c  /apex/com.android.runtime/lib64/bionic/libc.so (malloc+76)
E malloc_debug:           #01  pc 00000000000c83e8  /apex/com.android.runtime/lib64/bionic/libc.so (__register_atfork+40)
E malloc_debug:           #02  pc 000000000005460c  /apex/com.android.runtime/lib64/bionic/libc.so
E malloc_debug:           #03  pc 00000000000613a0  /apex/com.android.runtime/bin/linker64
E malloc_debug:           #04  pc 0000000000061144  /apex/com.android.runtime/bin/linker64
E malloc_debug:           #05  pc 0000000000061144  /apex/com.android.runtime/bin/linker64
E malloc_debug:           #06  pc 00000000000d5f14  /apex/com.android.runtime/bin/linker64
E malloc_debug:           #07  pc 00000000000d4e0c  /apex/com.android.runtime/bin/linker64
E malloc_debug:           #08  pc 0000000000064004  /apex/com.android.runtime/bin/linker64
E malloc_debug: +++ memtest leaked block of size 20 at 0x793a6ae9a0 (leak 2 of 2)
E malloc_debug: Backtrace at time of allocation:
E malloc_debug:           #00  pc 000000000004461c  /apex/com.android.runtime/lib64/bionic/libc.so (malloc+76)
E malloc_debug:           #01  pc 00000000000100b8  /data/local/tmp/memtest/memtest
E malloc_debug:           #02  pc 00000000000546e8  /apex/com.android.runtime/lib64/bionic/libc.so (__libc_init+104)
E malloc_debug: Dumping to file: /sdcard/heap.19748.exit.txt

注意报告中并不是所有的 leak 都是真正的内存泄漏,有些可能是常驻内存,开发者需要自己判断。
还需注意dump 路径要有写权限

很多时候在线运行环境下so 是无符号的程序,我们需要解析 dump 文件定位代码行号
python3 native_heapdump_viewer.py --symbols ./symboldir/ ./heap.4169.exit.txt --html > memtest4169.html

–symbols 指定的是符号库/程序的路径,子目录的路径必须要在手机上的路径一致。比如可执行程序在手机里的路径是/vendor/bin/memtest,那解释时它的带符号的程序路径上需要是 ./symboldir/vendor/bin/memtest

检测出来的并不是都是泄漏,一部分是属于常驻内存,尤其对于在线程序,我们需要将程序运行不同的次数,抓出不同的log来做对比,找出真正增长的部分。

libmemunreachable

简介

Android 的 libmemunreachable 是一个零开销的本地内存泄漏检测器。 它会在触发内存检测的时候遍历进程内存,同时将任何不可访问的块报告为泄漏。

命令行方式使用

设置属性

adb root
adb shell setprop libc.debug.malloc.program app_process
adb shell setprop wrap.[process] "\$\@“
adb shell setprop libc.debug.malloc.options backtrace=4

参数

  • backtrace_size 只收集泄漏指定 size 大小的 backtrace
  • backtrace_min_size=192 backtrace_max_size=320 收集泄漏 size 介于两者之间的backtrec

重启应用,执行 dumpsys -t 600 meminfo --unreachable [process].(自测没有 dump 出预期结果)。下面是一个带有内存问题的输出结果。

 Unreachable memory
  24 bytes in 2 unreachable allocations
  ABI: 'arm64'

  24 bytes unreachable at 71d37787d0
   first 20 bytes of contents:
   71d37787d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
   71d37787e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

  24 bytes unreachable at 71d37797d0
   first 20 bytes of contents:
   71d37797d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
   71d37797e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

添加代码方式使用

官方提供4个接口来检测内存
C interface

  • bool LogUnreachableMemory(bool log_contents, size_t limit)
  • bool NoLeaks()

C++ interface

  • bool GetUnreachableMemory(UnreachableMemoryInfo& info, size_t limit = 100)
  • std::string GetUnreachableMemoryString(bool log_contents = false, size_t limit = 100)

核心函数是 GetUnreachableMemory() 其他三个函数内部都会调用此函数。
在使用添加代码的方式打印时,需要在编译代码时需要将 libmemunreachable.so 添加到动态依赖,libmemunreachable.so 文件可以在手机 /system/lib64/libmemunreachable.so 获取。

例子:
以下是一个包含内存泄漏的例子,在f 函数中申请了x, y 两块内存,在函数返回前x 被释放,y 赋值后没有被释放。

#include "./memunreachable.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

using namespace android;

void f(void);
void f(void) {
  printf("[memtest] function f\n");
  int* x = (int*)malloc(10 * sizeof(int));
  x[0] = 0;
  int* y = (int*)malloc(5 * sizeof(int));
  y[0] = 0;
  y[1] = 1;
  y[2] = 2;
  y[3] = 3;
  y[4] = 4;
  free(x);
}

int main(void) {
  printf("[memtest] hello main\n");
  f();

  // C interface
  printf("LogUnreachableMemory()\n");
  LogUnreachableMemory(true, 100);

  return 0;
}

adb log 输出(考虑排版省去时间戳)
log 里显示有一个 20 bytes 的内存泄漏,20 正是5 个 int 的大小,对应申请但没有释放的 y 地址的内存。

// 新建 Collection process
31232 31231 I libmemunreachable: collecting thread info for process 31231...
31232 31231 I libmemunreachable: collection thread done
// fork 进程运行 sweeping process 
31233 31233 I libmemunreachable: searching process 31231 for allocations
31233 31233 I libmemunreachable: searching done
31233 31233 I libmemunreachable: sweeping process 31231 for unreachable memory
31233 31233 I libmemunreachable: sweeping done
31233 31233 I libmemunreachable: folding related leaks
31233 31233 I libmemunreachable: folding done
// 回到 Original process 接收检测结果
31231 31231 I libmemunreachable: unreachable memory detection done
31231 31231 E libmemunreachable: 20 bytes in 1 allocation unreachable out of 1260 bytes in 7 allocations
31231 31231 E libmemunreachable:   20 bytes unreachable at 7a03454400
31231 31231 E libmemunreachable:    contents:
31231 31231 E libmemunreachable:    7a03454400: 00 00 00 00 01 00 00 00 02 00 00 00 03 00 00 00 ................
31231 31231 E libmemunreachable:    7a03454410: 04 00 00 00                                     ....
31231 31231 E libmemunreachable:           #00  pc 000000000003e238  /apex/com.android.runtime/lib64/bionic/libc.so (malloc+84)
31231 31231 E libmemunreachable:           #01  pc 00000000000100b8  /data/local/tmp/memtest/memtest_libmemunreachable
31231 31231 E libmemunreachable:           #02  pc 000000000004aa48  /apex/com.android.runtime/lib64/bionic/libc.so (__libc_init+100)

调用 bool LogUnreachableMemory(bool log_contents, size_t limit) 时,log_contents 传 true 会打印泄露地址的内容,也就是 contents 对应的两行内容。之后可以用 address2line 解析行号。

其他内存检测工具简介

ASan

  • Asan(AddressSanitizer) 适用于检测内存越界访问、缓冲区溢出、内存泄漏等问题。它是一个在编译时插入的工具;
  • 运行时有一定的性能开销(约增加两倍),代码大小和内存均有额外开销;
  • 需要重新编译程序,编译时添加 address 相关选项;
  • 可用于 linux 和 android,但在 android 上逐步被 HwASan 取代;
  • 需要刷与 ASan 兼容的 ROM;
  • 不再受支持,即使有bug 也不会修复;

HWASan

  • HWASan 利用硬件特性,适用于检测内存错误,类似于 ASan,但能够更高效地运行在一些支持硬件特性的平台上。
  • 性能开销和 Asan 接近,但内存占用更小;
  • 需要重新编译程序,编译时添加 hwaddress 相关选项
  • 仅适用于 Android 10 及更高版本,AArch64 硬件;
  • 需要刷与 HWASan 兼容的 ROM;

MTE

  • MTE(Memory Tagging Extension) 使用硬件标签来检测内存错误,主要专注于检测内存越界访问。
  • 提供了较低的性能开销,首次具备了线上部署的可能。
  • 无需重新构建代码来检测堆错误(但需要重新构建代码来检测堆栈错误)
  • Android 系统在 Arm v9 上开始支持,仅适用于64位应用/程序;

Heapprofd

  • Heapprofd 是一个跟踪给定时间段内 Android 进程的堆分配和释放的工具。
  • 可以借助 Perfetto 抓取,开发人员可以使用该工具调查内存问题(调用栈和内存分配)。

    当开启连续 dump 后,开发者可以查看程序结束前内存占用是否合理,以检查是否有潜在内存泄漏问题。或者将待测试代码循环执行,比较每执行一次代码段后内存是否有增加,一次判断是否有内存泄漏。

Valgrind 中的Memcheck

  • Memcheck 是 Valgrind 工具套件中的一个工具,用于检测 C 和 C++ 程序中的内存错误。
  • 内存问题检测比较全面,但对性能影响比较大,耗时增加10x~20x,不适用对时间敏感的程序。
  • 在 Ubuntu 上安装:sudo apt-get install valgrind

使用 memcheck 的基本方法

  • 编译程序时加上 –g 选项,编译优化选项建议选择 -O1;
  • 使用 Valgrind 命令运行程序:valgrind --leak-check=yes myprog arg1 arg2valgrind 使用 --tools 来指定 debug 工具,而 Memcheck 是默认工具,可以省略 --tools=memcheck 选项;
  • 程序运行后输出问题报告。
$ valgrind --leak-check=yes ./memtest_origin 
==19517== Memcheck, a memory error detector
==19517== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==19517== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==19517== Command: ./memtest_origin
==19517== 
[memtest] hello main
[memtest] function f
==19517== 
==19517== HEAP SUMMARY:
==19517==     in use at exit: 20 bytes in 1 blocks
==19517==   total heap usage: 3 allocs, 2 frees, 1,084 bytes allocated
==19517== 
==19517== 20 bytes in 1 blocks are definitely lost in loss record 1 of 1
==19517==    at 0x4C31B0F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==19517==    by 0x1086FF: f() (memtest_origin.cc:9)
==19517==    by 0x108731: main (memtest_origin.cc:16)
==19517== 
==19517== LEAK SUMMARY:
==19517==    definitely lost: 20 bytes in 1 blocks
==19517==    indirectly lost: 0 bytes in 0 blocks
==19517==      possibly lost: 0 bytes in 0 blocks
==19517==    still reachable: 0 bytes in 0 blocks
==19517==         suppressed: 0 bytes in 0 blocks
==19517== 
==19517== For counts of detected and suppressed errors, rerun with: -v
==19517== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

总结

本文我们介绍了内存泄漏的概念,malloc debug 和 libmemunreachable 的使用方法,以及一些其他内存检测工具的简介,下一篇我们将介绍 malloc debug 和 libmemunreachable 的工作原理。

参考链接

  1. 【内存】Android C/C++ 内存泄漏分析 unreachable
  2. 调试本地内存使用  |  Android 开源项目  |  Android Open Source Project
  3. 调试和减少内存错误  |  Android NDK  |  Android Developers (google.cn)
  4. Malloc Debug (googlesource.com)
  5. Malloc Hooks (googlesource.com)
  6. libmemunreachable (googlesource.com)
  7. Memcheck: a memory error detector
  8. Heap profiler - Perfetto Tracing Docs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1331866.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

蓝牙技术在物联网中的应用

随着蓝牙技术的不断演进和发展&#xff0c;蓝牙已经从单一的传统蓝牙技术发展成集传统蓝牙。高速蓝牙和低耗能蓝牙于一体的综合技术&#xff0c;不同的应用标准更是超过40个越来越广的技术领域和越来越多的应用场景&#xff0c;使得目前的蓝牙技术成为包含传感器技术、识别技术…

Dash中 callback 5

app.callback 在Dash中&#xff0c;app.callback 被用于创建交互性应用程序&#xff0c;它用于定义一个回调函数&#xff0c;该函数在应用程序中发生特定事件时被触发。回调函数可以修改应用程序的布局或更新图表等内容&#xff0c;从而实现动态交互。 下面是一个简单的 app.…

vmware安装中标麒麟高级服务器操作系统软件 V7.0操作系统

vmware安装中标麒麟高级服务器操作系统软件 V7.0操作系统 1、下载中标麒麟高级服务器操作系统软件 V7.0镜像2、安装中标麒麟高级服务器操作系统软件 V7.0操作系统 1、下载中标麒麟高级服务器操作系统软件 V7.0镜像 官方提供使用通道 访问官网 链接: https://www.kylinos.cn/ 下…

网络协议-BIO实战和NIO编程

网络通信编程基本常识 原生JDK网络编程-BIO 原生JDK网络编程-NIO Buffer 的读写 向 Buffer 中写数据 写数据到 Buffer有两种方式: 1. 读取 Channel写到 Buffer。 2.通过 Buffer 的 put0方法写到 Buffer 里。 从 Channel 写到 Buffer …

css radial-gradient 径向渐变基本语法与使用

在之前的文章《深入理解Css linear-gradient线性渐变》我们了解了CSS中的线性渐变&#xff0c;本文将介绍CSS中的另一种渐变———径向渐变&#xff08;Radial Gradient&#xff09;&#xff1a; CSS中的径向渐变&#xff08;Radial Gradient&#xff09;允许你创建从一个颜色…

MATLAB - 四元数(quaternion)

系列文章目录 前言 一、简介 四元数是一种四元超复数&#xff0c;用于三维旋转和定向。 四元数的表示形式为 abicjdk&#xff0c;其中 a、b、c 和 d 为实数&#xff0c;i、j 和 k 为基元&#xff0c;满足等式&#xff1a;i2 j2 k2 ijk -1。 四元数集用 H 表示&#xff0c…

【React Native】第一个Android应用

第一个Android应用 环境TIP开发工具环境及版本要求建议官方建议 安装 Android Studio首次安装模板选择安装 Android SDK配置 ANDROID_HOME 环境变量把一些工具目录添加到环境变量 Path[可选参数] 指定版本或项目模板 运行使用 Android 模拟器编译并运行 React Native 应用修改项…

Java实现非对称加密【详解】

Java实现非对称加密 1. 简介2. 非对称加密算法--DH&#xff08;密钥交换&#xff09;3. 非对称加密算法--RSA非对称加密算法--EIGamal5. 总结6 案例6.1 案例16.2 案例2 1. 简介 公开密钥密码学&#xff08;英语&#xff1a;Public-key cryptography&#xff09;也称非对称式密…

“VR全景+”理念下的智慧教育,让VR教学成为趋势

随着VR技术的发展&#xff0c;“VR全景”理念下的智慧教育&#xff0c;从智慧学习环境和新型教学模式两个方面来促进教育进一步革新。VR技术应用在教育领域&#xff0c;对于教学来说是一个飞跃的发展&#xff0c;5G课堂、VR直播教学、沉浸式教学等教学模式的创新&#xff0c;让…

智能优化算法应用:基于爬行动物算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于爬行动物算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于爬行动物算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.爬行动物算法4.实验参数设定5.算法结果6.…

饥荒Mod 开发(二一):超大便携背包,超大物品栏,永久保鲜

饥荒Mod 开发(二十)&#xff1a;显示打怪伤害值 源码 游戏中的物品栏容量实在太小了&#xff0c;虽然可以放在箱子里面但是真的很不方便&#xff0c;外出一趟不容易看到东西都不能捡。实在是虐心。 游戏中的食物还有变质机制&#xff0c;时间长了就不能吃了&#xff0c;玩这个游…

DQL-基本查询

概念&#xff1a; 1&#xff0c;数据库管理系统一个重要功能就是数据查询&#xff0c;数据查询不应只是简单返回数据库中存储的数据&#xff0c;还应该根据需要对数据进行筛选以及确定数据以什么样的格式显示 2&#xff0c;MySQL提供了功能强大、灵活的语句来实现这些操作 3…

【SassVue】仿网易云播放器动画

简介 仿网易云播放动画 效果图&#xff08;效果图&#xff09; 最终成品效果 动画组件 src/components/musicPlay.vue <template><div class"music-play"><div></div><div></div><div></div></div> </te…

C语言中关于指针的理解

#include <stdio.h> int main() {int a11;int *p&a; //因为a是整型的&#xff0c;所以我们定义指针p的时候要和a的类型一样char b;char *pa&b; //同理&#xff0c;b是字符型&#xff0c;所以这里的pa也要用字符型return 0; }因为*p指向的是地址&…

Go 泛型之类型参数

Go 泛型之类型参数 文章目录 Go 泛型之类型参数一、Go 的泛型与其他主流编程语言的泛型差异二、返回切片中值最大的元素三、类型参数&#xff08;type parameters&#xff09;四、泛型函数3.1 泛型函数的结构3.2 调用泛型函数3.3 泛型函数实例化&#xff08;instantiation&…

【vue】开发常见问题及解决方案

有一些问题不限于 Vue&#xff0c;还适应于其他类型的 SPA 项目。 1. 页面权限控制和登陆验证页面权限控制 页面权限控制是什么意思呢&#xff1f; 就是一个网站有不同的角色&#xff0c;比如管理员和普通用户&#xff0c;要求不同的角色能访问的页面是不一样的。如果一个页…

ospf学习纪要

1、为避免区域&#xff08;area0,area1等&#xff09;间的路由形成环路&#xff0c;非骨干区域之间不允许直接相互发布区域间的路由。因此&#xff0c;所有的ABR&#xff08;Area Border Router,区域边界路由器&#xff09;都至少有一个借口属于Area0,所以Area0始终包含所有的A…

3.java——继承及拓展(保姆级别教程,万字解析,匠心制作)

三.继承——节省了共有属性和方法的代码&#xff1a;语法 class Student extends Person 1.继承基础 1.继承首先是面向对象中非常强的一种机制&#xff0c;他首先可以复用代码&#xff08;name ,age&#xff09;&#xff0c;让我们的获得了Person全部功能和属性&#xff0c;只…

基于Kubernetes的jenkins上线

1、基于helm 部署jenkins 要求&#xff1a;当前集群配置了storageClass&#xff0c;并已指定默认的storageClass&#xff0c;一般情况下&#xff0c;创建的storageClass即为默认类 指定默认storageClass的方式 # 如果是新创建默认类&#xff1a; apiVersion: storage.k8s.io/v1…

C# WPF上位机开发(从demo编写到项目开发)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 C# WPF编程&#xff0c;特别是控件部分&#xff0c;其实学起来特别快。只是后面多了多线程、锁、数据库、网络这部分稍微复杂一点&#xff0c;不过…