助力智能人群检测计数,基于DETR(DEtectionTRansformer)开发构建通用场景下人群检测计数识别系统

news2025/1/25 4:30:53

在一些人流量比较大的场合,或者是一些特殊时刻、时段、节假日等特殊时期下,密切关注当前系统所承载的人流量是十分必要的,对于超出系统负荷容量的情况做到及时预警对于管理团队来说是保障人员安全的重要手段,本文的主要目的是想要基于通用的数据开发构建用于通用场景下的人群检测计数系统。

前文我们基于比较经典的YOLOv3、YOLOv5、YOLOv6、YOLOv7以及YOLOv8开发实现了检测计数系统,感兴趣的话可以自行移步阅读即可:

《助力智能人群检测计数,基于YOLOv3开发构建通用场景下人群检测计数识别系统》

《助力智能人群检测计数,基于YOLOv4开发构建通用场景下人群检测计数识别系统》 

《助力智能人群检测计数,基于YOLOv5全系列模型【n/s/m/l/x】开发构建通用场景下人群检测计数识别系统》

《助力智能人群检测计数,基于YOLOv6开发构建通用场景下人群检测计数系统》

《助力智能人群检测计数,基于YOLOv8开发构建通用场景下人群检测计数识别系统》 

《助力智能人群检测计数,基于YOLOv7开发构建通用场景下人群检测计数识别系统》

DETR (DEtection TRansformer) 是一种基于Transformer架构的端到端目标检测模型。与传统的基于区域提议的目标检测方法(如Faster R-CNN)不同,DETR采用了全新的思路,将目标检测问题转化为一个序列到序列的问题,通过Transformer模型实现目标检测和目标分类的联合训练。

DETR的工作流程如下:

输入图像通过卷积神经网络(CNN)提取特征图。
特征图作为编码器输入,经过一系列的编码器层得到图像特征的表示。
目标检测问题被建模为一个序列到序列的转换任务,其中编码器的输出作为解码器的输入。
解码器使用自注意力机制(self-attention)对编码器的输出进行处理,以获取目标的位置和类别信息。
最终,DETR通过一个线性层和softmax函数对解码器的输出进行分类,并通过一个线性层预测目标框的坐标。
DETR的优点包括:

端到端训练:DETR模型能够直接从原始图像到目标检测结果进行端到端训练,避免了传统目标检测方法中复杂的区域提议生成和特征对齐的过程,简化了模型的设计和训练流程。
不受固定数量的目标限制:DETR可以处理变长的输入序列,因此不受固定数量目标的限制。这使得DETR能够同时检测图像中的多个目标,并且不需要设置预先确定的目标数量。
全局上下文信息:DETR通过Transformer的自注意力机制,能够捕捉到图像中不同位置的目标之间的关系,提供了更大范围的上下文信息。这有助于提高目标检测的准确性和鲁棒性。
然而,DETR也存在一些缺点:

计算复杂度高:由于DETR采用了Transformer模型,它在处理大尺寸图像时需要大量的计算资源,导致其训练和推理速度相对较慢。
对小目标的检测性能较差:DETR模型在处理小目标时容易出现性能下降的情况。这是因为Transformer模型在处理小尺寸目标时可能会丢失细节信息,导致难以准确地定位和分类小目标。

接下来看下我们自己构建的数据集:

官方项目地址在这里,如下所示:

可以看到目前已经收获了超过1.2w的star量,还是很不错的了。

DETR整体数据流程示意图如下所示:

官方也提供了对应的预训练模型,可以自行使用:

本文选择的预训练官方权重是detr-r50-e632da11.pth,首先需要基于官方的预训练权重开发能够用于自己的 个性化数据集的权重,如下所示:

pretrained_weights = torch.load("./weights/detr-r50-e632da11.pth")
num_class = 1 + 1
pretrained_weights["model"]["class_embed.weight"].resize_(num_class+1,256)
pretrained_weights["model"]["class_embed.bias"].resize_(num_class+1)
torch.save(pretrained_weights,'./weights/detr_r50_%d.pth'%num_class)

因为这里我的类别数量为1,所以num_class修改为:1+1,根据自己的实际情况修改即可。生成后如下所示:

终端执行:

python main.py --dataset_file "coco" --coco_path "/0000" --epoch 100 --lr=1e-4 --batch_size=32 --num_workers=0 --output_dir="outputs" --resume="weights/detr_r50_2.pth"

即可启动训练。训练启动如下:

训练完成输出如下:

Accumulating evaluation results...
DONE (t=0.26s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.347
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.701
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.296
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.053
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.143
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.478
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.030
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.232
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.463
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.147
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.302
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.590

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
 

loss可视化如下所示:

感兴趣的话可以自行动手实践尝试下!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1329899.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Liteos移植_STM32_HAL库

0 开发环境 STM32CubeMX(HAL库)keil 5正点原子探索者STM32F4ZET6LiteOS-develop分支 1 STM32CubeMX创建工程 如果有自己的工程,直接从LiteOS源码获取开始 关于STM32CubeMX的安装,看我另一篇博客STM32CubeMX安装 工程配置 创建新工程 选择芯片【STM32F…

C++:第九讲前缀和与差分

Everyday English Your optimal career is simply this: Share the real you with physical world through th e process of creative self-expression. 你的最佳职业很简单,就是这样:通过创造性自我表达的途径和世界分享真实的你。 前言 这节课带你们…

Codeforces Round 862 (Div. 2)

Problem - A - Codeforces AC代码: #include<bits/stdc.h> #define endl \n //#define int long long using namespace std; const int N1e310; int a[N]; int n; void solve() {cin>>n;int ans0;for(int i1;i<n;i) cin>>a[i],ans^a[i];if(n%21){for(in…

3.[BUUCTF HCTF 2018]WarmUp1

1.看题目提示分析题目内容 盲猜一波~ &#xff1a; 是关于PHP代码审计的 2.打开链接&#xff0c;分析题目 给你提示了我们访问source.php来看一下 大boss出现&#xff0c;开始详细手撕~ 3.手撕PHP代码&#xff08;代码审计&#xff09; 本人是小白&#xff0c;所以第一步&…

Linux Centos-7.5_64bit 等保测评

一、新增用户 新增test用户 useradd test 设置密码 passwd 修改test的密码 passwd test 修改/etc/sudoers文件&#xff0c;找到下面一行&#xff0c; /etc/sudoers test ALL(ALL) ALL 保存是出现 E45: readonly option is set (add ! to override) 解决办法&#xff…

arduino舵机练习

接地线gnd和电源线5v&#xff1b;信号线链接任意数字针脚 // C code // #include <Servo.h> //引入舵机库Servo servo_2; //定义舵机void setup() {servo_2.attach(2, 500, 2500);/* servo_2.attach(2, 500, 2500) servo_2 对象的一个方法调用&#xff0c;其中包含…

【Amazon 实验①】使用Amazon WAF做基础 Web Service 防护

文章目录 一、实验介绍二、实验环境准备三、验证实验环境四、Web ACLs 配置 & AWS 托管规则4.1 Web ACLs 介绍4.2 Managed Rules 托管规则4.3 防护常见威胁类型&#xff08;sql注入&#xff0c;XSS&#xff09;4.4 实验步骤4.4.1 创建Web ACL4.4.2 测试用例4.4.3 测试结果4…

【Spring实战】配置多数据源

文章目录 1. 配置数据源信息2. 创建第一个数据源3. 创建第二个数据源4. 创建启动类及查询方法5. 启动服务6. 创建表及做数据7. 查询验证8. 详细代码总结 通过上一节的介绍&#xff0c;我们已经知道了如何使用 Spring 进行数据源的配置以及应用。在一些复杂的应用中&#xff0c;…

Linux的/proc/self/学习

文章目录 /proc目录/proc/self的使用 在做SSTI模板注入的CTF题中&#xff0c;发现有师傅提到可以用/proc/self这个目录获取flag&#xff0c;所以也来学习一波主要参考. (我才知道&#x1f601;&#x1f601;&#x1f601;)可以通过/proc/$pid/来获取指定进程的信息&#xff0c…

uniapp uview 页面多个select组件回显处理,默认选中

<view class"add-item column space-around" click"selectClick(1)"><text class"w-s-color-3 f-28">商品分类</text><view class"w-100 space-between"><!-- 第一个参数为你的单选数组&#xff0c;第二个…

Laravel框架使用phpstudy本地安装的composer用Laravel 安装器进行安装搭建

一、首先需要安装Laravel 安装器 composer global require laravel/installer 二、安装器安装好后&#xff0c;可以使用如下命令创建项目 laravel new sys 三、本地运行 php artisan serve 四、 使用Composer快速安装Laravel5.8框架 安装指定版本的最新版本&#xff08;推荐&a…

Kibana下载与安装

Kibana 是一个免费且开放的用户界面&#xff0c;能够让你对 Elasticsearch 数据进行可视化&#xff0c;并 让你在 Elastic Stack 中进行导航。 你可以进行各种操作&#xff0c;从跟踪查询负载&#xff0c;到理解请求如 何流经你的整个应用&#xff0c;都能轻松完成。 下载地址&…

vue3老项目如何引入vite

vue3老项目如何引入vite 安装 npm install vite vitejs/plugin-vue --save-dev Vite官方中文文档修改package.json文件 在 npm scripts 中使用 vite 执行文件 "scripts": {"serve": "vite","build": "vite build","pr…

uniapp使用colorUI

colorUI 微动画 | ColorUI 使用文档 1&#xff1a;把colorui里三个文件复制到自己项目中去 App.vue </script> <style> import url(colorui/icon.css); import url(colorui/main.css); import url("colorui/animation.css");-webkit-keyframes show {…

华清远见嵌入式学习——ARM——作业2

目录 作业要求&#xff1a; 现象&#xff1a; 代码&#xff1a; 思维导图&#xff1a; 模拟面试题&#xff1a; 作业要求&#xff1a; GPIO实验——3颗LED灯的流水灯实现 现象&#xff1a; 代码&#xff1a; .text .global _start _start: 设置GPIOEF时钟使能 0X50000…

opencv视频文件的读写

目录 opencv视频文件的读写 OpenCV调用电脑摄像头 opencv视频文件的读写 在OpenCV中&#xff0c;你可以使用 cv2.VideoCapture 类 来读取视频文件&#xff0c;使用 cv2.VideoWriter 类来写入视频文件。 下面是一个简单的例子&#xff0c;演示如何使用OpenCV读取视频文件、处…

显示器屏幕oled的性能、使用场景、维护

OLED显示器屏幕具有许多独特的性能和使用场景&#xff0c;以下是关于OLED显示器屏幕的性能、使用场景和维护的详细介绍&#xff1a; 一、性能 色彩鲜艳&#xff1a;OLED显示器屏幕能够呈现出更加鲜艳的色彩&#xff0c;色彩饱和度高&#xff0c;色彩还原性好&#xff0c;可以给…

css学习笔记6(盒子模型)

CSS盒子模型 五、CSS盒子模型1.CSS长度单位2.元素的显示模式3.总结各元素的显示模式4.修改元素显示模式5.盒子模型的组成6.盒子内容区&#xff08;content&#xff09;7.关于默认宽度8.盒子内边距&#xff08;padding&#xff09;9.盒子边框&#xff08;border&#xff09;10.盒…

听GPT 讲Rust源代码--src/tools(22)

File: rust/src/tools/tidy/src/lib.rs rust/src/tools/tidy/src/lib.rs是Rust编译器源代码中tidy工具的实现文件之一。tidy工具是Rust项目中的一项静态检查工具&#xff0c;用于确保代码质量和一致性。 tidy工具主要有以下几个作用&#xff1a; 格式化代码&#xff1a;tidy工具…

力扣单调栈算法专题训练

目录 1 专题说明2 训练 1 专题说明 本博客用来计算力扣上的单调栈题目、解题思路和代码。 2 训练 题目1&#xff1a;2866美丽塔II。 解题思路&#xff1a;先计算出prefix[i]&#xff0c;表示0~i满足递增情况下&#xff0c;0~i上的元素之和最大值。然后计算出suffix[i]&#…