LLM之RAG实战(八)| 使用Neo4j和LlamaIndex实现多模态RAG

news2025/1/27 12:54:45

       人工智能和大型语言模型领域正在迅速发展。一年前,没有人使用LLM来提高生产力。时至今日,很难想象我们大多数人或多或少都在使用LLM提供服务,从个人助手到文生图场景。由于大量的研究和兴趣,LLM每天都在变得越来越好、越来越聪明。不仅如此,他们的理解也开始跨越多种模态。随着GPT-4-Vision和随后的其他LLM的引入,今天的LLM似乎可以很好地处理和理解图像。以下是ChatGPT描述图像中内容的一个示例。

       正如所观察到的,ChatGPT非常善于理解和描述图像。我们可以在RAG应用程序中使用其理解图像的能力,在该应用程序中,我们现在可以将文本和图片中的信息结合起来,生成比以往任何时候都更准确的答案,而不仅仅依靠文本来生成准确和最新的答案。使用LlamaIndex,实现多模态RAG pipeline非常容易。受(https://github.com/run-llama/llama_index/blob/main/docs/examples/multi_modal/gpt4v_multi_modal_retrieval.ipynb)的启发,来测试是否可以使用Neo4j作为数据库来实现多模态RAG应用程序。

       要使用LlamaIndex实现多模态RAG管道,只需实例化两个矢量存储,一个用于图像,另一个用于文本,然后查询这两个矢量,以便检索相关信息以生成最终答案。

       多模态RAG首先需要将数据分为图像和文本,然后分别进行embedding并单独构建索引。对于文本,我们将使用ada-002文本嵌入模型;而对于图像,我们将采用[双编码器模型CLIP](https://github.com/openai/CLIP),CLIP可以将文本和图像嵌入到同一嵌入空间中。当最终用户提出问题时,执行两个向量的相似性搜索:一个用于查找相关图像,另一个用于文档。结果被输入到多模态LLM中,该LLM为用户生成答案,展示了处理和利用混合媒体进行信息检索和响应生成的综合方法。

数据预处理

        我们将使用[Medium](https://github.com/tomasonjo/blog-datasets/blob/main/articles.zip)作为RAG应用程序的基础数据集。这些文章包含了关于Neo4j图形数据科学库以及将Neo4j与LLM框架相结合的大量信息。从Medium下载的文章是HTML格式。因此,我们需要使用一些编码来分别提取文本和图像。

def process_html_file(file_path):    with open(file_path, "r", encoding="utf-8") as file:        soup = BeautifulSoup(file, "html.parser")    # Find the required section    content_section = soup.find("section", {"data-field": "body", "class": "e-content"})    if not content_section:        return "Section not found."    sections = []    current_section = {"header": "", "content": "", "source": file_path.split("/")[-1]}    images = []    header_found = False    for element in content_section.find_all(recursive=True):        if element.name in ["h1", "h2", "h3", "h4"]:            if header_found and (current_section["content"].strip()):                sections.append(current_section)            current_section = {                "header": element.get_text(),                "content": "",                "source": file_path.split("/")[-1],            }            header_found = True        elif header_found:            if element.name == "pre":                current_section["content"] += f"```{element.get_text().strip()}```\n"            elif element.name == "img":                img_src = element.get("src")                img_caption = element.find_next("figcaption")                caption_text = img_caption.get_text().strip() if img_caption else ""                images.append(ImageDocument(image_url=img_src))            elif element.name in ["p", "span", "a"]:                current_section["content"] += element.get_text().strip() + "\n"    if current_section["content"].strip():        sections.append(current_section)    return images, sections

       不会详细介绍解析代码,但我们根据标题h1–h4分割文本并提取图像链接。然后,我们只需通过此函数运行所有文章,即可提取所有相关信息。

all_documents = []all_images = []# Directory to search in (current working directory)directory = os.getcwd()# Walking through the directoryfor root, dirs, files in os.walk(directory):    for file in files:        if file.endswith(".html"):            # Update the file path to be relative to the current directory            images, documents = process_html_file(os.path.join(root, file))            all_documents.extend(documents)            all_images.extend(images)text_docs = [Document(text=el.pop("content"), metadata=el) for el in all_documents]print(f"Text document count: {len(text_docs)}") # Text document count: 252print(f"Image document count: {len(all_images)}") # Image document count: 328

       总共得到252个文本块和328个图像。

对数据创建索引

       如前所述,我们必须实例化两个矢量存储,一个用于图像,另一个用于文本。CLIP嵌入模型的尺寸为512,而ada-002的尺寸为1536。

text_store = Neo4jVectorStore(    url=NEO4J_URI,    username=NEO4J_USERNAME,    password=NEO4J_PASSWORD,    index_name="text_collection",    node_label="Chunk",    embedding_dimension=1536)image_store = Neo4jVectorStore(    url=NEO4J_URI,    username=NEO4J_USERNAME,    password=NEO4J_PASSWORD,    index_name="image_collection",    node_label="Image",    embedding_dimension=512)storage_context = StorageContext.from_defaults(vector_store=text_store)

      现在向量索引已经创建好了,我们使用MultiModalVectorStoreIndex来索引这两种模态的信息。

# Takes 10 min without GPU / 1 min with GPU on Google collabindex = MultiModalVectorStoreIndex.from_documents(    text_docs + all_images, storage_context=storage_context, image_vector_store=image_store)

       MultiModalVectorStoreIndex使用文本和图像嵌入模型来计算嵌入,并在Neo4j中存储和索引结果。仅为图像存储URL,而不是实际的base64或图像的其他表示。

多模态RAG pipeline

       这段代码是直接从LlamaIndex多模式烹饪书中复制的。我们首先定义一个多模态LLM和prompt template,然后将所有内容组合为一个查询引擎。

openai_mm_llm = OpenAIMultiModal(    model="gpt-4-vision-preview", max_new_tokens=1500)qa_tmpl_str = (    "Context information is below.\n"    "---------------------\n"    "{context_str}\n"    "---------------------\n"    "Given the context information and not prior knowledge, "    "answer the query.\n"    "Query: {query_str}\n"    "Answer: ")qa_tmpl = PromptTemplate(qa_tmpl_str)query_engine = index.as_query_engine(    multi_modal_llm=openai_mm_llm, text_qa_template=qa_tmpl)

       现在我们可以继续测试它的性能了。

query_str = "How do vector RAG application work?"response = query_engine.query(query_str)print(response)

        我们还可以可视化检索提取的图像以及用于帮助提供最终答案的图像。

       LLM得到了两个相同的图像作为输入,说明数据集中有重复的图。然而,我对CLIP嵌入感到惊喜,因为他们能够检索到该系列中最相关的图像。在生产环境中,一般需要对数据做预处理,去除重复数据,本文不做此介绍。

结论

       LLM的发展速度比我们历史上习惯的要快,并且跨越了多种模态。我坚信,到明年年底,LLM将很快能够理解视频,因此能够在与你交谈时获得非语言提示。另一方面,我们可以使用图像作为RAG管道的输入,并增强传递给LLM的各种信息,使响应更好、更准确。使用LlamaIndex和Neo4j实现多模式RAG管道非常简单。

参考文献:

[1] https://blog.llamaindex.ai/multimodal-rag-pipeline-with-llamaindex-and-neo4j-a2c542eb0206

[2] https://github.com/tomasonjo/blogs/blob/master/llm/neo4j_llama_multimodal.ipynb

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1329798.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ztree选中回显到ztree树上

点击修改,让数据显示到树形结构上边 $(".updateSupplyBtn").click(function (){var ztreeIds $("#sortId").val(); if(ztreeIds.trim()!""){ var ztree $.fn.zTree.getZTreeObj("menuTree"); var ztreeId ztreeIds.s…

构建数字化金融生态系统:云原生的创新方法

内容来自演讲:曾祥龙 | DaoCloud | 解决方案架构师 摘要 本文探讨了金融企业在实施云原生体系时面临的挑战,包括复杂性、安全、数据持久化、服务网格使用和高可用容灾架构等。针对网络管理复杂性,文章提出了Spiderpool开源项目,…

使用OpenCV DNN模块进行人脸检测

内容的一部分来源于贾志刚的《opencv4应用开发、入门、进阶与工程化实践》。这本书我大概看了一下,也就后面几章比较感兴趣,但是内容很少,并没有想像的那种充实。不过学习还是要学习的。 在实际工程项目中,并不是说我们将神经网络…

MATLAB Mobile - 使用预训练网络对手机拍摄的图像进行分类

系列文章目录 前言 此示例说明如何使用深度学习对移动设备摄像头采集的图像进行分类。 在您的移动设备上安装和设置 MATLAB Mobile™。然后,从 MATLAB Mobile 的“设置”登录 MathWorks Cloud。 在您的设备上启动 MATLAB Mobile。 一、在您的设备上安装 MATLAB M…

基于多反应堆的高并发服务器【C/C++/Reactor】(中)

在这篇文章中虽然实现了能够和多客户端建立连接,并且同时和多个客户端进行通信。 基于多反应堆的高并发服务器【C/C/Reactor】(上)-CSDN博客https://blog.csdn.net/weixin_41987016/article/details/135141316?spm1001.2014.3001.5501但是有…

linux 查看glibc的版本、查看所安装的软件的依赖

GLIBC是一个C标准库,很多C/C程序都会依赖它,在linux系统上安装一些软件(库)时,linux系统需要满足该软件(库)的所有依赖才行,否则,就会出现无法安装或使用的问题&#xff…

可视化开发

可视化开发 数据可视化 交互式可视化 文章目录 可视化开发前言一、可视化开发二、Python数据可视化大屏GIS图像智能识别处理软件开发三、可视化开发必备总结前言 可视化开发可以帮助开发者通过图形化界面和拖放操作来创建、编辑和测试应用程序。使用这些工具,开发者可以提高开…

(JAVA)-线程中的通信(生产者消费者模型)

在Java线程通信中,等待通知机制是最传统的方式,就是在一个线程进行了规定操作后,该线程就进入等待状态(wait), 等待其它线程执行完它们的指定代码过后,再将之前等待的线程唤醒(notif…

mmyolo导出模型

报错:python mmyolo/projects/easydeploy/tools/export_onnx.py configs/yolov7/tfj_yolov7_tiny_syncbn_fast_8x16b-300e_coco.py work_dirs/tfj_yolov7_tiny_syncbn_fast_8x16b-300e_coco/best_coco_bbox_mAP_epoch_10.pth --model-only --simplify 运行报错 No m…

springboot学习笔记(五)

MybatisPlus进阶 1.MybatisPlus一对多查询 2.分页查询 1.MybatisPlus一对多查询 场景:我有一个表,里面填写的是用户的个人信息(姓名,生日,密码,用户ID)。我还有一个表填写的订单信息&#x…

读算法霸权笔记01_数学杀伤性武器

1. 数学应用助推数据经济,但这些应用的建立是基于不可靠的人类所做的选择 1.1. 房地产危机,大型金融机构倒闭,失业率上升,在幕后运用着神奇公式的数学家们成为这些灾难的帮凶 1.2. 数学逐渐不再关注全球金融市场动态&#xff0c…

Flutter 三: Dart

1 数据类型 数字(number) int double 字符串转换成 num int.parse(“1”) double.parse(“1”);double 四舍五入保留两位小数 toStringAsFixed(2) 返回值为stringdouble 直接舍弃小数点后几位的数据 可使用字符串截取的方式 字符串(string) 单引号 双引号 三引号三引号 可以输…

微信小程序promise封装

一. 在utils文件夹内创建一个request.js 写以下封装的 wx.request() 方法 const baseURL https:// 域名 ; //公用总路径地址 export const request (params) > { //暴露出去一个函数,并且接收一个外部传入的参数let dataObj params.data || {}; //…

MsSQL中的索引到底长啥样,查找过程怎么进行

参考文章一 参考文章二 建表 mysql> create table user(-> id int(10) auto_increment,-> name varchar(30),-> age tinyint(4),-> primary key (id),-> index idx_age (age)-> )engineinnodb charsetutf8mb4;insert into user(name,age) values(张三,…

使用Aspose.Slides 控件,在线将 ODP 转换为 PPT

OpenOffice 等开源生产力工具有其用途。但如果您希望在线将 ODP 转换为 PPT,您很可能已经确定 Microsoft PowerPoint 的专有 PPT 格式和平台比 OpenOffice ODP 更适合您的需求。 本文的第一部分重点介绍在线将 ODP 转换为 PPT 的快速方法。第二部分探讨涉及C#应用程…

【flink】状态清理策略(TTL)

flink的keyed state是有有效期(TTL)的,使用和说明在官网描述的篇幅也比较多,对于三种清理策略没有进行横向对比得很清晰。 全量快照清理(FULL_STATE_SCAN_SNAPSHOT)增量清理(INCREMENTAL_CLEANUP)rocksdb压缩清理(ROCKSDB_COMPACTION_FILTER) 注意&…

柔性屏的性能、使用、维护

柔性屏是一种新型的显示技术,相比传统刚性屏幕,具有许多独特的优势。以下是关于柔性屏的性能、使用和维护的详细介绍: 一、性能 弯曲性:柔性屏幕可以轻松弯曲、卷曲或弯折,适应不同的表面形状,如弧形墙面、…

二维码智慧门牌管理系统升级:安全与便捷并存

文章目录 前言一、系统升级与用户操作记录二、展望与智能门禁未来三、智能科技为未来铺路 前言 科技与门禁系统演进 随着科技的飞速发展,智能门牌系统成为建筑物不可或缺的一部分。其中,二维码智慧门牌管理系统以其独特优势逐渐受到关注。它不仅提升了出…

[每周一更]-(第38期):Go常见的操作消息队列

在Go语言中,常见的消息队列有以下几种: RabbitMQ:RabbitMQ是一个开源的AMQP(高级消息队列协议)消息代理软件,用于支持多种编程语言,包括Go语言。RabbitMQ提供了可靠的消息传递机制和灵活的路由…

职场利器-软考高级、PMP、CKA/CKS/CKAD备考

1、【软考高级】信息系统项目管理师 全国计算机技术与软件专业技术资格(水平)考试网上报名平台http://bm.ruankao.org.cn/sign/welcome 模拟作答系统230747 第一次裸考 考试成绩查询 三科均未通过 软考考试多少分通过? ​​​​​​​ 软考高级,它的考试科目是《…