【C语言】自定义类型:结构体深入解析(二)结构体内存对齐宏offsetof计算偏移量结构体传参

news2025/2/4 10:53:44

请添加图片描述

文章目录

  • 📝前言
  • 🌠 结构体内存对齐
  • 🌉内存对齐包含结构体的计算
  • 🌠宏offsetof计算偏移量
  • 🌉为什么存在内存对⻬?
  • 🌠 结构体传参
  • 🚩总结


📝前言

本小节,我们学习结构的内存对齐,理解其对齐规则,内存对齐包含结构体的计算,使用宏offsetof计算偏移量,为什么要存在内存对齐?最后了解结构体的传参文章干货满满!学习起来吧😃!

🌠 结构体内存对齐

结构体内存对齐指的是结构体中各成员变量在内存中的存储位置按照一定规则对齐
既然是按照一定规则,那得首先了解它的对齐规则:

  1. 结构体的第一个成员对齐到和结构体起始位置偏移量为0的地址处。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的一个对齐数 与 该成员变量大小的较小值
  • VS 中默认的值为 8
  • linuxgcc没有默认对齐数,对齐数就是成员自身的大小
  1. 结构体总大小为最大对齐数(结构体中的每一个成员都有一个对齐数,所有对齐数中的)的整数倍。
  2. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。
  • 来代码理解:
struct S1
{
	char c1;
	char c2;
	int i;
};

struct S2
{
	char c1;
	int i;
	char c2;
};

int main()
{
	printf("%d\n", sizeof(struct S1));
	printf("%d\n", sizeof(struct S2));

	return 0;
}

代码运行:
在这里插入图片描述

分析:
在这里插入图片描述
首先结构体S1的成员有三个,根据对齐规则:结构体的第一个成员对齐到结构体变量起始位置偏移量为0的地址处-—>C1放在偏移量为0的地址处,接下来第二个C2就从第2个规则按对齐数进行放置,C2的字节数char类型,大小为1VS的默认对齐数为8,对齐数取的是默认对齐数和成员变量字节大小的较小值,1<8,取1为对齐数,然后偏移量为1的位置放1,此时再看第三个变量i的字节大小为44<8,对齐数为4,当放在偏移量为2时,2不是4的整数倍,跳过,3也不是,跳过,而当偏移量为4时刚好是4的整数1倍(4*1=4),然后占据为4个字节空间,从偏移量0到最后偏移量的空间就是结构体的总大小,为8,此时还没有结束,要验证,根据第三条规则结构体的总大小为最大对齐数的整数倍,最大对齐数为44>1>1),而结构刚才计算出来是8刚好是4整数倍(4*2)当这些都符合了,结构体的大小就是8了。

一个例子你可能想是不是碰巧,那么第二个例子:
结构体S2中有三个成员,C1大小为一,第一个成员放在偏移量为0处,第二个成员i大小为4,偏移量123都不是4的整数倍,然后这些空间都跳过不放数据,(注:他开辟了空间,但他此时不用,你可能会想:这不浪费吗?文章我们慢慢解释)然后偏移量为4时为整数倍,从偏移量4开始放i直到7,第三个元素C2大小为11的整数倍任何数的整数倍,可以直接放,当放在偏移量8处时,全部成员都放完了,我们还要对他进行验证是否为整数倍S2最大对齐数是4,偏移量9,10都不对,当偏移量为11,从011刚好为12,为4的倍数(4*3=12)。所以S2总大小为12

🌉内存对齐包含结构体的计算

struct S3
{
	double d;
	char c;
	int i;
};
int main()
{
	printf("%zd\n", sizeof(struct S3));
	return 0;
}
运行结果:16

分析:

在这里插入图片描述
首先第一个成员为d,放在偏移量为0处,double类型,大小为8,位置范围为0 ~ 7,第二个成员C ,类型为char,大小为11<8,对齐数为1,1可以直接放,占据8位置处,第三个成员i,大小为4,4<8,对齐数是4,偏移量9,10,11都不是4的倍数,12开始占据4个空间到15,范围0 ~ 15总大小为16。S3结构体是三个成员(8>4>1)大小最大是double大小为8,此时总结构体大小16刚好为82倍,符合条件。

  • [] 包含S3的结构体
struct S4
{
	char c1;
	struct S3 s3;
	double d;
};

int main()
{
	printf("%zd\n", sizeof(struct S4));

	return 0;
}
运行结果:32

第一个成员C1对应到偏移量为0处,大小为1s3为结构体,s3的大小为16,根据第四条规则【如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。】,也就是说结构体s3最大对齐数为double的8,用8对齐到S4中整数倍,1,2,3,4,5,6,7都不是8的整数倍,跳过,当偏移量为8时为对齐数8的整数倍时,然后结构体整体大小为16,占据范围为8 ~ 23,接下来就是第三个元素d,大小为8,偏移量24就是8的整数倍,占据了24 ~ 31,所有成员都完成了,偏移量范围在0 ~ 31,总大小就是32。答案就是32.看到这里的你,给自己鼓个掌,继续加油。

在这里插入图片描述

🌠宏offsetof计算偏移量

宏offsetof可以用来计算结构体成员相对于结构体起始位置的偏移量。
宏offsetof原型:

offsetof(type, member)
type是结构体类型
member是结构体中的成员。

注意:使用offsetof宏计算结构体成员偏移量时,需要包含stddef.h头文件

# define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <string.h>
#include <stddef.h>
struct S1
{
	char c1;
	char c2;
	int i;
};

struct S2
{
	char c1;
	int i;
	char c2;
};

struct S3
{
	double d;
	char c;
	int i;
};

struct S4
{
	char c1;
	struct S3 s3;
	double d;
};

int main()
{
	struct S1 s1 = {0};//8
	struct S2 s2 = { 0 };//12

	printf("结构体大小:\n");
	printf("S1=%zd\n", sizeof(struct S1));//8
	printf("S2=%zd\n", sizeof(struct S2));//12
	printf("S3=%zd\n", sizeof(struct S3));//16
	printf("S4=%zd\n", sizeof(struct S4));//32
	printf("\n"); 
	printf("结构体S1成员的偏移量:\n");
	printf("c1=%zd\n", offsetof(struct S1, c1));//0
	printf("c2=%zd\n", offsetof(struct S1, c2));//1
	printf(" i=%zd\n", offsetof(struct S1, i));//8
	printf("\n");
	printf("结构体S2成员的偏移量:\n");
	printf("c1=%zd\n", offsetof(struct S2, c1));//0
	printf(" i=%zd\n", offsetof(struct S2, i));//4
	printf("c2=%zd\n", offsetof(struct S2, c2));//8
	printf("\n");
	printf("结构体S4成员的偏移量:\n");
	printf("c1=%zd\n", offsetof(struct S4, c1));//0
	printf("s3=%zd\n", offsetof(struct S4, s3));//8
	printf("d=%zd\n", offsetof(struct S4, d));//24

	return 0;
}

运行+图对比:
在这里插入图片描述

🌉为什么存在内存对⻬?

  1. 平台原因 (移植原因):
    不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
  2. 性能原因:
    数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。

假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果数据没有对齐,CPU需要额外的时间来处理非对齐的内存访问,这会降低性能。
在这里插入图片描述

总结一句话来说:
结构体的内存对⻬是拿空间来换取时间的做法。

在设计结构体时,既要满足内存对齐要求,又要考虑节省空间,可以采取以下方法:

  • 尽量将较小类型如charshort等成员放在结构体开始位置。这可以减少由对齐产生的内存浪费。
    例如前面的S1S2就很典型:
struct S1
{
 char c1;
 int i;
 char c2;
};
struct S2
{
 char c1;
 char c2;
 int i;
};

阿森把宝图解:
在这里插入图片描述

  • 修改默认对⻬数
    #pragma 这个预处理指令,可以改变编译器的默认对⻬数。
    #pragma 原型:
#pragma pack(push, 1) // 将结构体对齐数设置为1字节 
struct S1
{
	char a; 
	int b;
};
#pragma pack(pop)// 恢复之前的对齐数
  • pack(push, 1)表示将当前对齐数压入栈,并设置新的对齐数为1字节
  • pack(pop)表示从栈中弹出之前的对齐数,恢复默认对齐数

可以直接指定对齐数:

#pragma pack(1) 
struct S1
{				// 成员对齐数为1字节
	char a; 
	int b;
};

#pragma pack() // 恢复默认对齐数

例子:

#pragma pack(1)
struct S1
{
	char c1;
	char c2;
	int i;
};
#pragma pack()


int main()
{
	printf("%d\n", sizeof(struct S1));
	return 0;
}

输出:
在这里插入图片描述
图解对比:
在这里插入图片描述

🌠 结构体传参

  1. 按值传递(传结构体)
    函数形参声明为结构体,实参传递结构体变量。此时在函数内对形参的修改不会影响实参。
struct St 
{
	int x;
};

void func(struct St st) 
{
	st.x = 10;
}

int main() 
{
	struct St s = { 0 };
	func(s);//传结构体
	printf("%d\n", s.x);
}

输出:
在这里插入图片描述

  1. 按地址传递
    函数形参定义为结构体指针,实参传递结构体变量的地址。函数内对形参所指结构体的修改会影响实参。
struct St 
{
	int x;
};

void func(struct St* p) 
{
	p->x = 10;
}

int main() {
	struct St s = { 0 };
	func(&s);
	printf("%d\n", s.x);
}

输出:
在这里插入图片描述

  1. 传结构体指针
    实参直接传结构体指针:
struct St 
{
	int x;
};

void func(struct St* st) 
{
	st->x = 10;
}

int main() 
{
	struct St s;
	struct St* p = &s;
	func(p);
	printf("%d\n", s.x);
}

输出:10

分析:
传值也就是把整个结构体传过去,我们知道形参是是实参的一份临时拷贝,需要再创建特别大的空间来存储结构体。
在这里插入图片描述

无论是传结构体指针还是传结构体地址,本质上都是传地址,但是传地址,只需要创建一个小的空间来存储地址。
在这里插入图片描述

选择传地址比较好一些。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较⼤,所以会导致性能的下降。

总结:
结构体传参的时候,要传结构体的地址。


🚩总结

这次阿森和你一起学习结构体的 结构体内存对齐,内存对齐包含结构体的计算,使用宏offsetof计算偏移量,为什么存在内存对⻬? 结构体传参的本质,阿森将下一节和你一起学习结构体实现位段。

感谢你的收看,如果文章有错误,可以指出,我不胜感激,让我们一起学习交流,如果文章可以给你一个小小帮助,可以给博主点一个小小的赞😘
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1328507.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

什么是网络工程师? 就业前景好吗?

互联网发展日渐成熟&#xff0c;所有企业都依赖于网络管理&#xff0c;有企业的地方就需要网络工程师。 在一般人的概念里&#xff0c;网络工程师不过就是通过拨号上网&#xff0c;发个Email&#xff0c;聊聊天&#xff0c;计算机组装与维护&#xff0c;组建局域网就以为是网络…

项目进度管理:常用项目管理工具推荐

工欲善其事必先利其器&#xff0c;借助项目管理工具可以帮助项目经理更好的管理项目&#xff0c;起到事半功倍的效果。 使用项目管理工具来管理项目&#xff0c;有助于事情的快速落地&#xff0c;提升做事效率&#xff0c;也能让事情做的更周到全面 选择项目管理工具时可以参…

uniapp、微信小程序类似mui中的chat(聊天窗口)

在mui中有chat界面的例子&#xff0c;升级到uni-app后&#xff0c;没有类似的模板&#xff0c;因此模仿写了一个。遇到了一些坑&#xff0c;在此一一记录下来。当然&#xff0c;由于是新手&#xff0c;可能有些坑可以避开。 预览效果 scroll-view高度的设置 输入内容后&#…

室内导航技术在智慧医疗的革新应用

随着科技的飞速发展&#xff0c;智慧医疗已经成为现代医疗服务的重要组成部分。在这个背景下&#xff0c;室内导航技术逐渐崭露头角&#xff0c;为智慧医疗建设带来了革命性的改变。本文将深入探讨室内导航技术在智慧医疗中的应用&#xff0c;并分析其为医疗服务带来的诸多便利…

3分钟部署自己独享的Gemini

3分钟部署自己独享的Gemini 在前面的几篇文章中&#xff0c;分别介绍了Gemini Pro的发布和Gemini Pro API的详细申请步骤&#xff0c;那么今天给大家分享的是如何快速搭建一个属于自己的Gemini 。 1️⃣ 准备工作 科学网络环境Github账号和Vercel账号Gemini Pro API Key&…

一个抖店内做几个商品链接比较合适?解答下新手问题,建议收藏

我是王路飞。 一个抖店内的商品链接数量&#xff0c;是多一些比较好还是少一些比较好呢&#xff1f; 可能在大多数人看来&#xff0c;当然是多一些比较好了&#xff0c;商品数量更多&#xff0c;基数增加&#xff0c;也能承载更多的进店流量&#xff0c;增加下单几率。 但真…

数智金融技术峰会|数新网络受邀分享《金融信创湖仓一体数据平台架构实践》,敬请期待

12月23日&#xff0c;数新网络参加DataFunSummit 2023&#xff1a;数智金融技术峰会。会上&#xff0c;数新CTO原攀峰将为大家带来《金融信创湖仓一体数据平台架构实践》 主题分享。 本次峰会由DataFun联合火山引擎、蓝驰等知名企业举办&#xff0c;将共同为大家带来一场数智金…

Docker 编译OpenHarmony 4.0 release

一、背景介绍 1.1、环境配置 编译环境&#xff1a;Ubuntu 20.04OpenHarmony版本&#xff1a;4.0 release平台设备&#xff1a;RK3568 OpenHarmony 3.2更新至OpenHarmony 4.0后&#xff0c;公司服务器无法编译通过&#xff0c;总是在最后几十个文件时报错,错误码4000&#xf…

【分享】4个方法打开PDF文件

PDF是很多人工作中经常使用的电子文档格式&#xff0c;但是可能有些刚接触的小伙伴不知道用什么工具来打开PDF文件&#xff0c;今天小编就来分享一下4种常用的工具。 1. 使用浏览器 只要有电脑基本都会安装一到两款浏览器&#xff0c;其实浏览器也可以用来打开PDF文件。 只需…

【玩转TableAgent数据智能分析】借助全球高校数据多维度分析案例,体验TableAgent如何助力用户轻松洞察数据,赋能企业高效数智化转型

目录 前言 一、TableAgent介绍及其优势&#xff1f; 1、会话式数据分析&#xff0c;所需即所得 2、私有化部署&#xff0c;数据安全 3、支持企业级数据分析,大规模&#xff0c;高性能 4、支持领域微调&#xff0c;专业化 5、透明化过程&#xff0c;审计部署 二、使用Ta…

Text Intelligence - TextIn.com AI时代下的智能文档识别、处理、转换

本指南将介绍Text Intelligence&#xff0c;AI时代下的智能文档技术平台 Textin.com 关注TechLead&#xff0c;分享AI全维度知识。作者拥有10年互联网服务架构、AI产品研发经验、团队管理经验&#xff0c;同济本复旦硕&#xff0c;复旦机器人智能实验室成员&#xff0c;阿里云认…

批发订货系统小程序怎么推广 四个方案高效获客

微信小程序基于强社交属性&#xff0c;天然自带引流特性&#xff0c;但毕竟小程序也只是一个工具&#xff0c;想要快速获客&#xff0c;还是需要商家主动采取一些措施的。下面分享是个方法&#xff0c;尤其是最后一个&#xff0c;是十分凑效的。大家点个关注点个赞&#xff0c;…

Kubernetes pod ip 暴露

1. k8s pod 和 service 网络暴露 借助 iptables 的路由转发功能&#xff0c;打通k8s集群内的pod和service网络&#xff0c;与外部网络联通 # 查看集群的 pod 网段和 service 网段 kubectl -n kube-system describe cm kubeadm-config networking:dnsDomain: cluster.localpod…

AI中的强化学习是怎么做的呢?

1. 什么是强化学习 其他许多机器学习算法中学习器都是学得怎样做&#xff0c;而强化学习&#xff08;Reinforcement Learning, RL&#xff09;是在尝试的过程中学习到在特定的情境下选择哪种行动可以得到最大的回报。在很多场景中&#xff0c;当前的行动不仅会影响当前的rewar…

LaTeX添加eps图片失败,File `XXX-eps-converted-to.pdf‘ not found

Texstudio选项->设置中选择了默认编译器PdfLaTeX&#xff0c;此时使用eps格式图片会报错 选择LaTeX编译器后不报错&#xff0c;是编译器处理图片格式转换出了问题 如果要用默认编译器PdfLaTeX&#xff0c;需要将eps格式图片转换为pdf格式&#xff0c;此时图片可以正常显示…

STM32G4x FLASH 读写配置结构体(LL库下使用)

主要工作就是把HAL的超时用LL库延时替代&#xff0c;保留了中断擦写模式、轮询等待擦写&#xff0c;我已经验证了部分。 笔者用的芯片为STM32G473CBT6 128KB Flash&#xff0c;开环环境为CUBEMXMDK5.32&#xff0c;因为G4已经没有标准库了&#xff0c;笔者还是习惯使用标准库的…

链接未来:深入理解链表数据结构(二.c语言实现带头双向循环链表)

上篇文章简述讲解了链表的基本概念并且实现了无头单向不循环链表&#xff1a;链接未来&#xff1a;深入理解链表数据结构&#xff08;一.c语言实现无头单向非循环链表&#xff09;-CSDN博客 那今天接着给大家带来带头双向循环链表的实现&#xff1a; 文章目录 一.项目文件规划…

非隔离恒压ACDC稳压智能电源模块芯片推荐:SM7015

非隔离恒压ACDC稳压智能电源模块芯片是一种用于将交流&#xff08;AC&#xff09;电源转换为直流&#xff08;DC&#xff09;电源的集成电路。这种芯片具有恒压输出功能&#xff0c;能够保持输出电压的稳定&#xff0c;适用于各种需要直流电源的应用场景。 非隔离电源模块通常…

Ubuntu20.04 及深度学习环境anaconda、cuda、cudnn、pytorch、paddle2.3安装记录

学习目标&#xff1a; Ubuntu20.04下装好torch、paddle深度学习环境。 选择的版本环境是 &#xff1a;最新的nvidia驱动、cuda 11.1 、cudnn v8.1.1&#xff0c;下面会说为啥这么选。 学习内容&#xff1a; 1. Ubuntu20.04仓库换源 本节参考Ubuntu 20.04 Linux更换源教程 2…