图像处理—小波变换

news2025/2/5 5:04:43

小波变换

一维小波变换

因为存在 L 2 ( R ) = V j 0 ⊕ W j 0 ⊕ W j 0 + 1 ⊕ ⋯ L^{2}(\boldsymbol{R})=V_{j_{0}}\oplus W_{j_{0}}\oplus W_{j_{0}+1}\oplus\cdots L2(R)=Vj0Wj0Wj0+1,所以存在 f ( x ) f(x) f(x)可以在子空间 V j 0 V_{j_0} Vj0中用尺度函数展开和在子空间 W j 0 W j 0 + 1 , ⋯ W_{j_0}W_{j_{0+1}},\cdots Wj0Wj0+1,中用某些数量的小波函数展开来表示。即

f ( x ) = ∑ k c j 0 ( k ) φ j 0 , k ( x ) + ∑ j = j 0 ∞ ∑ k d j ( k ) ψ j , k ( x ) f(x)=\sum_{k}c_{j_0}(k)\varphi_{j_0,k}(x)+\sum_{j=j_{0}}^{\infty}\sum_{k}d_{j}(k)\psi_{j,k}(x) f(x)=kcj0(k)φj0,k(x)+j=j0kdj(k)ψj,k(x)
其中 j 0 j_0 j0 是任意的开始尺度, c j 0 ( k ) c_{j_0}(k) cj0(k)通常称为近似和或尺度系数, d j ( k ) d_j(k) dj(k)称为细节和或小波系数。

由于双正交的性质可得
c j 0 ( k ) = ⟨ f ( x ) , φ j 0 , k ( x ) ⟩ = ∫ f ( x ) φ j 0 , k ( x ) d x d j ( k ) = ⟨ f ( x ) , ψ j , k ( x ) ⟩ = ∫ f ( x ) ψ j , k ( x ) d x c_{j_0}(k)=\Big\langle f(x),\varphi_{j_0,k}(x)\Big\rangle=\int f(x)\varphi_{j_0,k}(x)\mathrm{d}x\\ d_{j}(k)=\Big\langle f(x),\psi_{j,k}(x)\Big\rangle=\int f(x)\psi_{j,k}(x)\mathrm{d}x cj0(k)=f(x),φj0,k(x)=f(x)φj0,k(x)dxdj(k)=f(x),ψj,k(x)=f(x)ψj,k(x)dx
转换成离散形式可得
W φ ( j 0 , k ) = 1 M ∑ n f ( n ) φ j 0 , k ( n ) W ψ ( j , k ) = 1 M ∑ n f ( n ) ψ j , k ( n ) , j ≥ j 0 \begin{aligned} W_{\varphi}(j_{0},k)&=\frac{1}{\sqrt{M}}\sum_{n}f(n)\varphi_{j_{0},k}(n)\\ W_{\psi}(j,k)&=\frac{1}{\sqrt{M}}\sum_{n}f(n)\psi_{j,k}(n),\quad j\geq j_{0} \end{aligned} Wφ(j0,k)Wψ(j,k)=M 1nf(n)φj0,k(n)=M 1nf(n)ψj,k(n),jj0
其中 φ j 0 , k ( n ) \varphi_{j_0,k}(n) φj0,k(n) ψ j , k ( n ) \psi_{j,k}(n) ψj,k(n)是基函数 φ j 0 , k ( x ) \varphi_{j_0,k}(x) φj0,k(x) ψ j , k ( x ) \psi_{j,k}(x) ψj,k(x) 的取样形式。

由此可得
f ( n ) = 1 M ∑ k W φ ( j 0 , k ) φ j 0 , k ( n ) + 1 M ∑ j = j 0 ∞ ∑ k W ψ ( j , k ) ψ j , k ( n ) f(n)=\frac{1}{\sqrt{M}}\sum_{k}W_{\varphi}(j_{0},k)\varphi_{j_{0},k}(n)+\frac{1}{\sqrt{M}}\sum_{j=j_{0}}^{\infty}\sum_{k}W_{\psi}(j,k)\psi_{j,k}(n) f(n)=M 1kWφ(j0,k)φj0,k(n)+M 1j=j0kWψ(j,k)ψj,k(n)
通常 j 0 = 0 j_0=0 j0=0 M M M为2 的幂(即 M = 2 j ) M=2^{j}) M=2j)

而对于哈尔小波,离散的尺度和小波函数与 M × M M\times M M×M哈尔矩阵的行相对应,其中最小尺度为0,最大尺度为 j − 1 j-1 j1

快速小波变换

对于图像的多分辨率变换
φ ( x ) = ∑ n h φ ( n ) 2 φ ( 2 x − n ) \varphi(x)=\sum_{n}h_{\varphi}(n)\sqrt{2}\varphi(2x-n) φ(x)=nhφ(n)2 φ(2xn)
并进行尺度化与平移操作,可得
φ ( 2 j x − k ) = ∑ n h φ ( n ) 2 φ ( 2 ( 2 j x − k ) − n ) = ∑ m h φ ( n ) 2 φ ( 2 j + 1 x − 2 k − n ) \begin{aligned} \varphi(2^{j}x-k) &=\sum_{n}h_{\varphi}(n)\sqrt{2}\varphi\left(2(2^{j}x-k)-n\right)\\ &=\sum_{m}h_{\varphi}(n)\sqrt{2}\varphi(2^{j+1}x-2k-n) \end{aligned} φ(2jxk)=nhφ(n)2 φ(2(2jxk)n)=mhφ(n)2 φ(2j+1x2kn)
m = 2 k + n m=2k+n m=2k+n,可得
φ ( 2 j x − k ) = ∑ n h φ ( n ) 2 φ ( 2 ( 2 j x − k ) − n ) = ∑ m h φ ( n ) 2 φ ( 2 j + 1 x − 2 k − n ) = ∑ m h φ ( m − 2 k ) 2 φ ( 2 j + 1 x − m ) \begin{aligned} \begin{aligned} \varphi(2^{j}x-k) & =\sum_{n}h_{\varphi}(n)\sqrt{2}\varphi\left(2(2^{j}x-k)-n\right)\\ &=\sum_{m}h_{\varphi}(n)\sqrt{2}\varphi(2^{j+1}x-2k-n) \\ &=\sum_{m}h_{\varphi}(m-2k)\sqrt{2}\varphi(2^{j+1}x-m) \end{aligned} \end{aligned} φ(2jxk)=nhφ(n)2 φ(2(2jxk)n)=mhφ(n)2 φ(2j+1x2kn)=mhφ(m2k)2 φ(2j+1xm)
同理对于小波函数存在
ψ ( 2 j x − k ) = ∑ m h ψ ( m − 2 k ) 2 φ ( 2 j + 1 x − m ) \psi(2^{j}x-k)=\sum_{m}h_{\psi}(m-2k)\sqrt{2}\varphi(2^{j+1}x-m) ψ(2jxk)=mhψ(m2k)2 φ(2j+1xm)
其中将 ψ j , k ( x ) = 2 j / 2 ψ ( 2 j x − k ) \psi_{j,k}(x)=2^{j/2}\psi(2^{j}x-k) ψj,k(x)=2j/2ψ(2jxk)代入 d j ( k ) = ⟨ f ( x ) , ψ j , k ( x ) ⟩ = ∫ f ( x ) ψ j , k ( x ) d x d_{j}(k)=\Big\langle f(x),\psi_{j,k}(x)\Big\rangle=\int f(x)\psi_{j,k}(x)\mathrm{d}x dj(k)=f(x),ψj,k(x)=f(x)ψj,k(x)dx可得
d j ( k ) = ∫ f ( x ) 2 j / 2 ψ ( 2 j x − k ) d x d_{j}(k)=\int f(x)2^{j/2}\psi(2^{j}x-k)\mathrm{d}x dj(k)=f(x)2j/2ψ(2jxk)dx
又因为 ψ ( 2 j x − k ) = ∑ m h ψ ( m − 2 k ) 2 φ ( 2 j + 1 x − m ) \psi(2^{j}x-k)=\sum_{m}h_{\psi}(m-2k)\sqrt{2}\varphi(2^{j+1}x-m) ψ(2jxk)=mhψ(m2k)2 φ(2j+1xm)

所以存在
d j ( k ) = ∫ f ( x ) 2 j / 2 [ ∑ m h ψ ( m − 2 k ) 2 φ ( 2 j + 1 x − m ) ] d x = ∑ m h ψ ( m − 2 k ) [ ∫ f ( x ) 2 ( j + 1 ) / 2 φ ( 2 j + 1 x − m ) d x ] = ∑ m h ψ ( m − 2 k ) c j + 1 ( m ) \begin{aligned} d_{j}(k) &=\int f(x)2^{j/2}\biggl[\sum_{m}h_{\psi}(m-2k)\sqrt{2}\varphi(2^{j+1}x-m)\biggr]\mathrm{d}x\\ &=\sum_{m}h_{\psi}(m-2k)\biggl[\int f(x)2^{(j+1)/2}\varphi(2^{j+1}x-m)\mathrm{d}x\biggr]\\ &=\sum_{m}h_{\psi}(m-2k)c_{j+1}(m) \end{aligned} dj(k)=f(x)2j/2[mhψ(m2k)2 φ(2j+1xm)]dx=mhψ(m2k)[f(x)2(j+1)/2φ(2j+1xm)dx]=mhψ(m2k)cj+1(m)
同理可得
c j ( k ) = ∑ m h φ ( m − 2 k ) c j + 1 ( m ) c_{j}(k)=\sum_{m}h_{\varphi}(m-2k)c_{j+1}(m) cj(k)=mhφ(m2k)cj+1(m)

W ψ ( j , k ) = ∑ m h ψ ( m − 2 k ) W φ ( j + 1 , m ) W φ ( j , k ) = ∑ m h φ ( m − 2 k ) W φ ( j + 1 , m ) \begin{aligned}W_{\psi}(j,k)&=\sum_{m}h_{\psi}(m-2k)W_{\varphi}(j+1,m)\\ W_{\varphi}(j,k)&=\sum_{m}h_{\varphi}(m-2k)W_{\varphi}(j+1,m)\end{aligned} Wψ(j,k)Wφ(j,k)=mhψ(m2k)Wφ(j+1,m)=mhφ(m2k)Wφ(j+1,m)
上式揭示了相邻尺度直接的离散小波变换(DWT)系数之间的关系,可以认为是 W φ ( j + 1 , m ) , W ψ ( j + 1 , m ) W_{\varphi}(j+1,m),W_{\psi}(j+1,m) Wφ(j+1,m),Wψ(j+1,m)分别与 h φ ( − n ) , h ψ ( − n ) h_{\varphi}(-n),h_{\psi}(-n) hφ(n),hψ(n)进行卷积操作并下采样得到的,于是可以写成
W ψ ( j , k ) = h ψ ( − n ) ⋆ W ϕ ( j + 1 , n ) ∣ n = 2 k , k ⩾ 0 W φ ( j , k ) = h φ ( − n ) ⋆ W φ ( j + 1 , n ) ∣ n = 2 k , k ⩾ 0 W_{\psi}(j,k)=h_{\psi}(-n)\star W_{\phi}(j+1,n)\Big|_{n=2k,k\geqslant0}\\\\W_{\varphi}(j,k)=h_{\varphi}(-n)\star W_{\varphi}(j+1,n)\Big|_{n=2k,k\geqslant0} Wψ(j,k)=hψ(n)Wϕ(j+1,n) n=2k,k0Wφ(j,k)=hφ(n)Wφ(j+1,n) n=2k,k0
即如下图所示的结构

image-20231217143919224

同时可以经过多次迭代分解,如下图是二级分解的结构

image-20231217144032369

二维小波变换

为了将小波变换扩展到适应二维的图像,由此定义,存在尺度函数
φ ( x , y ) = φ ( x ) φ ( y ) \varphi(x,y)=\varphi(x)\varphi(y) φ(x,y)=φ(x)φ(y)
以及三个对方向敏感的小波函数
ψ H ( x , y ) = ψ ( x ) φ ( y ) ψ V ( x , y ) = φ ( x ) ψ ( y ) ψ D ( x , y ) = ψ ( x ) ψ ( y ) \begin{aligned} &\psi^{H}(x,y)=\psi(x)\varphi(y) \\ &\psi^{V}(x,y)=\varphi(x)\psi(y) \\ &\psi^{D}(x,y) =\psi(x)\psi(y) \end{aligned} ψH(x,y)=ψ(x)φ(y)ψV(x,y)=φ(x)ψ(y)ψD(x,y)=ψ(x)ψ(y)
以上三个小波函数分别对应图像沿着列方向的变换、图像沿着行方向的变换、图像沿着对角线方向的变换

并存在
φ j , m , n ( x , y ) = 2 j / 2 φ ( 2 j x − m , 2 j y − n ) ψ j , m , n i ( x , y ) = 2 j / 2 ψ i ( 2 j x − m , 2 j y − n ) , i = { H , V , D } \begin{array}{c}{{\varphi_{j,m,n}(x,y)=2^{j/2}\varphi(2^{j}x-m,2^{j}y-n)}}\\{{\psi_{j,m,n}^{i}(x,y)=2^{j/2}\psi^{i}(2^{j}x-m,2^{j}y-n),i=\bigl\{H,V,D\bigr\}}}\\\end{array} φj,m,n(x,y)=2j/2φ(2jxm,2jyn)ψj,m,ni(x,y)=2j/2ψi(2jxm,2jyn),i={H,V,D}
并可以推导出离散形式的小波变换
W φ ( j 0 , m , n ) = 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) φ j 0 , m , n ( x , y ) W ψ i ( j , m , n ) = 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) ψ j , m , n i ( x , y ) , i = { H , V , D } \begin{aligned} W_{\varphi}(j_{0},m,n)&=\frac{1}{\sqrt{MN}}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)\varphi_{j_{0},m,n}(x,y)\\\\ W_{\psi}^{i}(j,m,n)&=\frac{1}{\sqrt{MN}}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)\psi_{j,m,n}^{i}(x,y),i=\{H,V,D\}\end{aligned} Wφ(j0,m,n)Wψi(j,m,n)=MN 1x=0M1y=0N1f(x,y)φj0,m,n(x,y)=MN 1x=0M1y=0N1f(x,y)ψj,m,ni(x,y),i={H,V,D}
其中 j 0 j_0 j0表示任意的开始尺度, W φ ( j 0 , m , n ) W_{\varphi}(j_{0},m,n) Wφ(j0,m,n)表示在尺度为 j 0 j_0 j0时的近似, W ψ i ( j , m , n ) , i = { H , V , D } W_{\psi}^{i}(j,m,n),i=\{H,V,D\} Wψi(j,m,n),i={H,V,D}表示对尺度为 j 0 j_0 j0时的水平、垂直与对角线方向的细节

j 0 = 0 , M = N = 2 j j_0=0,M=N=2^j j0=0,M=N=2j时,存在离散小波逆变换
f ( x , y ) = 1 M N ∑ m ∑ n W φ ( j 0 , m , n ) φ j 0 , m , n ( x , y ) + 1 M N ∑ i = H . V . D ∑ j = j 0 ∞ ∑ m ∑ n W ψ i ( j , m , n ) ψ j , m , n i ( x , y ) \begin{aligned} f(x,y)& =\frac{1}{\sqrt{MN}}\sum_{m}\sum_{n}W_{\varphi}(j_{0},m,n)\varphi_{j_{0},m,n}(x,y) \\ &+\frac{1}{\sqrt{MN}}\sum_{i=H.V.D}\sum_{j=j_{0}}^{\infty}\sum_{m}\sum_{n}W_{\psi}^{i}(j,m,n)\psi_{j,m,n}^{i}(x,y) \end{aligned} f(x,y)=MN 1mnWφ(j0,m,n)φj0,m,n(x,y)+MN 1i=H.V.Dj=j0mnWψi(j,m,n)ψj,m,ni(x,y)
同理可以得到

小波分解过程如图所示

image-20231220100830699

小波逆变换过程如图所示

image-20231220101000465

其小波分解的结果如图所示

image-20231220101104129

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1328296.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2024年Etsy开店最全攻略,Etsy如何避免被封店铺?

Etsy是一个跨境电商平台,吸引了全球手工艺品制作者加入,商品独特且价格较高,个人卖家的利润空间也很大。因此,对于跨境卖家来说,在Etsy开店非常有吸引力。今天东哥整理了一份2024年最新Etsy开店流程,对此感…

鸿蒙ArkTS语言介绍与TS基础语法

1、ArkTS介绍 ArkTS是HarmonyOS主力应用开发语言,它在TS基础上,匹配ArkUI框架,扩展了声明式UI、状态管理等响应的能力,让开发者以更简洁、更自然的方式开发跨端应用。 JS 是一种属于网络的高级脚本语言,已经被广泛用…

02-基于GEC6818开发板的画正方形、画圆的操作——使用mmap映射提高效率

02-基于GEC6818开发板的画正方形、画圆的操作——使用mmap映射提高效率 本文主要是在01-基于粤嵌GEC6818实现屏幕的显示固定颜色进行自动切换-点击前往的基础上进行了进一步的更改,之前那个在切换时会有一定的花屏,是因为其效率低的原因,本文…

猜数字游戏 C语言xdoj490

问题描述 猜数字游戏是令游戏机随机产生一个 100 以内的正整数,用户输入一个数对其进行猜测,需要你编写程序自动对其与随机产生的被猜数进行比较,并提示大了(“Too big”),还是小了(“Too smal…

GBASE南大通用数据库提供的高可用负载均衡功能

GBASE南大通用GBase 8a ODBC 提供的高可用负载均衡功能是指,GBase 8a ODBC 会将客户 端请求的数据库集群连接平均分摊到集群所有可用的节点上。 GBASE南大通用数据库负载均衡的使用方法 GBASE南大通用GBase 8a ODBC 提供两种方式来使用高可用负载均衡。一种是配置数…

Ubuntu 20.4镜像国内地址下载较快

Ubuntu20.04版本比较稳定,部署OJ大都用这个版本。 推荐阿里云镜像点,点进去根据你的电脑版本下载iso后缀那个 ubuntu-releases-20.04安装包下载_开源镜像站-阿里云 下载速度较快 其他版本 http://mirrors.aliyun.com/ubuntu-releases/ 如果使用云服务…

图像畸变校正解决方案,无畸变的高质量视觉体验

摄像头已经成为我们生活中不可或缺的一部分。然而,由于摄像头的物理特性和环境因素,采集到的图像往往存在径向和切向畸变,导致画面扭曲,影响视觉效果。为了解决这个问题,美摄科技推出了一款先进的图像畸变校正解决方案…

Java网络编程---UDP

客户端 import java.net.DatagramPacket; import java.net.DatagramSocket; import java.net.InetAddress; import java.util.Scanner;public class Client {public static void main(String[] args) throws Exception {//1.创建客户端对象DatagramSocket socket new Datagra…

node实现简单的数据爬虫

前言 我使用的是墨迹天气的页面,因为这个使用的链接简单 页面结构简单并且大都是文字形式 第一步 打开墨迹天气网址 随便点开一个页面 点击F12或者鼠标右键点击检查 查看页面的信息 分析页面内容 使用文字所在的class和标签来定位 编写代码 配置express环境 …

vscode中vue项目报错

当在vscode中写代码时,报错报错报错......... 已经头大,还没写就报错, 这是因为eslint对语法的要求太过严格导致的编译时,出现各种语法格式错误 我们打开vue.config.js,加上这句代码,就OK啦 lintOnSave:…

Python基本数据类型详解,新手小白入门必学

文章目录 1.注释2.输出3.变量4.命名规范5.变量的定义方式1.字符串类型2.数字类型3.List列表类型4.tuple 元组类型的定义5.Dict字典类型6.set集合类型7.数据类型转换8.自动类型转换9.强制类型转换Python技术资源分享1、Python所有方向的学习路线2、学习软件3、入门学习视频4、实…

关于“Python”的核心知识点整理大全35

目录 13.3.4 重构 create_fleet() game_functions.py 13.3.5 添加行 game_functions.py alien_invasion.py 13.4 让外星人群移动 13.4.1 向右移动外星人 settings.py alien.py alien_invasion.py game_functions.py 13.4.2 创建表示外星人移动方向的设置 13.4.3 检…

2023 英特尔On技术创新大会直播 | AI魅力的生活化

目录 前言正文 前言 依稀记得去年的直播大会,主要展现了其灵活、加速和半集成化的独特优势,广泛应用于人工智能、5G通信、边缘计算以及视觉图像处理等领域,不断提供领先的性能、能效和可编程性的创新。 如今又带来一些不一样的特色&#xf…

大一C语言作业题目1

目录 字符串和字符数组? %s found的变化: 7-1 学生成绩录入及查询 学生成绩表中,一名学生的信息包含如下信息: 学号(11位)、姓名、数学成绩、英语成绩、程序设计成绩、物理成绩。 本题要求编写程序,录入N条学生的…

IDEA 设置 SpringBoot logback 彩色日志(附配置文件)

1、背景说明 最开始使用 SpringBoot 时,控制台日志是带彩色的,让人眼前一亮😄 后来彩色莫名丢失,由于影响不大,一直没有处理。 2、配置彩色 最近找到了解决方法(其实是因为自定义 logback.xml&#xff0…

任天堂,steam游戏机通过type-c给VR投屏与PD快速充电的方案 三type-c口投屏转接器

游戏手柄这个概念,最早要追溯到二十年前玩FC游戏的时候,那时候超级玛丽成为了许多人童年里难忘的回忆,虽然长大了才知道超级玛丽是翻译错误,应该是任天堂的超级马里奥,不过这并不影响大家对他的喜爱。 当时FC家用机手柄…

电容内容介绍

0 Preface/Foreword 电容,Capacitance,i.e. 电容量,指在给定电位差下自由电荷的储存量,符号为C,单位为F(法拉)。 电容,指容纳电荷的能力。任何静电场都是由许多电容组成&#xff0…

Linux---进程状态

目录 一、系统进程状态介绍 1.运行状态 2.阻塞状态 3.挂起状态 二、Linux中的进程状态 1.R (running) 2.S (sleeping) 3.D(disk sleep) 4.T(stopped) 5.t(tracing stop) 6.X(dead&am…

Spring AOP入门指南:轻松掌握面向切面编程的基础知识

面向切面编程 1,AOP简介1.1 什么是AOP?1.2 AOP作用1.3 AOP核心概念 2,AOP入门案例2.1 需求分析2.2 思路分析2.3 环境准备2.4 AOP实现步骤步骤1:添加依赖步骤2:定义接口与实现类步骤3:定义通知类和通知步骤4:定义切入点步骤5:制作切面步骤6:将通知类配给…

短剧分销平台搭建,稳占短剧市场

近两年,短剧一时火爆出圈,凭借着跌宕起伏的剧情成为了影视观众的新宠。短剧的剧情非常短,但每一集都能有一个高潮部分,非常吸引大众观看。 为了解锁更多短剧,观众更是对其进行付费充值,甚至还出现了24小时…