竞赛保研 基于Django与深度学习的股票预测系统

news2024/12/24 21:20:57

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 Django框架
  • 4 数据整理
  • 5 模型准备和训练
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于Django与深度学习的股票预测系统 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

随着经济的发展,我国的股票市场建设正不断加强,社会直接融资正获得重要发展。股票市场行情的涨落与国民经济的发展密切相关。股票作为一种资本融资和投资的工具,是一种资本的代表形式,股票市场可以让上市公司便捷地在国内和国际市场融资。个人投资者、投资机构期望通过技术手段进行投资分析,能够从股票市场获得一定相对高额的投资收益。

2 实现效果

主界面
在这里插入图片描述
详细数据查看
在这里插入图片描述
股票切换
在这里插入图片描述

相关html


DOCTYPE html>



股票预测系统title><br/> {% load static %}<br/>

3 Django框架

Django是一个基于Web的应用框架,由python编写。Web开发的基础是B/S架构,它通过前后端配合,将后台服务器的数据在浏览器上展现给前台用户的应用。Django本身是基于MVC模型,即Model(模型)+View(视图)+
Controller(控制器)设计模式,View模块和Template模块组成了它的视图部分,这种结构使动态的逻辑是剥离于静态页面处理的。
Django框架的Model层本质上是一套ORM系统,封装了大量的数据库操作API,开发人员不需要知道底层的数据库实现就可以对数据库进行增删改查等操作。Django强大的QuerySet设计能够实现非常复杂的数据库查询操作,且性能接近原生SQL语句。Django支持包括PostgreSQL、My
Sql、SQLite、Oracle在内的多种数据库。Django的路由层设计非常简洁,使得将控制层、模型层和页面模板独立开进行开发成为可能。基于Django的Web系统工程结构示意图如图所示。

在这里插入图片描述

从图中可以看到,一个完整的Django工程由数个分应用程序组成,每个分应用程序包括四个部分:

urls路由层 :决定Web系统路由结构,控制页面间的跳转和数据请求路径

在这里插入图片描述

views视图层
:业务层,主要进行逻辑操作和运算,是前端页面模板和后端数据库之间的桥梁。Django框架提供了大量的数据库操作API,开发人员甚至不需要使用SQL语句即可完成大部分的数据库操作。
在这里插入图片描述

models模型层
:Web应用连接底层数据库的关键部分,封装了数据库表结构和实现。开发人员可以在Model层按照Django的指令要求进行建表,无须使用SQL语句或者第三方建表工具进行建表。建表的过程类似于定义变量和抽象编程语言中的类,非常方便。

在这里插入图片描述

templates模板层
:HTML模板文件,后端数据会填充HTML模板,渲染之后返回给前端请求。考虑到项目周期尽可能小,尽快完成平台的搭建,项目决定采用开源的Django框架开发整个系统的Web应用层。

在这里插入图片描述
关键代码


def main():
os.environ.setdefault(‘DJANGO_SETTINGS_MODULE’, ‘ExamOnline.settings’)
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn’t import Django. Are you sure it’s installed and "
"available on your PYTHONPATH environment variable? Did you "
“forget to activate a virtual environment?”
) from exc
execute_from_command_line(sys.argv)


4 数据整理

对于LSTM来说,至少需要两步整理过程:

  • 归一化
  • 变成3D样本(样本,时间步,特征数)

对于神经网络来说,归一化至关重要。如果缺失,会无法顺利训练和学习,俗称:Train不起来。对于LSTM来说,更为重要,因为LSTM内部包含tanh函数使得输出范围在-1到1之间。这就需要我们将预测值也进行归一化,常见的做法就是直接归一化到0和1之间。

将一般的特征X和目标y变成3D,我这里提供了一个函数,输入为原始的X_train_raw,X_test_raw,y_train_raw,y_test_raw。​n_input
为需要多少步历史数据,n_output为预测多少步未来数据。


def transform_dataset(train_set, test_set, y_train, y_test, n_input, n_output):
all_data = np.vstack((train_set, test_set))
y_set = np.vstack((y_train, y_test))[:,0]
X = np.empty((1, n_input, all_data.shape[1]))
y = np.empty((1, n_output))
for i in range(all_data.shape[0] - n_input - n_output):
X_sample = all_data[i:i + n_input, :]
y_sample = y_set[i + n_input:i + n_input + n_output]
if i == 0:
X[i] = X_sample
y[i] = y_sample
else:
X = np.append(X, np.array([X_sample]), axis=0)
y = np.append(y, np.array([y_sample.T]), axis=0)
train_X = X[:train_set.shape[0] - n_input, :, :]
train_y = y[:train_set.shape[0] - n_input, :]
test_X = X[train_set.shape[0] -
n_input:all_data.shape[0] -
n_input -
n_output, :, :]
test_y = y[train_set.shape[0] -
n_input:all_data.shape[0] -
n_input -
n_output, :]
return train_X, train_y, test_X, test_y

5 模型准备和训练

Keras已经包含LSTM
网络层,调用方式和普通的神经网络没有特别大的区别,仅仅需要指定输入数据的shape。这里我们设计一个简单的神经网络,输入层为LSTM,包含20个节点,输出层为普通的Dense,损失函数采用mean_absolute_error。


n_timesteps, n_features, n_outputs = train_X.shape[1], train_X.shape[2], train_y.shape[1]
# create a model
model = Sequential()
model.add(LSTM(10, input_shape=(n_timesteps, n_features),kernel_initializer=‘glorot_uniform’,
kernel_regularizer=regularizers.l2(0.0),return_sequences=False))
#model.add(LSTM(20, input_shape=(n_timesteps, n_features),kernel_initializer=‘glorot_uniform’,
# kernel_regularizer=regularizers.l2(0.0)))

model.add(Dense(n_outputs,kernel_initializer='glorot_uniform',
                kernel_regularizer=regularizers.l2(0.0)))

model.compile(optimizer='adam', loss='mean_absolute_error')
print(model.summary())

调用fit函数对训练集进行学习。由于时间序列具有很明显的趋势,因此有必要将样本打乱。这里需要说明:我们打乱的是“样本”,不影响每个样本内在的序列关系。LSTM只会根据样本内在的序列关系(时间步)来更新自己的隐状态。


from sklearn.utils import shuffle
train_X,train_y = shuffle(train_X,train_y,random_state=42)
plt.plot(train_y)
# fit the RNN model
history = model.fit(
train_X,
train_y,
epochs=300,
batch_size=512,
validation_split=0.3)
figure = plt.Figure()
plt.plot(history.history[‘loss’],
‘b’,
label=‘Training loss’)
plt.plot(history.history[‘val_loss’],
‘r’,
label=‘Validation loss’)
plt.legend(loc=‘upper right’)
plt.xlabel(‘Epochs’)
plt.show()

查看loss曲线,确保训练已经稳定。
在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1327236.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VS ASP.Net Core项目还原Packages包到本地(解决服务器没有网无法重新生成的问题)

问题背景 ASP.Net Core MVC项目&#xff0c;无法重新生成。 现场服务器没有网,放上去的代码无法通过nuget还原包到服务器&#xff0c;导致无法编译无法运行。 解决办法 将Packages还原到本机&#xff08;有网&#xff09;&#xff0c;然后再将代码放到服务器运行。 在有网的…

KoPA: Making Large Language Models Perform Better in Knowledge Graph Completion

本来这个论文用来组会讲的&#xff0c;但是冲突了&#xff0c;没怎么讲&#xff0c;记录一下供以后学习。 创新点 按照我的理解简单概述一下这篇论文的创新点 提出使用大模型补全知识图谱&#xff0c;并且融合知识图谱的结构信息提出一个新的模型KoPA模型&#xff0c;采用少…

Excel 获取当前行的行数

ROW() 获取当前行 ROW()1 获取当前行然后支持二次开发

java基础入门-23-【网络编程】

java基础入门-23-【网络编程】 32、网络编程1.什么是网络编程2.网络编程三要素1.1 IP1.2 总结1.3 IPV4的地址分类形式1.4 常见的CMD命令1.5 InetAddress类的使用1.6 端口和协议 2.UDP通信程序2.1 UDP发送数据2.2UDP接收数据2.3UDP通信程序练习2.4UDP三种通讯方式2.5UDP组播实现…

more的详细用法

概要&#xff1a; Linux中more的功能是分页显示文件内容 空格键显示下一屏(页)&#xff0c;回车键Enter显示下一行&#xff0c;q键退出 本篇所用系统是Ubuntu22.04 一、more filename more后面跟的是文件名&#xff0c;分页显示文件内容 二、more < filename more从…

在MacOS上Qt配置OpenCV并进行测试

一.Qt环境准备 上一篇博客我讲了如何下载配置OpenCV库&#xff0c;但是在Qt5.15.2使用OpenCV库时&#xff0c;出现了一个问题就是我下载的Qt5.15.2是x86架构的&#xff0c;不能对OpenCV库进行链接&#xff0c;而OpenCV库是arm架构的 直接使用Qt5.15.2编译链接OpenCV库链接头文件…

Leetcode—75.颜色分类【中等】

2023每日刷题&#xff08;六十五&#xff09; Leetcode—75.颜色分类 实现代码 class Solution { public:void sortColors(vector<int>& nums) {int red 0, white 0, blue 0;for(auto num: nums) {if(num 0) {red;} else if(num 1) {white;} else {blue;}}for…

1. 创建型模式 - 工厂方法模式

亦称&#xff1a; 虚拟构造函数、Virtual Constructor、Factory Method 意图 工厂方法模式是一种创建型设计模式&#xff0c; 其在父类中提供一个创建对象的方法&#xff0c; 允许子类决定实例化对象的类型。 问题 假设你正在开发一款物流管理应用。 最初版本只能处理卡车运输…

PnetLab[网络虚拟化实验平台]下载地址

Pnet是一款分组网络仿真工具实验室和EVE-NG类似&#xff0c;由于官方提供的下载地址对我大国内域网络并不友好&#xff0c;特地将资源搬运至此。 PNETLAB-5.1.2.ova 下载 访问码&#xff1a; h2or 5.3.11升级包 下载 访问码&#xff1a; quu9 PNET_4.2.10.ova 下载 访问码&…

【C语言】指针详解(二)

目录 1.指针变量类型的意义 1.1指针的解引用 1.2指针 - 整数 1.3void*指针 2.const修饰指针 2.1const修饰变量 2.2const修饰指针变量 1.指针变量类型的意义 1.1指针的解引用 指针变量的大小和类型无关&#xff0c;只要是指针变量&#xff0c;在同一个平台下&#xff0…

技术人的年终总结报告,请笑纳

背景 年底了&#xff0c;部门间&#xff0c;小组间不可避免的需要写年终总结报告。我相信很多朋友这件事肯定比较反感。认为这些东西都是表面形式&#xff0c;没有任何意义&#xff1b;亦或对于专心搞开发的人&#xff0c;对于这种报告并不擅长&#xff0c;不知道如何下手&…

openGuass:极简版安装

目录 一、openGauss简介 二、初始化安装环境 1.创建安装用户 2.修改文件句柄设置 ​3.修改SEM内核参数 4.关闭防火墙 6.禁用SELINUX 7.安装依赖软件 8.重启服务器 三、安装数据库 1.下载安装包 2.创建安装目录 3.解压安装包 4.执行安装 5.验证安装 四、gsql工具…

stm32DMA

DMA 文章目录 DMADMA简介DMA功能框图DMA请求DMA请求通道 **仲裁器** DMA 数据配置从哪里来到哪里去外设到存储器存储器到外设存储器到存储器 DMA初始化结构体讲解配置DMA TO P(外设)代码例子 DMA简介 DMA(Direct Memory Access)—直接存储器存取&#xff0c;是单片机的一个外设…

TCP/IP 传输层协议

传输层定义了主机应用程序之间端到端的连通性。传输层中最为常见的两个协议分别是传输控制协议TCP&#xff08;Transmission Control Protocol&#xff09;和用户数据包协议UDP&#xff08;User Datagram Protocol&#xff09;。 TCP协议 TCP是一种面向连接的传输层协议&#…

2023 CCF国际AIOps挑战赛决赛暨“大模型时代的AIOps”研讨会成功举办

12月16日&#xff0c;2023 CCF国际AIOps挑战赛决赛暨“大模型时代的AIOps”研讨会于北京西郊宾馆成功举办。活动吸引了来自行业内众多一流专家、学者参与&#xff0c;共同探讨和展示了他们在智能运维领域的最新研究成果和技术应用&#xff0c;为智能运维技术的学术研究、生产实…

【计算机网络】TCP心跳机制、TCP粘包问题

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; 更多计算机网络知识专栏&#xff1a;计算机网络&#x1f525; 给大家跳段…

低代码和纯代码:双向奔赴,共创未来ing……

低代码开发是近年来迅速崛起的软件开发方法&#xff0c;让编写应用程序变得更快、更简单。有人说它是美味的膳食&#xff0c;让开发过程高效而满足&#xff0c;但也有人质疑它是垃圾食品&#xff0c;缺乏定制性与深度。你认为低代码到底是美味的膳食还是垃圾食品呢&#xff0c;…

工业缺陷检测深度学习方法综述——学习笔记(评价:这篇华科大的文章错误百出,学术一点都不严谨,别误人子弟了好吧。。。)

文章目录 摘要1 引言2 问题定义与研究现状2.1 问题定义2.2 问题难点与挑战2.2.1 数据难点2.2.2 任务挑战 2.3 研究概述 3 检测算法3.1 缺陷模式已知3.1.1 传统方法简述3.1.2 深度学习方法 3.2 缺陷模式未知3.2.1 传统方法简述3.2.2 深度学习方法(1) 基于图像相似度的方法(i) 基…

芋道前端框架上线之后发现element-ui的icon图标全部乱码

前言 最近发现线上有人反映图标全部是乱码&#xff0c;登录上去看确实乱码&#xff0c;刷新就好最后一顿搜&#xff0c;发现是sass版本不兼容导致的图标乱码问题 解决办法 1.先把sass升级到1.39.0 2.来到vue.config.js文件配置代码-如果是芋道前端框架不用配置自带 css: {lo…

I.MX6ULL_Linux_驱动篇(48)linux I2C驱动

I2C 是很常用的一个串行通信接口&#xff0c;用于连接各种外设、传感器等器件。本章我们来学习一下如何在 Linux 下开发 I2C 接口器件驱动&#xff0c;重点是学习 Linux 下的 I2C 驱动框架&#xff0c;按照指定的框架去编写 I2C 设备驱动。本章同样以 I.MX6U-ALPHA 开发板上的 …