链接未来:深入理解链表数据结构(一.c语言实现无头单向非循环链表)

news2024/11/22 21:14:52

在上一篇文章中,我们探索了顺序表这一基础的数据结构,它提供了一种有序存储数据的方法,使得数据的访 问和操作变得更加高效。想要进一步了解,大家可以移步于上一篇文章:探索顺序表:数据结构中的秩序之美

今天,我们将进一步深入,探讨另一个重要的数据结构——链表

链表和顺序表一样,都属于线性表,也用于存储数据,但其内部结构和操作方式有着明显的不同。通过C语言的具体实现,我们将会更加直观地理解它

源码可以打我的gitee里面查找:唔姆/比特学习过程2 (gitee.com)


文章目录

    • @[toc]
  • 一.链表的概念及结构
  • 二.链表的分类
  • 三.无头单向非循环链表的实现
    • 1.项目文件规划
    • 2.基本结构及功能一览
    • 3.各功能接口具体实现
      • 3.1打印单链表
      • 3.2尾插
      • 3.3头插
      • 3.4尾删
      • 3.5头删
      • 3.6查找
      • 3.7插入pos前一个
      • 3.8删除pos前一个
      • 3.9插入pos后一个
      • 3.10删除pos后一个
      • 3.11销毁(避免内存泄露)

一.链表的概念及结构

请添加图片描述

链表是一种物理存储(实际上)结构上==非连续、非顺序==(杂乱随意排序)的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的

实际情况中:

请添加图片描述

从上图可发现:

  1. 链表在逻辑上连续,在物理上是不连续的
  2. 各个节点(Node)一般都是从上面申请空间的
  3. 从堆上面申请的空间是有一定策略的,可能连续,可也能不连续

二.链表的分类

  • 单向或者双向

请添加图片描述

  • 带头或者不带头

请添加图片描述

  • 循环或者非循环

请添加图片描述

三种情况随意组合起来就有8种链表结构

其中,最为常用的是:

无头单向非循环带头双向循环

请添加图片描述

无头单向非循环链表:结构简单,但是一般不会单独用来存数据。实际中更多是作为其他数据结构的子结构,如哈希桶、图的邻接表等等

请添加图片描述

带头双向循环链表:结构最复杂,一般用在单独存储数。实际中使用的链表数据结构,都是带头双向循环链表。这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带来很多优势,实现它反而简单了

这两种结果都会给大家实现的,今天先来无头单向非循环链表


三.无头单向非循环链表的实现

1.项目文件规划

请添加图片描述

  • 头文件SList.h:用来基础准备(常量定义,typedef),链表表的基本框架,函数的声明
  • 源文件SList.h:用来各种功能函数的具体实现
  • 源文件test.c:用来测试功能是否有问题,进行基本功能的使用

2.基本结构及功能一览

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>

typedef int SLDataType;

typedef struct SingleListNode
{
	int data;
	SingleListNode* next;
}SLNode;

void SLPrint(SLNode* phead);// 单链表打印

void SLPushBack(SLNode** pphead, int n);// 单链表尾插
void SLPushFront(SLNode** pphead, int n);// 单链表头插
void SLPopBack(SLNode** pphead);// 单链表尾删
void SLPopFront(SLNode** pphead);// 单链表尾删

SLNode* SLFind(SLNode* phead, int n);
SLNode* SLInsert(SLNode** pphead, SLNode* pos, int n);//在pos前面插入
SLNode* SLErase(SLNode** pphead, SLNode* pos);//删除pos前面那个

void SLInsertAfter(SLNode* pos, int n);//在pos后面插入
void SLEraseAfter(SLNode* pos);//在pos后面删除

void SLDestory(SLNode** pphead);

3.各功能接口具体实现

3.1打印单链表

void SLPrint(SLNode* phead)
{
	assert(phead);
	SLNode* cur = phead;
	while (cur != NULL)//与while(cur)同样的效果
	{
		printf("%d ", cur->data);
		cur = cur->next;
	}
	printf("\n");
}

3.2尾插

SLNode* CreateNode(int n)
{
	SLNode* newNode= (SLNode*)malloc(sizeof(SLNode));
	if (newNode == NULL)
	{
		perror("malloc error");
		return -1;
	}
	newNode->data = n;
	newNode->next = NULL;
	return newNode;
}

void SLPushBack(SLNode** pphead, int n)
{
	assert(pphead);

	SLNode* newNode = CreateNode(n);//先把节点搞好
	//先考虑一下没有节点的情况
	if (*pphead == NULL)
	{
		*pphead = newNode;  //这就是传二级指针的原因:
		                   //我们要改变 SLNode* phead本身的指向,就把他地址传过来
		                  //当我们只是要改变指向的结构体里的内容时只要传SLNode* phead就行了
	}
	else
	{
		SLNode* tail = *pphead;
		while (tail->next != NULL)//找到最后一个节点
		{
			tail = tail->next;
		}
		tail->next = newNode;
	}
}
  1. 通过 CreateNode 函数创建了一个含有数值 n 的新节点 newNode
  2. 然后根据链表是否为空进行不同的操作:
  • 如果链表为空(即头指针指向空),则将新节点 newNode 赋值给头指针 *pphead
  • 如果链表不为空,则需要找到链表末尾的节点,通过遍历找到最后一个节点(tail),并将其 next 指针指向新节点 newNode,以将新节点插入到链表的末尾

为什么传入二级指针:

这种设计方式的原因在于需要修改指针本身的值,而不是只修改指针所指向的内容

考虑到单链表在插入节点时,可能会涉及链表头指针的修改,如果直接传递单级指针(指向头指针),在函数内部对头指针进行修改是不会反映到函数外部的==(形参是实参的临时拷贝)==。但如果使用二级指针,可以在函数内部修改指针的指向,这样修改后的指向会在函数外部保持

请添加图片描述

3.3头插

void SLPushFront(SLNode** pphead, int n)
{
	assert(pphead);

	SLNode* newNode = CreateNode(n);//先把节点搞好
	if (*pphead == NULL)
	{
		*pphead = newNode;
	}
	else
	{
		newNode->next = (*pphead)->next;
		(*pphead)->next = newNode;
	}
	//或者
	//newNode->next = (*pphead);
	//*pphead = newNode;
}
  1. 通过 CreateNode 函数创建了一个含有数值 n 的新节点 newNode
  2. 接着,根据链表是否为空进行不同的操作:
    • 如果链表为空(即头指针指向空),则将新节点 newNode 赋值给头指针 *pphead
    • 如果链表不为空,则将新节点 newNodenext 指针指向当前头节点的下一个节点(原链表的第二个节点),然后将当前头节点的 next 指针指向新节点 newNode,以完成插入

注释部分显示了另一种写法,通过先设置新节点的 next 指针指向当前头节点,然后再将链表的头指针指向新节点,实现了同样的插入操作

请添加图片描述

3.4尾删

void SLPopBack(SLNode** pphead)
{
	assert(pphead);
	assert(*pphead);//防止一个都没有还删
	if ((*pphead)->next == NULL)//只有一个
	{
		free(*pphead);
		*pphead = NULL;
	}
	else
	{
		//找到倒数第二个
		SLNode* pre_tail = *pphead;
		while (pre_tail->next->next != NULL)
		{
			pre_tail = pre_tail->next;
		}
		free(pre_tail->next);
		pre_tail->next = NULL;
	}
}
  1. 检查链表头指针 *pphead 是否存在(不为 NULL),以及链表是否为空(只有一个节点)
    • 如果链表中只有一个节点,则直接释放该节点,并将链表头指针设置为 NULL,表示链表为空
    • 如果链表中有多个节点,则会找到倒数第二个节点,即指向最后一个节点的前一个节点。它通过遍历链表直到找到倒数第二个节点 pre_tail,然后释放最后一个节点,并将倒数第二个节点的 next 指针设置为 NULL,表示该节点成为新的末尾节点

3.5头删

void SLPopFront(SLNode** pphead)
{
	assert(pphead);
	assert(*pphead);//防止一个都没有还删

	SLNode* first = (*pphead)->next;//一个和多个都适用
	free(*pphead);
	*pphead = first;
}
  1. 创建了一个临时指针 first 来指向原链表的第二个节点(如果存在)。这是因为要删除的是链表的头节点,为了不断开链表,需要先保存第二个节点的地址
  2. 通过 free(*pphead) 释放掉原来的头节点,然后将链表的头指针 *pphead 更新为原头节点的下一个节点 first

3.6查找

SLNode* SLFind(SLNode* phead, int n)
{
	assert(phead);
	SLNode* cur = phead;
	while (cur != NULL)//与while(cur)同样的效果
	{
		if (cur->data == n)
		{
			return cur;
		}
		cur = cur->next;
	}
	return NULL;
}

3.7插入pos前一个

void SLInsert(SLNode** pphead, SLNode* pos, int n)//在pos前面插入
{
	assert(pphead);
	assert(pos);
	SLNode* cur = *pphead;
	if (*pphead == pos)//在第一个节点前面插入
	{
		// 头插
		SLTPushFront(pphead, n);
	}
	else
	{
		while (cur->next != pos)
		{
			cur = cur->next;
		}
		SLNode* newNode = CreateNode(n);
		newNode->next = cur->next;
		cur->next = newNode;
	}
}
  • 如果要插入的位置 pos 就是链表的头节点 *pphead,即在第一个节点前面插入,则调用 SLTPushFront 函数,直接在链表头部插入新节点 newNode
  • 如果要插入的位置不是头节点,则通过循环遍历链表,直到找到 pos前一个节点 cur,然后创建新节点 newNode 并将其插入到 pos 前面,完成节点的插入操作

3.8删除pos前一个

void SLErase(SLNode** pphead, SLNode* pos)
{
	assert(pphead);
	assert(pos);
	assert(*pphead != pos);//防止前面没有
	SLNode* cur = *pphead;
	SLNode* pre_cur = *pphead;
	while (cur->next != pos)
	{
		pre_cur = cur;
		cur = cur->next;
	}
	pre_cur->next = pos;
	free(cur);
	cur = NULL;
}

3.9插入pos后一个

void SLInsertAfter(SLNode* pos, int n)
{
	assert(pos);
	SLNode* newNode =CreateNode(n);
	newNode->next = pos->next;
	pos->next = newNode;
}
  1. 创建一个新节点 newNode,并将新节点的 next 指针指向 pos 节点原本的下一个节点,以保证链表的连续性
  2. pos 节点的 next 指针指向新节点 newNode,完成了在指定节点之后插入新节点的操作

3.10删除pos后一个

void SLEraseAfter(SLNode* pos)
{
	assert(pos);
	SLNode* next = pos->next->next;
	free(pos->next);
	pos->next = NULL;
	pos->next = next;
}

3.11销毁(避免内存泄露)

void SLDestory(SLNode** pphead)
{
	assert(pphead);
	SLNode* cur = *pphead;
	SLNode* next = *pphead;
	while (cur!=NULL)
	{
		next = cur->next;
		free(cur);
		cur = next;
	}
	*pphead = NULL;
}

循环删除每一个Node,最后把原本的结构体指针指向NULL


好啦,这次知识就先到这里啦!下一次大概率是双向带头循环的代码实现了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1326286.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring Cloud Alibaba核心技术宝典,分布式系统中间件实战案例(百度云下载)

前言 《Spring Cloud Alibaba学习笔记》其实是阿里的微服务解决方案&#xff0c;是阿里巴巴结合自身微服务实践,开源的微服务全家桶&#xff0c;在Spring Cloud项目中孵化成为Spring Cloud的子项目。第一代的Spring Cloud标准中很多组件已经停更,如&#xff1a;Eureak,zuul等。…

系列十二(面试)、Java中的GC回收类型有哪些?

一、Java中的GC回收类型 1.1、概述 Java中的GC回收类型主要包含以下几种&#xff0c;即&#xff1a;UseSerialGC、UseParallelGC、UseConcMarkSweepGC、UseParNewGC、UseParallelOldGC、UseG1GC。 1.2、源码

VMware Ubuntu虚拟机忘记密码

​​原文 https://blog.csdn.net/ezconn/article/details/89328024​​​​​​​ 前言&#xff1a; 在VMware运行Ubuntu虚拟机时&#xff0c;开机之后忘记密码怎么办&#xff1f; 环境&#xff1a;Ubuntu版本&#xff1a;ubuntu-16.04.6-server-amd64&#xff1b;VMware版本…

系列十一(面试)、如何查看JVM的参数?

一、查看JVM的参数 1.1、概述 上篇文章介绍了JVM的参数类型&#xff0c;通过jinfo可以查看JVM的默认参数&#xff0c;本章介绍另外一种查看JVM参数的方式。 1.2、 分类 JVM中提供了三种方式查看JVM的参数信息&#xff0c;这三种方式又分为两类&#xff0c;即&#xff1a;查看默…

互联网中的商品超卖问题及其解决方案:Java中Redis结合UUID的应用

前言 在设计商品下单和库存扣减&#xff0c;你一定遇到过这样的问题&#xff0c;库存扣减为0了&#xff0c;可是消费者还能下单&#xff0c;并将订单信息保存到了数据库里&#xff0c;针对商品超卖问题&#xff0c;作此篇以解决。 随着互联网商业的飞速发展&#xff0c;商品超…

Linux宝塔面板本地部署Discuz论坛发布到公网访问【无需公网IP】

文章目录 前言1.安装基础环境2.一键部署Discuz3.安装cpolar工具4.配置域名访问Discuz5.固定域名公网地址6.配置Discuz论坛 前言 Crossday Discuz! Board&#xff08;以下简称 Discuz!&#xff09;是一套通用的社区论坛软件系统&#xff0c;用户可以在不需要任何编程的基础上&a…

数据结构与算法之美学习笔记:38 | 分治算法:谈一谈大规模计算框架MapReduce中的分治思想

目录 前言如何理解分治算法&#xff1f;分治算法应用举例分析分治思想在海量数据处理中的应用解答开篇内容小结 前言 本节课程思维导图&#xff1a; MapReduce 是 Google 大数据处理的三驾马车之一&#xff0c;另外两个是 GFS&#xff08;hdfs&#xff09; 和 Bigtable(hbase)…

cisp和cissp区别,考证必学资料

CISP&#xff08;Certified Information Security Professional&#xff0c;认证信息安全专家&#xff09;和CISSP&#xff08;Certified Information Systems Security Professional&#xff0c;认证信息系统安全专业人员&#xff09;都是信息安全领域的重要认证&#xff0c;但…

Gradle中 Implementation 与API 声明依赖方式的对比

在Gradle中&#xff0c;implementation和api是声明依赖的两种方式&#xff0c;它们在如何暴露依赖关系方面有所不同&#xff1a; Implementation: 当一个模块使用implementation声明依赖时&#xff0c;该依赖仅对声明它的模块可见。这意味着该依赖对于该模块的消费者是隐藏的。…

第三方登录-pc支付宝扫码登录流程

最近有个奇葩的需求&#xff0c;用户要支持支付宝扫码登录。这个需求很少见&#xff0c;那就做一下&#xff0c;看起来有点难&#xff0c;其实很简单。 先看结果 流程梳理 核心代码 获取支付宝扫码页面的url // 获取支付宝扫码登录页面的urlasync function getZFBLoginUrl()…

MySQL概括与SQL分类

文章目录 一、计算机语言二、SQL语言三、数据库系统四、MySQL简介 一、计算机语言 二、SQL语言 三、数据库系统 四、MySQL简介

如何通过宝塔面板搭建一个MySQL数据库服务并实现无公网ip远程访问?

文章目录 前言1.Mysql服务安装2.创建数据库3.安装cpolar3.2 创建HTTP隧道 4.远程连接5.固定TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 宝塔面板的简易操作性,使得运维难度降低,简化了Linux命令行进行繁琐的配置,下面简单几步,通过宝塔面板cp…

flink sql1.18.0连接SASL_PLAINTEXT认证的kafka3.3.1

阅读此文默认读者对docker、docker-compose有一定了解。 环境 docker-compose运行了一个jobmanager、一个taskmanager和一个sql-client。 如下&#xff1a; version: "2.2" services:jobmanager:image: flink:1.18.0-scala_2.12container_name: jobmanagerports:…

Kafka 如何保证高可用?

Kafka 的基本架构组成是&#xff1a;由多个 broker 组成一个集群&#xff0c;每个 broker 是一个节点&#xff1b;当创建一个 topic 时&#xff0c;这个 topic 会被划分为多个 partition&#xff0c;每个 partition 可以存在于不同的 broker 上&#xff0c;每个 partition 只存…

【新姿势】SpringBoot下时间配置新方式(同文件大小)

SpringBoot Duration 背景&#xff1a; 在SpringBoot项目中&#xff0c;我们经常需要配置时间参数&#xff0c;作为某一动作的间隔。以往我们通常是在配置文件中定义字段后&#xff0c;直接设置对应的秒或毫秒值&#xff0c;遇到计算时&#xff0c;直接在此基础上做运算。这种…

标准解析|海格里斯HEGERLS四向车调度算法如何解决同层多车车辆路径规划和避让问题?

随着当前各大企业对仓储存储需求的不断攀升&#xff0c;仓储货架业已进入智能自动化系统集成时代&#xff0c;从单一的货架存储已慢慢发展为货架穿梭车提升机拣选系统控制软件仓库管理软件等集成的仓储解决方案&#xff0c;如四向穿梭车系统&#xff0c;多层穿梭车系统&#xf…

解决:OSError: cannot write mode RGBA as JPEG

解决&#xff1a;OSError: cannot write mode RGBA as JPEG 文章目录 解决&#xff1a;OSError: cannot write mode RGBA as JPEG背景报错问题报错翻译报错位置代码报错原因解决方法参考今天的分享就到此结束了 背景 在使用之前的代码时&#xff0c;报错&#xff1a; Traceback…

CodeBlocks配置WinLibs

一、准备工作 1、去Code::Blocks - Browse /Binaries/Nightlies at SourceForge.net下载CodeBlocks最新的nightly build版本&#xff0c;并下载wxWidget dll和Mingw64 dll库文件。 我下载的CB 13411 &#xff0c;Mingw64dlls13.1.0.7z&#xff0c;wxmsw32u_gcc_cb_wx324_2D_g…

​创新驱动,边缘计算领袖:亚马逊云科技海外服务器服务再进化

2022年亚马逊云科技re:Invent盛会于近日在拉斯维加斯成功召开&#xff0c;吸引了众多业界精英和创新者。亚马逊云科技边缘服务副总裁Jan Hofmeyr在演讲中分享了关于亚马逊云科技海外服务器边缘计算的最新发展和创新成果&#xff0c;引发与会者热烈关注。 re:Invent的核心主题是…

从Gitee克隆项目、启动方法

从gitee克隆VUE项目到本地后&#xff0c;不能直接运行&#xff0c;需要进行npm install安装node_modules文件夹里面的内容&#xff0c;因为在git上传的时候&#xff0c;一般都会过滤到node_modules中的依赖文件。 安装依赖以后&#xff0c;启动通过npm run serve启动项目出错。…