yolov5障碍物识别-雪糕筒识别(代码+教程)

news2025/1/16 9:22:25

简介

这是一个检测交通锥并识别颜色的项目。我使用 yolov5 来训练和检测视锥细胞。此外,我使用 k 均值来确定主色,以对锥体颜色进行分类。目前,支持的颜色为红色、黄色、绿色和蓝色。其他颜色被归类为未知。

在这里插入图片描述

数据集和注释

我使用了一个自收集的锥体数据集,其中包含 303 张锥体图像。这不是一个完美的做法,因为它是一个很小的数据集。我还需要自己注释图像。在这里,我使用了一个在线注释网站 Roboflow,它提供注释、预处理和增强等服务。但是,它对免费用户有 1,000 个源图像和 5,000 个生成图像的限制。

model
├── 锥体检测:Yolov5S
└── 颜色识别:主色(k-means)
用法
如果您有兴趣,可以尝试 colab 中的代码。

在这里插入图片描述

训练

# display images
from PIL import Image
import glob

for imageName in glob.glob('/content/yolov5/images/*.jpg'):
    basewidth = 640
    img = Image.open(imageName)
    wpercent = (basewidth/float(img.size[0]))
    hsize = int((float(img.size[1])*float(wpercent)))
    img = img.resize((basewidth,hsize), Image.NEAREST)
    img = img.convert("RGB")
    img.save(imageName)
  • 如果您有带注释的数据集,则可以直接使用 train.ipynb 在 Colab 中打开项目。

  • 使用 Colab 进行训练和预测: Colab 是一个基于云的 Jupyter 笔记本服务,能够在云端运行代码。通过提供的 Colab
    链接,你可以直接在浏览器中打开并运行代码,这对于快速尝试和理解项目非常方便。
    在这里插入图片描述

  • 项目中的注意事项: 数据集大小: 作者使用了一个包含 303
    张图像的自定义数据集,但指出这并不是一个理想的实践,因为数据集规模较小。在实际应用中,使用更大规模的数据集通常会有助于提高模型的性能。

  • 在线标注服务: 使用 Roboflow
    进行图像标注,该服务提供了标注、预处理和增强等功能。然而,对于免费用户,有一些使用限制,包括最大处理图像数量和生成图像数量。

%%writetemplate /content/yolov5/models/custom_yolov5s.yaml

# parameters
nc: {num_classes}  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, C3, [1024, False]],  # 9
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]
  • 颜色分类: 采用 k-means 算法确定主导颜色,并将交通锥分为红、黄、绿和蓝等颜色。其他颜色被分类为未知。
    在这里插入图片描述

  • 推荐的下一步: 如果你对该项目感兴趣,可以进一步探索以下方面:

  • 数据增强: 在数据集上应用更多的数据增强技术,以提高模型的泛化能力。

  • 模型调优: 尝试使用更大的 YOLOv5 模型(例如 yolov5m、yolov5l 或
    yolov5x)进行训练,看看是否能够改善检测性能。

  • 更大的数据集: 如果可能的话,考虑收集更大规模的数据集,以进一步提高模型的准确性。
    在这里插入图片描述

视频预测

预测:
使用 predict.ipynb 进行锥体检测。 在 pycharm 中打开

# use the best weights!
%cd /content/yolov5/
!python detect.py --weights weights/best.pt --conf 0.6 --source videos/cone_video.mp4

注意:需要使用作者在 model 文件夹中训练的权重,并且有一些自定义的 YOLOv5 文件在 utils 文件夹中。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1324376.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

会声会影2024永久汉化中文版本百度网盘下载

会声会影2024破解版免费下载是经过修改的视频剪辑软件,它能够免费为您提供很多功能。会声会影2024免费下载提供超过 1500 种独特的效果,可让您提升自我。会声会影破解版是用于是制作独一无二的视频的最强大、功能最全的软件。 它是一个简单而快速的视频编…

漏洞复现-log4j2原理分析及CVE-2021-44228

log4j2原理分析及漏洞复现 0x01 log4j2简介 Log4j2 是一个用于 Java 应用程序的成熟且功能强大的日志记录框架。它是 Log4j 的升级版本,相比于 Log4j,Log4j2 在性能、可靠性和灵活性方面都有显著的改进。 Log4j2 特点 高性能:Log4j2 使用异步…

JVM垃圾收集器三色标记算法

垃圾收集算法 分代收集理论 当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将java堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。 比…

【华为OD机试真题2023CD卷 JAVAJS】加密算法

华为OD2023(C&D卷)机试题库全覆盖,刷题指南点这里 加密算法 知识点DFS搜索 题目描述: 有一种特殊的加密算法,明文为一段数字串,经过密码本查找转换,生成另一段密文数字串。规则如下: 1. 明文为一段数字串由0~9组成 2. 密码本为数字0~9组成的二维数组 3. 需要…

将Abp默认事件总线改造为分布式事件总线

文章目录 原理创建分布式事件总线实现自动订阅和事件转发 使用启动Redis服务配置传递Abp默认事件传递自定义事件 项目地址 原理 本地事件总线是通过Ioc容器来实现的。 IEventBus接口定义了事件总线的基本功能,如注册事件、取消注册事件、触发事件等。 Abp.Events…

关键字:void关键字

在编程中,void 是一个关键字,用于表示函数没有返回值。具体来说,void 关键字的作用如下: 函数声明:在函数声明中使用 void 关键字可以指定函数没有返回值。例如: 这表示 func() 函数不返回任何值。 函数…

英国版咸鱼「Depop」,小众二手跨境电商平台如何入驻?

对标美国二手闲鱼平台Mercia,PoshMark、东南亚Etsy,Depop是英国的一个面向创意人群的二手时尚市场,类似于Instagram,但更专注于买卖二手服装、配饰和艺术品。 近一年来,受通胀和高利率影响,英国的经济几乎一直处于停滞状态,零售市…

亚信安慧AntDB数据库——助力5G计费核心替换,全面自主可控

数字经济时代,5G以更快、更丰富、更智能的连接方式服务于各行各业。AntDB数据库,源于亚信科技,自2008年起成功落地全国24个省份的中国移动、中国电信、中国联通和中国广电等运营商项目,为数字化服务和信息化基础建设提供支持。 在…

【开源软件】最好的开源软件-2023-第四名 vaadin

自我介绍 做一个简单介绍,酒架年近48 ,有20多年IT工作经历,目前在一家500强做企业架构.因为工作需要,另外也因为兴趣涉猎比较广,为了自己学习建立了三个博客,分别是【全球IT瞭望】,【…

DAPLink源码固件编译与制作

DAPLink源码固件编译与制作 ✨这里以Air/stm32f103cbt6固件编译为例。📌DAPLink源码地址:https://github.com/ARMmbed/DAPLink🔖 如果不想自己生成,可以使用合宙提供的现成的工程以及固件;https://gitee.com/openLuat/…

以太网的数据速率、互连介质和物理层规范

以太网协议连接已经广泛应用于我们周围的大量事物或设备中。过去,以太网用在局域网 (LAN) 和城域网 (MAN) 中,而如今,由于以太网的普及和多种优势,例如巨大的生态体系和日益增长的规模经济,它越来越多地用在存储和汽车…

手拉手全栈EasyExcel实现web上传下载

环境介绍 技术栈 springbootmybatis-plusmysqleasyexcel 软件 版本 mysql 8 IDEA IntelliJ IDEA 2022.2.1 JDK 1.8 Spring Boot 2.7.13 mybatis-plus 3.5.3.2 EasyExcel是一个基于Java的、快速、简洁、解决大文件内存溢出的Excel处理工具。 他能让你在不用考虑性…

思码逸签约 | 与致景科技达成战略合作,共同推动研发效能提升

此次合作旨在利用思码逸的先进度量和分析能力,帮助致景科技进一步完善其研发度量指标,从而提升整体研发效能。 本次合作的核心,是致景科技对思码逸在代码当量价值评估方面的高度认可。合作将专注于两个主要方面:一方面&#xff0…

(数据结构)单链表的插入删除

代码实现 #include<stdio.h> #include<stdlib.h> typedef struct LNode {int data;struct LNode* next; }LNode, * LinkList; //创建头结点 LNode* InitList(LinkList L) {L (LNode*)malloc(sizeof(LNode));if (L NULL){printf("申请头结点失败\n");…

鸿道(Intewell)工业操作系统推动新型工业化时代下的产教融合

为进一步落实推进粤港澳大湾区建设的国家战略&#xff0c;加速新一代信息技术与制造业深度融合&#xff0c;提升控制科学与工程学科建设水平&#xff0c;华南理工大学自动化科学与工程学院召开粤港澳大湾区机器智能产教融合论坛暨控制学科建设研讨会。作为国内新型工业操作系统…

SpringSecurity深度解析与实践(1)

目录 引言1. SpringSecurity1.1 SpringSecurity简介1.2 SpringSecurity工作原理1.3.特点 2. SpringSecurity的快速使用总结 引言 SpringSecurity作为Spring框架中的一个重要组成部分&#xff0c;扮演着保护应用程序安全的重要角色。本文将深入探讨SpringSecurity的原理、使用方…

比例导引(PNG)-Matlab 程序

本文提供比例导引的matlab程序&#xff0c;想要看理论的可以看书《导弹飞行力学》或者我的博客 比例导引详解 代码 %% 三维比例导引末制导clc;clear; close all;%% 设置导弹初始参数和目标参数% 总步长 length 1000000; x_m zeros(length,1); y_m zeros(length,1); z_m z…

【UML】第9篇 类图

目录 一、类图的概念 二、类图的主要作用 三、类图的构成 3.1 类的名称 3.2 抽象类&#xff08;Abstract Class&#xff09; 一、类图的概念 类图是UML模型中静态视图。它用来描述系统中的有意义的概念&#xff0c;包括具体的概念、抽象的概念、实现方面的概念等。静态视…

Halcon识别瓶盖字体,极坐标转换

Halcon识别瓶盖字体&#xff0c;极坐标转换 read_image (Image, D:/image/bilibili/photo/检测字符.png) ***转为灰度图 rgb1_to_gray (Image, GrayImage) threshold (GrayImage, Regions, 115, 255) get_image_size (GrayImage, Width, Height) *****填充 fill_up (Regions, …

算法基础之二分图的最大匹配

二分图的最大匹配 核心思想&#xff1a;匈牙利算法 : 寻找有没有可重新连接的路 #include<iostream>#include<cstring>#include<algorithm>using namespace std;const int N 510 , M 100010;int h[N],e[M],ne[M],idx;int match[N]; //记录与j匹配的iint n…