Java 数据结构篇-实现二叉搜索树的核心方法

news2024/12/25 11:11:05

🔥博客主页: 【小扳_-CSDN博客】
❤感谢大家点赞👍收藏⭐评论✍
 

文章目录

        1.0 二叉搜索树的概述

        2.0 二叉搜索树的成员变量及其构造方法

        3.0 实现二叉树的核心接口

        3.1 实现二叉搜索树 - 获取值 get(int key)

        3.2 实现二叉搜索树 - 获取最小的关键字 min(BinaryNode node)

        3.3 实现二叉搜索树 - 获取最大的关键字 max(BinaryNode node)

        3.4 实现二叉搜索树 - 增、更新 put( int key, Object value)

        3.5 实现二叉搜索树 - 查找关键字的后驱节点 successor(int key)

        3.6 实现二叉搜索树 - 查找关键字的前驱节点 predecessor(int key)

        3.7 实现二叉搜索树 - 删除关键字节点 delete(int key)

        3.8 实现二叉搜索树 - 查找范围小于关键字的节点值 less(int key)

        3.9 实现二叉搜索树 - 查找范围大于关键字的节点值 greater(int key)

        4.0 实现二叉搜索树 - 查找范围大于 k1 且小于 k2 关键字的节点值 between(int k1, int k2)

        5.0 实现二叉搜索树核心方法的完整代码


        1.0 二叉搜索树的概述

        二叉搜索树是一种数据结构,用于存储数据并支持快速的插入、删除和搜索操作。它是一种树形结构。

        它具有以下特点:

                - 每个节点最多有两个子节点,分别称为左子节点和右子节点。

                - 对于每个节点,其左子节点的值小于该节点的值,右子节点的值大于该节点的值。

                - 中序遍历二叉搜索树可以得到有序的元素序列。

        由于其特性,二叉搜索树在插入、删除和搜索操作上具有较高的效率。在平均情况下,这些操作的时间复杂度为 O(log n),其中 n 为树中节点的数量。然而,如果树的结构不平衡,最坏情况下这些操作的时间复杂度可能会达到 O(n)。由于其高效的搜索特性,二叉搜索树常被用于实现关联数组和集合等数据结构。然而,为了避免树的结构不平衡导致性能下降,人们也发展了平衡二叉搜索树(如红黑树、AVL树)等变种。

        2.0 二叉搜索树的成员变量及其构造方法

        外部类成员变量有:根节点节点类(内部类)

        外部类构造方法:默认的构造方法,对外公开二叉搜索树的核心方法

        节点类的成员变量有:

                - key 关键字:相对比一般的二叉树,二叉搜索树可以明显提高增删查改的效率原因在于关键字,可以根据比较两个关键字的大小进行操作。

                - value 值:作用则为存放值。

                - left :链接左节点。

                - right:链接右节点。

        节点类的构造方法:

                带两个参数的构造方法:参数为 key 、value 

                带四个参数的构造方法:参数为 key 、value 、left 、right

代码如下:

public class BinaryTree {

    BinaryNode root = null;
    static class BinaryNode {
        int key;
        Object value;
        BinaryNode left;
        BinaryNode right;

        public BinaryNode(int kty, Object value) {
            this.key = kty;
            this.value = value;
        }

        public BinaryNode(int key, Object value, BinaryNode left, BinaryNode right) {
            this.key = key;
            this.value = value;
            this.left = left;
            this.right = right;
        }
    }

}

        补充二叉搜索树在增、删、查、改的效率高的原因:

        二叉搜索树的高效性与其关键字的特性密切相关。二叉搜索树的关键特性是,对于每个节点,其左子节点的值小于该节点的值,右子节点的值大于该节点的值。这种特性使得在二叉搜索树中进行搜索、插入和删除操作时,可以通过比较关键字的大小来快速定位目标节点,从而实现高效的操作。在平均情况下,这些操作的时间复杂度为 O(log n),其中 n 为树中节点的数量。因此,关键字的有序性是二叉搜索树能够实现高效操作的关键原因之一。

        3.0 实现二叉树的核心接口

​
public interface BinarySearchTreeInterface {

    /**
     *查找 key 对应的 value
     */
    Object get(int key);

    /**
     * 查找最小关键字对应值
     */
    Object min();

    /**
     * 查找最大关键字对应值
     */
    Object max();

    /**
     * 存储关键字与对应值
     */
    void put(int key, Object value);

    /**
     * 查找关键字的后驱
     */
    Object successor(int key);

    /**
     * 查找关键字的前驱
     */
    Object predecessor(int key);

    /**
     * 根据关键字删除
     */
    Object delete(int key);
}

​

        3.1 实现二叉搜索树 - 获取值 get(int key)

        实现思路为:从根节点开始,先判断当前的节点 p.key 与 key 进行比较,若 p.key > key,则向左子树下潜 p = p.left ;若 p.key < key ,则向右子树下潜 p = p.right ;若 p.key == key ,则找到到了关键字,返回该节点的值 p.value 。按这样的规则一直循环下去,直到 p == null 退出循环,则说明没有找到对应的节点,则返回 null 。

代码如下:

    @Override
    public Object get(int key) {
        if (root == null) {
            return null;
        }
        BinaryNode p = root;
        while(p != null) {
            if (p.key > key) {
                p = p.left;
            }else if (p.key < key) {
                p = p.right;
            }else {
                return p.value;
            }
        }
        return null;
    }

        若 root 为 null ,则不需要再进行下去了,直接结束。

        3.2 实现二叉搜索树 - 获取最小的关键字 min(BinaryNode node)

        实现思路:在某一个树中,需要得到最小的关键字,由根据数据结构的特点,最小的关键字在数的最左边,简单来说:一直向左子树遍历下去,直到 p.left == null 时,则该 p 节点就是最小的关键字了。然后找到了最小的节点,返回该节点的值即可。

代码如下:

非递归实现:

    @Override
    public Object min() {
        if (root == null) {
            return null;
        }
        BinaryNode p = root;
        while(p.left != null) {
            p = p.left;
        }
        return p.value;
    }
    //重载了一个方法,带参数的方法。
    public Object min(BinaryNode node) {
        if (node == null) {
            return null;
        }
        BinaryNode p = node;
        while (p.left != null) {
            p = p.left;
        }
        return p.value;
    }

递归实现:

    //使用递归实现找最小关键字
    public Object minRecursion() {
        return doMin(root);
    }
    private Object doMin(BinaryNode node) {
        if (node == null) {
            return null;
        }
        if (node.left == null) {
            return node.value;
        }
        return doMin(node.left);
    }

        

        3.3 实现二叉搜索树 - 获取最大的关键字 max(BinaryNode node)

        实现思路为:在某一个树中,需要得到最大的关键字,由根据数据结构的特点,最大的关键字在数的最右边,简单来说:一直向右子树遍历下去,直到 p.right == null 时,则该 p 节点就是最大的关键字了。然后找到了最大的节点,返回该节点的值即可。

代码如下:

非递归实现:

    @Override
    public Object max() {
        if (root == null) {
            return null;
        }
        BinaryNode p = root;
        while(p.right != null) {
            p = p.right;
        }
        return p.value;
    }
    //重载了一个带参数的方法
    public Object max(BinaryNode node) {
        if (node == null) {
            return null;
        }
        BinaryNode p = node;
        while (p.right != null) {
            p = p.right;
        }
        return p.value;
    }

递归实现:

    //使用递归实现找最大关键字
    public Object maxRecursion() {
        return doMax(root);
    }
    private Object doMax(BinaryNode node) {
        if (node == null) {
            return null;
        }
        if (node.right == null) {
            return node.value;
        }
        return doMax(node.right);
    }

        3.4 实现二叉搜索树 - 增、更新 put( int key, Object value)

        实现思路为:在二叉搜索树中先试着查找是否存在与 key 对应的节点 p.key 。若找到了,则为更新该值 p.value = value 即可。若找不到,则需要新增该关键字节点

        具体来分析如何新增关键字,先定义 BinaryNode parent 、 BinaryNode p,p 指针在去比较 key 之前,先让 parent 指向 p 。最后循环结束后, p == null ,对于 parent 来说,此时正指着 p 节点的双亲节点。 接着创建一个新的节点,BinaryNode newNode = new BinaryNode(key, value) ,则此时还需要考虑的是,该新的节点该连接到 parent 的左孩子还是右孩子 ?需要比较 parent.key 与 newNode.key 的大小即可,若 parent.key > newNode.key,则链接到 parent.left 处;若 prent.key < newNode.key ,则连接到 parent.right 处。

代码如下:

    @Override
    public void put(int key, Object value) {
        if (root == null) {
            root = new BinaryNode(key,value);
            return;
        }
        BinaryNode p = root;
        BinaryNode parent = null;
        while (p != null) {
            parent = p;
            if (p.key > key) {
                p = p.left;
            } else if (p.key < key) {
                p = p.right;
            }else {
                p.value = value;
                return;
            }
        }

        //该树没有该关键字,因此需要新建节点对象
        BinaryNode newNode = new BinaryNode(key,value);
        if (newNode.key < parent.key) {
            parent.left = newNode;
        }else {
            parent.right = newNode;
        }

    }

        3.5 实现二叉搜索树 - 查找关键字的后驱节点 successor(int key)

        具体实现思路为:先遍历找到该关键字的节点,若找不到,则返回 null ;若找到了,判断以下的两种情况,第一种情况:该节点有右子树,则该关键字的后驱为右子树的最小关键字;第二种情况:该节点没有右子树,则该关键字的后驱为从右向左而来的祖宗节点。最后返回该后驱节点的值 

代码如下:

    @Override
    public Object successor(int key) {
        if (root == null) {
            return null;
        }
        //先找到该关键字节点
        BinaryNode p = root;
        BinaryNode sParent = null;
        while (p != null) {
            if (p.key > key) {
                sParent = p;
                p = p.left;
            } else if (p.key < key) {
                p = p.right;
            }else {
                break;
            }
        }
        //没有找到关键字的情况
        if (p == null) {
            return null;
        }

        //情况一:该节点存在右子树,则该后继为右子树的最小关键字
        if (p.right != null) {
            return min(p.right);
        }

        //情况二:该节点不存在右子树,那么该后继就需要到祖宗从右向左的节点
        if (sParent == null) {
            //可能不存在后继节点,比如最大关键字的节点就没有后继节点了
            return null;
        }
        return sParent.value;
    }

        3.6 实现二叉搜索树 - 查找关键字的前驱节点 predecessor(int key)

        具体实现思路为:先对该二叉树进行遍历寻找 key 的节点,若遍历结束还没找到,则返回 null ;若找到了,需要判断以下两种情况:

        第一种情况:该节点有左子树,则该前驱节点为该左子树的最大关键字节点。

        第二种情况:该节点没有左子树,则该前驱节点为从左向右而来的祖宗节点。

        最后返回该前驱节点的值。

代码如下:

    @Override
    public Object predecessor(int key) {
        if (root == null) {
            return null;
        }
        BinaryNode p = root;
        BinaryNode sParent = null;
        while (p != null) {
            if (p.key > key) {
                p = p.left;
            } else if (p.key < key) {
                sParent = p;
                p = p.right;
            }else {
                break;
            }
        }
        if (p == null) {
            return null;
        }
        //情况一:存在左子树,则该前任就为左子树的最大关键字节点
        if (p.left != null) {
            return max(p.left);
        }
        //情况二:不存在左子树,则该前任为从祖宗自左向右而来的节点
        if (sParent == null) {
            return null;
        }
        return sParent.value;
    }

        3.7 实现二叉搜索树 - 删除关键字节点 delete(int key)

        具体实现思路为:先遍历二叉树,查找该关键字节点。若遍历结束了还没有找到,则返回 null ;若找到了,则需要以下四种情况:

        第一种情况:找到该删除的节点只有左子树。则直接让该左子树 "托付" 给删除节点的双亲节点,这就删除了该节点了。至于左子树是链接到双亲节点的左边还有右边这个问题,根据该数据结构的特点,由该删除节点来决定。若删除的节点之前是链接该双亲节点的左边,则左子树也是链接到该双亲节点的左边;若删除的节点之前是链接该双亲节点的右边,则左子树也是链接到该双亲节点的右边。

        第二种情况:找到该删除的节点只有右子树。则直接让该右子树 "托付" 给删除节点的双亲节点,这就删除了该节点了。至于右子树是链接到双亲节点的左边还有右边这个问题,根据该数据结构的特点,由该删除节点来决定。若删除的节点之前是链接该双亲节点的左边,则右子树也是链接到该双亲节点的左边;若删除的节点之前是链接该双亲节点的右边,则右子树也是链接到该双亲节点的右边。

        第三种情况:找到该删除节点都没有左右子树。该情况可以归并到以上两种情况的任意一种处理均可。

        第四种情况:找到该删除节点都有左右子树。分两步:第一步,先找后继节点来替换删除节点,找该后继节点直接到删除节点的右子树中找最小的关键字节点即可。第二步,需要先将后继节点的右子树处理好,需要将该右子树交给替换节点的双亲节点链接。还需要判断两种情况:第一种情况,若删除节点与替换节点是紧挨着的,对替换节点的右子树无需要求,只对左子树重新赋值;若删除节点与替换节点不是紧挨着的关系,对替换节点的左右子树都要重新赋值。

代码如下:

    @Override
    public Object delete(int key) {
        if (root == null) {
            return null;
        }
        BinaryNode p = root;
        BinaryNode parent = null;
        while (p != null) {
            if (p.key > key) {
                parent = p;
                p = p.left;
            } else if (p.key < key) {
                parent = p;
                p = p.right;
            }else {
                break;
            }
        }
        //没有找到该关键字的节点
        if (p == null) {
            return null;
        }

        //情况一、二、三:只有左子树或者右子树或者都没有
        if (p.right == null) {
            shift(parent,p,p.left);
        } else if (p.left == null) {
            shift(parent,p,p.right);
        }else {
            //情况四:有左右子树
            //替换节点采用删除节点的后继节点
            //先看被删的节点与替换的节点是否为紧挨在一起
            BinaryNode s = p.right;
            BinaryNode sParent = p;
            while (s.left != null) {
                sParent = s;
                s = s.left;
            }
            if (sParent != p) {
                //说明没有紧挨在一起,则需要将替换节点的右子树进行处理
                shift(sParent,s,s.right);
                s.right = p.right;
            }
            shift(parent,p,s);
            s.left = p.left;
        }

        return p.value;
    }
    private void shift(BinaryNode parent, BinaryNode delete, BinaryNode next) {
        if (parent == null) {
            root = next;
        } else if (parent.left == delete) {
            parent.left = next;
        }else if (parent.right == delete){
            parent.right = next;
        }
    }

        为了方便,将删除节点与替换节点之间的替换操作单独成一个方法出来。

        递归实现删除关键字 key 节点,同理,也是细分为以上描述的四种情况。

代码如下:

    //使用递归实现删除关键字节点
    public BinaryNode deleteRecursion(BinaryNode node , int key) {
        if (node == null) {
            return null;
        }
        if (node.key > key) {
            node.left = deleteRecursion(node.left,key);
            return node;
        } else if (node.key < key) {
            node.right = deleteRecursion(node.right,key);
            return node;
        }else {
            if (node.right == null) {
                return node.left;
            } else if (node.left == null) {
                return node.right;
            }else {
                BinaryNode s = node.right;
                while (s.left != null) {
                    s = s.left;
                }

                s.right = deleteRecursion(node.right,s.key);
                s.left = node.left;
                return s;
            }

        }
    }

        3.8 实现二叉搜索树 - 查找范围小于关键字的节点值 less(int key)

        具体实现思路为:利用中序遍历,来遍历每一个节点的 key ,若小于 key 的节点,直接放到数组容器中;若大于 key 的,可以直接退出循环。最后返回该数组容器即可

代码如下:

    //找 < key 的所有 value
    public List<Object> less(int key) {
        if (root == null) {
            return null;
        }
        ArrayList<Object> result = new ArrayList<>();
        BinaryNode p = root;
        Stack<BinaryNode> stack = new Stack<>();
        while (p != null || !stack.isEmpty()) {
            if (p != null) {
                stack.push(p);
                p = p.left;
            }else {
                BinaryNode pop = stack.pop();
                if (pop.key < key) {
                    result.add(pop.value);
                }else {
                    break;
                }
                p = pop.right;
            }
        }
        return result;
    }

        3.9 实现二叉搜索树 - 查找范围大于关键字的节点值 greater(int key)

        具体实现思路:利用中序遍历,来遍历每一个节点的 key ,若大于 key 的节点,直接放到数组容器中。

代码如下:

    //找 > key 的所有 value
    public List<Object> greater(int key) {
        if (root == null) {
            return null;
        }
        ArrayList<Object> result = new ArrayList<>();
        Stack<BinaryNode> stack = new Stack<>();
        BinaryNode p = root;
        while (p != null || !stack.isEmpty()) {
            if (p != null) {
                stack.push(p);
                p = p.left;
            }else {
                BinaryNode pop = stack.pop();
                if (pop.key > key) {
                    result.add(pop.value);
                }
                p = pop.right;
            }
        }
        return result;
    }

该方法的改进:遍历方向进行调整,先从右子树开始,再访问根节点,最后才到左子树。因此只要小于 key 的关键字节点,直接退出循环

代码如下:

    //改进思路:遍历方向进行调整,先从右子树开始,再访问根节点,最后才到左子树
    public List<Object> greater1(int key) {
        if (root == null) {
            return null;
        }
        ArrayList<Object> result = new ArrayList<>();
        Stack<BinaryNode> stack = new Stack<>();
        BinaryNode p = root;
        while (p != null || !stack.isEmpty()) {
            if (p != null ) {
                stack.push(p);
                p = p.right;
            }else {
                BinaryNode pop = stack.pop();
                if (pop.key > key) {
                    result.add(pop.value);
                }else {
                    break;
                }
                p = pop.left;
            }
        }
        return result;
    }

        4.0 实现二叉搜索树 - 查找范围大于 k1 且小于 k2 关键字的节点值 between(int k1, int k2)

        实现思路跟以上的思路没有什么区别,唯一需要注意的是,当前节点的 key > k2 则可以退出循环了。

代码如下:

//找到 >= k1 且 =< k2 的所有value
    public List<Object> between(int k1, int k2) {
        if (root == null) {
            return null;
        }
        ArrayList<Object> result = new ArrayList<>();
        Stack<BinaryNode> stack = new Stack<>();
        BinaryNode p = root;
        while(p != null || !stack.isEmpty()) {
            if (p != null) {
                stack.push(p);
                p = p.left;
            }else {
                BinaryNode pop = stack.pop();
                if (pop.key >= k1 && pop.key <= k2) {
                    result.add(pop.value);
                } else if (pop.key > k2) {
                    break;
                }
                p = pop.right;
            }
        }
            return result;
    }

        5.0 实现二叉搜索树核心方法的完整代码

实现接口代码:

import java.util.ArrayList;

import java.util.List;
import java.util.Stack;

public class BinaryTree implements BinarySearchTreeInterface{

    BinaryNode root = null;
    static class BinaryNode {
        int key;
        Object value;
        BinaryNode left;
        BinaryNode right;

        public BinaryNode(int kty, Object value) {
            this.key = kty;
            this.value = value;
        }

        public BinaryNode(int key, Object value, BinaryNode left, BinaryNode right) {
            this.key = key;
            this.value = value;
            this.left = left;
            this.right = right;
        }
    }

    @Override
    public Object get(int key) {
        if (root == null) {
            return null;
        }
        BinaryNode p = root;
        while(p != null) {
            if (p.key > key) {
                p = p.left;
            }else if (p.key < key) {
                p = p.right;
            }else {
                return p.value;
            }
        }
        return null;
    }

    @Override
    public Object min() {
        if (root == null) {
            return null;
        }
        BinaryNode p = root;
        while(p.left != null) {
            p = p.left;
        }
        return p.value;
    }
    public Object min(BinaryNode node) {
        if (node == null) {
            return null;
        }
        BinaryNode p = node;
        while (p.left != null) {
            p = p.left;
        }
        return p.value;
    }

    //使用递归实现找最小关键字
    public Object minRecursion() {
        return doMin(root);
    }
    private Object doMin(BinaryNode node) {
        if (node == null) {
            return null;
        }
        if (node.left == null) {
            return node.value;
        }
        return doMin(node.left);
    }


    @Override
    public Object max() {
        if (root == null) {
            return null;
        }
        BinaryNode p = root;
        while(p.right != null) {
            p = p.right;
        }
        return p.value;
    }
    public Object max(BinaryNode node) {
        if (node == null) {
            return null;
        }
        BinaryNode p = node;
        while (p.right != null) {
            p = p.right;
        }
        return p.value;
    }

    //使用递归实现找最大关键字
    public Object maxRecursion() {
        return doMax(root);
    }
    private Object doMax(BinaryNode node) {
        if (node == null) {
            return null;
        }
        if (node.right == null) {
            return node.value;
        }
        return doMax(node.right);
    }


    @Override
    public void put(int key, Object value) {
        if (root == null) {
            root = new BinaryNode(key,value);
            return;
        }
        BinaryNode p = root;
        BinaryNode parent = null;
        while (p != null) {
            parent = p;
            if (p.key > key) {
                p = p.left;
            } else if (p.key < key) {
                p = p.right;
            }else {
                p.value = value;
                return;
            }
        }

        //该树没有该关键字,因此需要新建节点对象
        BinaryNode newNode = new BinaryNode(key,value);
        if (newNode.key < parent.key) {
            parent.left = newNode;
        }else {
            parent.right = newNode;
        }

    }

    @Override
    public Object successor(int key) {
        if (root == null) {
            return null;
        }
        //先找到该关键字节点
        BinaryNode p = root;
        BinaryNode sParent = null;
        while (p != null) {
            if (p.key > key) {
                sParent = p;
                p = p.left;
            } else if (p.key < key) {
                p = p.right;
            }else {
                break;
            }
        }
        //没有找到关键字的情况
        if (p == null) {
            return null;
        }

        //情况一:该节点存在右子树,则该后继为右子树的最小关键字
        if (p.right != null) {
            return min(p.right);
        }

        //情况二:该节点不存在右子树,那么该后继就需要到祖宗从右向左的节点
        if (sParent == null) {
            //可能不存在后继节点,比如最大关键字的节点就没有后继节点了
            return null;
        }
        return sParent.value;
    }

    @Override
    public Object predecessor(int key) {
        if (root == null) {
            return null;
        }
        BinaryNode p = root;
        BinaryNode sParent = null;
        while (p != null) {
            if (p.key > key) {
                p = p.left;
            } else if (p.key < key) {
                sParent = p;
                p = p.right;
            }else {
                break;
            }
        }
        if (p == null) {
            return null;
        }
        //情况一:存在左子树,则该前任就为左子树的最大关键字节点
        if (p.left != null) {
            return max(p.left);
        }
        //情况二:不存在左子树,则该前任为从祖宗自左向右而来的节点
        if (sParent == null) {
            return null;
        }
        return sParent.value;
    }

    @Override
    public Object delete(int key) {
        if (root == null) {
            return null;
        }
        BinaryNode p = root;
        BinaryNode parent = null;
        while (p != null) {
            if (p.key > key) {
                parent = p;
                p = p.left;
            } else if (p.key < key) {
                parent = p;
                p = p.right;
            }else {
                break;
            }
        }
        //没有找到该关键字的节点
        if (p == null) {
            return null;
        }

        //情况一、二、三:只有左子树或者右子树或者都没有
        if (p.right == null) {
            shift(parent,p,p.left);
        } else if (p.left == null) {
            shift(parent,p,p.right);
        }else {
            //情况四:有左右子树
            //替换节点采用删除节点的后继节点
            //先看被删的节点与替换的节点是否为紧挨在一起
            BinaryNode s = p.right;
            BinaryNode sParent = p;
            while (s.left != null) {
                sParent = s;
                s = s.left;
            }
            if (sParent != p) {
                //说明没有紧挨在一起,则需要将替换节点的右子树进行处理
                shift(sParent,s,s.right);
                s.right = p.right;
            }
            shift(parent,p,s);
            s.left = p.left;
        }

        return p.value;
    }
    private void shift(BinaryNode parent, BinaryNode delete, BinaryNode next) {
        if (parent == null) {
            root = next;
        } else if (parent.left == delete) {
            parent.left = next;
        }else if (parent.right == delete){
            parent.right = next;
        }
    }

    //使用递归实现删除关键字节点
    public BinaryNode deleteRecursion(BinaryNode node , int key) {
        if (node == null) {
            return null;
        }
        if (node.key > key) {
            node.left = deleteRecursion(node.left,key);
            return node;
        } else if (node.key < key) {
            node.right = deleteRecursion(node.right,key);
            return node;
        }else {
            if (node.right == null) {
                return node.left;
            } else if (node.left == null) {
                return node.right;
            }else {
                BinaryNode s = node.right;
                while (s.left != null) {
                    s = s.left;
                }

                s.right = deleteRecursion(node.right,s.key);
                s.left = node.left;
                return s;
            }

        }
    }

    //找 < key 的所有 value
    public List<Object> less(int key) {
        if (root == null) {
            return null;
        }
        ArrayList<Object> result = new ArrayList<>();
        BinaryNode p = root;
        Stack<BinaryNode> stack = new Stack<>();
        while (p != null || !stack.isEmpty()) {
            if (p != null) {
                stack.push(p);
                p = p.left;
            }else {
                BinaryNode pop = stack.pop();
                if (pop.key < key) {
                    result.add(pop.value);
                }else {
                    break;
                }
                p = pop.right;
            }
        }
        return result;
    }

    //找 > key 的所有 value
    public List<Object> greater(int key) {
        if (root == null) {
            return null;
        }
        ArrayList<Object> result = new ArrayList<>();
        Stack<BinaryNode> stack = new Stack<>();
        BinaryNode p = root;
        while (p != null || !stack.isEmpty()) {
            if (p != null) {
                stack.push(p);
                p = p.left;
            }else {
                BinaryNode pop = stack.pop();
                if (pop.key > key) {
                    result.add(pop.value);
                }
                p = pop.right;
            }
        }
        return result;
    }
    //改进思路:遍历方向进行调整,先从右子树开始,再访问根节点,最后才到左子树
    public List<Object> greater1(int key) {
        if (root == null) {
            return null;
        }
        ArrayList<Object> result = new ArrayList<>();
        Stack<BinaryNode> stack = new Stack<>();
        BinaryNode p = root;
        while (p != null || !stack.isEmpty()) {
            if (p != null ) {
                stack.push(p);
                p = p.right;
            }else {
                BinaryNode pop = stack.pop();
                if (pop.key > key) {
                    result.add(pop.value);
                }else {
                    break;
                }
                p = pop.left;
            }
        }
        return result;
    }


    //找到 >= k1 且 =< k2 的所有value
    public List<Object> between(int k1, int k2) {
        if (root == null) {
            return null;
        }
        ArrayList<Object> result = new ArrayList<>();
        Stack<BinaryNode> stack = new Stack<>();
        BinaryNode p = root;
        while(p != null || !stack.isEmpty()) {
            if (p != null) {
                stack.push(p);
                p = p.left;
            }else {
                BinaryNode pop = stack.pop();
                if (pop.key >= k1 && pop.key <= k2) {
                    result.add(pop.value);
                } else if (pop.key > k2) {
                    break;
                }
                p = pop.right;
            }
        }
            return result;
    }

}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1322484.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

监控k8s controller和scheduler,创建serviceMonitor以及Rules

目录 一、修改kube-controller和kube-schduler的yaml文件 二、创建service、endpoint、serviceMonitor 三、Prometheus验证 四、创建PrometheusRule资源 五、Prometheus验证 直接上干货 一、修改kube-controller和kube-schduler的yaml文件 注意&#xff1a;修改时要一个节…

neo4j安装报错:neo4j.bat : 无法将“neo4j.bat”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。

neo4j安装报错&#xff1a; neo4j.bat : 无法将“neo4j.bat”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写&#xff0c;如果包括路径&#xff0c;请确 保路径正确&#xff0c;然后再试一次。 解决办法&#xff1a; 在环境变量中的&#xff0c;用户…

手把手教你搭建谷歌Gemini

前言 谷歌上周推出了一款名为 Gemini 的多模态大模型&#xff0c;并且现在发布了免费开放的 Gemini API 供开发者使用。根据谷歌提供的定价信息&#xff0c;Gemini 有两种收费方式。免费版本每分钟可以进行 60 次请求&#xff0c;足够满足个人用户的需求。收费版本目前暂不可用…

你了解Redis中的跳跃表吗?

跳跃表的基本内容&#xff1a; 对于一个有序序列&#xff0c;链表相对于数组来说&#xff0c;删除和插入的效率要快很多&#xff0c;只需要改变指针的指向&#xff0c;但是在查找的时候&#xff0c;数组就要更占优势一些&#xff0c;可以随机访问&#xff0c;然而链表需要从头…

连接SSH报错 / 连接容器SSH

连接SSH报错 / 连接容器SSH 前言被控端主控端连接失败 前言 本文介绍如何通过SSH方式远程连接Linux被控端&#xff0c;并介绍如何解决连接失败问题。 此方法同样适用于SSH连接Docker容器。 被控端 被控端一般为Linux&#xff0c;默认已安装ssh&#xff0c;但需要手动安装ope…

C++ OJ题测试—排序算法效率

目录 OJ链接 一、直接插入排序 二、希尔排序 三、直接选择排序 常规&#xff1a; 第二种&#xff1a; 四、 堆排序 五、冒泡排序 六、快速排序 常规&#xff1a; 三路划分优化效率 七、归并排序 八、计数排序 OJ链接 ​ 一、直接插入排序 class Solution { pub…

Gateway No servers available for service

springCloud集成网关测试报错找不到服务&#xff0c;如下 造成这种错误可能是下面两种原因 1、nacos注册的服务不在一个命名空间内&#xff0c;导致找不到服务503 spring cloud:nacos:discovery:server-addr: 127.0.0.1:8848config:server-addr: 127.0.0.1:8848file-extensio…

探索Qt 6.3:了解基本知识点和新特性

学习目标&#xff1a; 理解Qt6.3的基本概念和框架&#xff1a;解释Qt是什么&#xff0c;它的核心思想和设计原则。学会安装和配置Qt6.3开发环境&#xff1a;提供详细的步骤&#xff0c;让读者能够顺利安装和配置Qt6.3的开发环境。掌握Qt6.3的基本编程技巧&#xff1a;介绍Qt6.…

欧洲版OpenAI疑似将在24年发布并开源GPT-4级别模型!

大家好&#xff0c;我是二狗。 今天在推特上看到一条振奋人心的消息&#xff1a; “ 欧洲版OpenAI、法国初创公司 Mistral 首席执行官 Arthur Mensch 在法国国家广播电台宣布&#xff0c;Mistral 将在 2024 年发布开源 GPT-4 级别模型。” 这位老哥接着表示甚至可能是免费的&a…

C++ STL——栈和队列(stack queue)

本节目标 1.stack的介绍和使用及其模拟实现 2.queue的介绍和使用及其模拟实现 3.priority_queue的介绍和使用及其模拟实现 4.容器适配器 1.stack的介绍和使用及其模拟实现 1.1 stack的介绍 stack的文档介绍 根据stack的文档介绍可以知道&#xff0c;stack是一种容器适配器…

原生微信小程序-使用 阿里字体图标 详解

步骤一 1、打开阿里巴巴矢量图标库 网址&#xff1a;iconfont-阿里巴巴矢量图标库 2、搜索字体图标&#xff0c;鼠标悬浮点击添加入库 3、按如下步骤添加到自己的项目 步骤二 进入微信开发者工具 1、创建 fonts文件夹 > iconfont.wxss 文件&#xff0c;将刚才的代码复制…

结果实例: 一个cpu的parsec结果

简介 限于篇幅限制&#xff0c;很多教程和论文只展示部分结果。我们这里展示非常细节的结果&#xff0c;包括输出的许多命令行结果。 运行命令行 的shell窗口 ./build/X86/gem5.opt -d m5out/onlyoneCPUkvmCheckPointDifferRCS20231218restore \configs/deprecated/example/…

杰发科技AC7840——SPM电源管理之低功耗模式

0、SPM简介 很早以前就听过低功耗模式&#xff0c;一直没有怎么深入了解&#xff0c;最近遇到几个项目都是跟低功耗有关。正好AutoChips的芯片都有电源管理的功能&#xff0c;在此借用AC7840的SPM对低功耗进行测试。 1、AC7840的5种功耗模式 2、AC7840的模式转换 3、唤醒 在…

Kubernetes 的用法和解析 -- 5

一.企业级镜像仓库Harbo 准备&#xff1a;另起一台新服务器&#xff0c;并配置docker yum源&#xff0c;安装docker 和 docker-compose 1.1 上传harbor安装包并安装 [rootharbor ~]# tar xf harbor-offline-installer-v2.5.3.tgz [rootharbor ~]# cp harbor.yml.tmpl harbor…

Home Assistant 如何开启SSH服务

环境&#xff1a; Home Assistant 11.2 SSH & Web Terminal 17.0 问题描述&#xff1a; Home Assistant 如何开启SSH服务 解决方案&#xff1a; 通过添加一个名为Terminal & SSH的插件来在 Home Assistant 中启用 SSH 服务 下面是启用 SSH 服务的大致步骤&#x…

C语言数据结构-排序

文章目录 1 排序的概念及运用1.1 排序的概念1.2 排序的应用 2 插入排序2.1 直接插入排序2.2 希尔排序2.3 直接排序和希尔排序对比 3 选择排序3.1 堆排序3.2 直接选择排序 4 交换排序4.1 冒泡排序4.2 快速排序4.2.1 挖坑法14.2.2 挖坑法24.2.3 挖坑法3 5 并归排序6 十万级别数据…

Ubuntu中基础命令使用

前言 以下指令测试来自于Ubuntu18.04 如果有说的不对的&#xff0c;欢迎指正与补充 以下指令为我学习嵌入式开发中使用过最多的指令 目录 前言 1 ls 首先我们进入到Linux操作系统中 2 touch创建一个文件 3 pwd查看当前路径 4 创建目录 5 删除文件 6 cd 目录跳转 0…

LVS负载均衡集群之HA高可用模式

Keepalived工具介绍 专为LVS和HA设计的一款健康检查工具 一个合格的集群应该具备的特性&#xff1a; 1.负载均衡 LVS Nginx HAProxy F5 2.健康检查&#xff08;探针&#xff09; for调度器/节点服务器 Keeplived Hearbeat 3.故障转移 通过VIP飘逸实现主备切换 健康检查&am…

HarmonyOS 中DatePicker先择时间 路由跳转并传值到其它页

效果 代码 代码里有TextTimerController 这一种例用方法较怪&#xff0c;Text ,Button Datepicker 的使用。 import router from ohos.router’则是引入路由模块。 import router from ohos.router Entry Component struct TextnewClock {textTimerController: TextTimerContr…

【马来西亚会议】第四届计算机技术与全媒介融合设计国际学术会议(CTMCD 2024)

第四届计算机技术与全媒介融合设计国际学术会议&#xff08;CTMCD 2024) 2023 4th International Conference on Computer Technology and Media Convergence Design 第四届计算机技术与全媒介融合设计国际学术会议&#xff08;CTMCD 2024&#xff09;将于 2024年2月23日-25日…