智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2025/1/11 20:59:31

智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于蛾群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.蛾群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用蛾群算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.蛾群算法

蛾群算法原理请参考:https://blog.csdn.net/u011835903/article/details/118894374
蛾群算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


蛾群算法参数如下:

%% 设定蛾群优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明蛾群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1320957.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

docker在线安装nginx

1、查看所有镜像 1、不带容器卷常规启动nginx,命令如下 docker run --name nginx-test -p 8089:80 -d a6bd71f48f68 2、在宿主机创建/usr/local/data/nginxdocker/目录,在此目录下创建html和logs文件夹,然后将容器内的 nginx.conf 和 html 下…

React基础巩固日志1

书写了一篇vue3的基础构建之后,不能带着各位一起学习vue3了,因为我要面试上海的前端岗位了,所以从现在开始,我要带着大家一起学习React了。 以下是我使用react书写的要掌握的react的知识点: ** ** 那么下面我们就一一通…

美颜SDK技术对比,深入了解视频美颜SDK的工作机制

如何在实时视频中呈现更加自然、美丽的画面,而这正是美颜SDK技术发挥作用的领域之一。本文将对几种主流视频美颜SDK进行深入比较,以揭示它们的工作机制及各自的优劣之处。 随着科技的不断进步,美颜技术已经从简单的图片处理发展到了视频领域…

【Filament】绘制矩形

1 前言 Filament环境搭建中介绍了 Filament 的 Windows 和 Android 环境搭,绘制三角形中介绍了绘制纯色和彩色三角形,本文将使用 Filament 绘制纯色和彩色矩形。 2 绘制矩形 本文项目结构如下,完整代码资源 → Filament绘制矩形。 2.1 自定义…

【Matlab算法】灰狼优化算法问题(Grey Wolf Optimization)(附MATLAB完整代码)

灰狼优化算法问题 前言算法描述:算法特点: 正文代码实现 前言 灰狼优化算法(Grey Wolf Optimization,GWO) 是一种模拟灰狼社会行为的启发式优化算法。它是由Seyedali Mirjalili等人于2014年提出的,灵感来源…

Acrel-1000DP分布式光伏系统在某重工企业18MW分布式光伏中应用——安科瑞 顾烊宇

摘 要:分布式光伏发电特指在用户场地附近建设,运行方式以用户侧自发自用、余电上网,且在配电系统平衡调节为特征的光伏发电设施,是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就…

React实现全局Loading

css #__loading {position:fixed;top: 0;left: 0;z-index: 99999;display: flex;align-items: center;justify-content: center;width: 100%;height: 100%;background: rgba(0, 0, 0, 0); } 页面代码 使用了antd的Spin组件 import React from react import ReactDOM from re…

C语言入门(字符串正反连接(fgets()、gets()用法))

目录 ​编辑 题目描述 输入格式 输出格式 样例输入 样例输出 解题思路 题目描述 所给字符串正序和反序连接&#xff0c;形成新串并输出 输入格式 任意字符串&#xff08;长度<50&#xff09; 输出格式 字符串正序和反序连接所成的新字符串 样例输入 123abc 样例输出 12…

2023.12.18杂记

今天特地搜了一下国内不错的博客网站&#xff0c;本来想在掘金上写的&#xff0c;但是怕被人喷&#xff08;&#xff0c;所以还是决定在csdn上写了哈哈哈。 这篇文章主要整理一下我今天写代码时遇到的疑惑以及记录一下思考过程吧。 第一个注意的地方&#xff0c;我们的get查询…

前端开发中的webpack打包工具

前端技术发展迅猛&#xff0c;各种可以提高开发效率的新思想和框架层出不穷&#xff0c;但是它们都有一个共同点&#xff0c;即源代码无法直接运行&#xff0c;必须通过转换后才可以正常运行。webpack是目前主流的打包模块化JavaScript的工具之一。 本章主要涉及的知识点有&am…

【PHP入门】2.1-运算符

-运算符- 运算符&#xff1a;operator&#xff0c;是一种将数据进行运算的特殊符号&#xff0c;在PHP中一共有十种运算符之多。 2.1.1赋值运算符 赋值运算&#xff1a;符号是“”&#xff0c;表示将右边的结果&#xff08;可以是变量、数据、常量和其它运算出来的结果&#…

音视频学习(二十一)——rtmp收流(tcp方式)

前言 本文主要介绍rtmp协议收流流程&#xff0c;在linux上搭建rtmp服务器&#xff0c;通过自研的rtmp收流库发起取流请求&#xff0c;使用ffmpegqt实现视频流的解码与播放。 关于rtmp协议基础介绍可查看&#xff1a;https://blog.csdn.net/www_dong/article/details/13102607…

sqlserver dba日常操作

查询慢sql的方法 1.whoisactive 安装方法 http://whoisactive.com/downloads/下载地址 将下载好的zip包放到sqlserver服务器中 文件-打开-文件-下载好的zip包-在查询窗口点击执行 新建一个查询窗口&#xff0c;输入sp_whoisactive&#xff0c;获取当前运行的所有sql语句 使用…

windows 安装jenkins

下载jenkins 官方下载地址&#xff1a;Jenkins 的安装和设置 清华源下载地址&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/jenkins/windows-stable/ 最新支持java8的版本时2.346.1版本&#xff0c;在清华源中找不到&#xff0c;在官网中没找到windows的下载历史&#xff…

ELK(九)—logstash

目录 简介安装部署测试 配置详解编写配置文件连接elasticsearch将数据推送到elasticsearch中。 简介 Logstash 是一个开源的服务器端数据处理管道&#xff0c;由 Elastic 公司维护和开发。它被设计用于从不同来源收集、处理和转发数据&#xff0c;以供 Elasticsearch 进行存储…

Mysql主从复制,读写分离,分表分库策略与实践

本文转自互联网&#xff0c;本文部分内容来源于网络&#xff0c;为了把本文主题讲得清晰透彻&#xff0c;也整合了很多我认为不错的技术博客内容&#xff0c;引用其中了一些比较好的博客文章&#xff0c;如有侵权&#xff0c;请联系作者。 该系列博文会告诉你如何从入门到进阶&…

docker在线安装minio

1、下载最新minio docker pull minio/minio 2、在宿主机创建 /usr/local/data/miniodocker/config 和 /usr/local/data/miniodocker/data,执行docker命令 docker run -p 9000:9000 -p 9090:9090 --name minio -d --restartalways -e MINIO_ACCESS_KEYminio -e MINIO_SECRET_K…

miRMaker

Introduction 除了miRNA表达数据&#xff0c;各种miRNA相关的知识也强有力地支持了对miRNA功能相互作用的理解。 那些具有许多共同调控靶基因或疾病的miRNAs可能具有相似的功能 一些方法通过考虑实验验证的miRNA-靶标关系来评估miRNA相互作用&#xff0c;评估miRNA功能相互作…

KUKA机器人Loop循环的具体使用方法示例

KUKA机器人Loop循环的具体使用方法示例 如下图所示&#xff0c;新建一个示例程序&#xff0c; 如下图所示&#xff0c;添加一些动作指令&#xff0c; 如下图所示&#xff0c;如果想要机器人在第5行和第9行之间循环执行程序&#xff0c;则可以在第5行添加指令loop&#xff0…

Linux 特殊符号

目录 1. # 注释 2. &#xff1b;命令分隔符 3. .. 上级目录 4. . 当前目录 5. " " 换行&#xff0c;解析变量 6. 换行&#xff0c;不解析变量 7. \ 和 / 8. &#xff01;历史命令调用&#xff0c;取反 9. * 通配符 10. $ 调用变量 11. | 管道 12. || …