Java21新特性-虚拟线程

news2024/11/25 4:31:31

虚拟线程是轻量级线程(类似于 Go 中的 “协程(Goroutine)”),可以减少编写、维护和调度高吞吐量并发应用程序的工作量。

线程是可供调度的最小处理单元,它与其他类似的处理单元并发运行,并且在很大程度上是独立运行的。线程(java.lang.Thread)有两种,平台线程虚拟线程

一. Java内部线程实现模式

绿色线程(Green Thread):远古时期,Java使用绿色线程模式。这个模式下,多线程的调度和管理有JVM完成。绿色线程模式才作用M:1线程映射模型。这里就有一个问题,Java不能够规模化管理这种线程,也就无法充分发挥硬件性能。同样的实现绿色线程也是一件非常有挑战性的事情,因为它需要非常底层的支持才能够良好运行。随后Java移除了绿色线程,转而使用本地线程。这使得Java的线程执行比绿色线程更慢。

平台线程(Platform Thread):从Java 1.2开始从绿色线程切换到了平台线程模式(有些人称之为本地线程(Native Thread))。在操作系统的帮助下,JVM 得以控制平台线程。平台线程的执行效率很高,但是开启和关闭他们的资源消耗较大。这就是为什么我们现在要使用线程池。这个模型遵循着 1:1 线程映射,即一个Java线程映射到一个内核线程。当一个Java线程被创建时,相应的一个对应的核心线程也会被创建,用来执行线程代码。自此之后,平台线程模型的做法就延续到了今天。

1.1 当前Java线程模型有什么问题吗?

  • 只是对于操作系统内核线程的一个简单包装,真正的线程调度,还是由操作系统完成;
  • 因为线程的创建和销毁都需要系统内核完成,涉及用户态切换,资源消耗较大;
  • 本地线程需要保存他们的调用栈在内存中,大概2MB~20MB的预留空间。如果你有4GB内存,如果每个线程占用20MB内存,那么你就只能创建大概200个线程;
  • 因为本地线程是一种系统资源,加载一个新的本地线程大概需要1毫秒;
  • 上下文切换代价昂贵,需要一个到内核的系统调用;
  • 上面这些强制性的限制会限制线程创建的数量,同时会导致性能下降和过度的内存消耗。因为我们不能创建更多的线程;
  • 我们不能通过增加更多的线程来增应用规模,因为上下文切换和内存占用的代价高昂;

1.2 一个IO密集型应用的例子

考虑一台16GB内存的网络服务器。对于每个服务请求,都分配一个不同的线程。我们假设每个线程需要20MB内存空间,那么这台机器可以支持800个线程。当前,后端的API一般使用REST/SOAP调用方式,例如数据库操作和API信息转发这些IO密集型操作。由此可见,后端服务的主要是IO密集型而不是CPU密集型。

接着假设一下,一个IO操作需要100毫秒,请求执行(IO密集型)需要100毫秒,以及返回结果也需要100毫秒。同时,当每秒有800个请求时,线程数得到了最大容量。

让我们来计算一下单个请求的CPU占用时间

CPU时间 = 请求准备时间 + 返回结果准备时间
		= 0.1ms + 0.1ms
		= 0.2ms

对于800个请求呢?

800个线程的请求时间= 800 * 0.2ms
				= 160ms 

受限于我们的内存容量,我们只能创建800个请求,也就导致了我们CPU使用率并不高

CPU使用率=160ms / 1000ms
		= 16%

那么如何才能使CPU的利用率到达90%呢?

16% = 800个线程
90% = X个线程
X = 4500

但是我们当前因为内存的限制不能创建那么多的线程,除非我们能突破这个限制,拥有90G内存。

90G的内存是一个比较离谱的数字,所以说创建本地线程很明显不能充分利用硬件资源。

二. 虚拟线程

虚拟线程是一个Java线程的轻量级实现版本,最早于JDK19中出现,当前仍是预览状态,可以通过Jvm配置项开启。

虚拟线程是JVM项目loom的一部分

虚拟线程解决了传递和维护本地线程的瓶颈问题,同时可以用之编写高吞吐的并发应用,榨干硬件资源的潜力。

与本地线程不同,虚拟线程并不有操作系统控制,虚拟线程是一个有JVM管理的用户态线程。对比于本地线程的高资源占用,每个虚拟线程只需要几个字节的内存空间。这是的它更适合控制管理大量的用户访问,或者说处理IO密集型任务。

在创建虚拟线程的数量上几乎没有限制,甚至可以创建一百万个,因为虚拟线程并不需要来自内核的系统调用。

在虚拟线程如此轻量化的条件下,线程池不再成为必须品,只需要在需要的时候尽情创建虚拟线程就好。

虚拟线程和传统的本地线程操作完全兼容,例如本地线程变量,同步块,线程中断,等等。

2.1 虚拟线程如何工作

虚拟线程是一种轻量级(用户模式)线程,这种线程是由Java虚拟机调度,而不是操作系统。虚拟线程占用空间小,任务切换开销几乎可以忽略不计,因此可以极大量地创建和使用。总体来看,虚拟线程实现如下:

virtual thread = continuation + scheduler

虚拟线程会把任务(一般是java.lang.Runnable)包装到一个Continuation实例中:

  • 当任务需要阻塞挂起的时候,会调用Continuationyield操作进行阻塞
  • 当任务需要解除阻塞继续执行的时候,Continuation会被继续执行

Scheduler也就是执行器,会把任务提交到一个载体线程池中执行:

  • 执行器是java.util.concurrent.Executor的子类
  • 虚拟线程框架提供了一个默认的ForkJoinPool用于执行虚拟线程任务

下文会把carrier thread称为"载体线程",指的是负责执行虚拟线程中任务的平台线程,或者说运行虚拟线程的平台线程称为它的载体线程

操作系统调度系统线程,而Java平台线程与系统线程一一映射,所以平台线程被操作系统调度,但是虚拟线程是由JVM调度。JVM把虚拟线程分配给平台线程的操作称为mount(挂载),反过来取消分配平台线程的操作称为unmount(卸载):

  • mount操作:虚拟线程挂载到平台线程,虚拟线程中包装的Continuation栈数据帧或者引用栈数据会被拷贝到平台线程的线程栈,这是一个从堆复制到栈的过程
  • unmount操作:虚拟线程从平台线程卸载,大多数虚拟线程中包装的Continuation栈数据帧会留在堆内存中

这个mount -> run -> unmount过程用伪代码表示如下:

mount();
try {
    Continuation.run();
} finally {
    unmount();
}

JVM 使用 M:N 来完成虚拟线程与本地线程的映射。

2.2 虚拟线程和线程池的异同

看上去虚拟线程和线程池有类似之处,都是利用M个内核线程,完成N个任务,而避免平台线程频繁的创建和销毁。但他们是有本质区别的:

  • 线程池中的正在执行的任务只有到任务执行完成后,才会释放平台线程,如果某个任务在执行过程中发生IO阻塞也不会被挂起执行其他任务。
  • 虚拟线程中运行的代码调用阻塞I/O操作时,Java运行时会挂起虚拟线程,然后切换到另一个可执行的虚拟线程,直到它可以恢复为止。

三. 虚拟线程的使用

官方提供了以下四种方式创建虚拟线程:

  1. 使用 Thread.startVirtualThread() 创建
  2. 使用 Thread.ofVirtual() 创建
  3. 使用 ThreadFactory 创建

3.1 使用 Thread.startVirtualThread() 创建

public class VirtualThreadTest {
  public static void main(String[] args) {
    CustomThread customThread = new CustomThread();
    Thread.startVirtualThread(customThread);
  }
}

static class CustomThread implements Runnable {
  @Override
  public void run() {
    System.out.println("CustomThread run");
  }
}

3.2 使用 Thread.ofVirtual()创建

public class VirtualThreadTest {
  public static void main(String[] args) {
    CustomThread customThread = new CustomThread();
    // 创建不启动
    Thread unStarted = Thread.ofVirtual().unstarted(customThread);
    unStarted.start();
    // 创建直接启动
    Thread.ofVirtual().start(customThread);
  }
}
static class CustomThread implements Runnable {
  @Override
  public void run() {
    System.out.println("CustomThread run");
  }
}

3.3 使用 ThreadFactory 创建

public class VirtualThreadTest {
  public static void main(String[] args) {
    CustomThread customThread = new CustomThread();
    ThreadFactory factory = Thread.ofVirtual().factory();
    Thread thread = factory.newThread(customThread);
    thread.start();
  }
}

static class CustomThread implements Runnable {
  @Override
  public void run() {
    System.out.println("CustomThread run");
  }
}

Java虚拟线程 - 昕希 - 博客园 (cnblogs.com)

Java21手册(一):虚拟线程 Virtual Threads - 掘金 (juejin.cn)

Java 21 正式 GA,虚拟线程真的来了 - calvinit - 博客园 (cnblogs.com)

虚拟线程调度执行流程及原理 - 掘金 (juejin.cn)

虚拟线程 - VirtualThread源码透视 - throwable - 博客园 (cnblogs.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1319805.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

设计模式——责任链模式(行为模式)

引言 责任链模式是一种行为设计模式, 允许你将请求沿着处理者链进行发送。 收到请求后, 每个处理者均可对请求进行处理, 或将其传递给链上的下个处理者。 问题 假如你正在开发一个在线订购系统。 你希望对系统访问进行限制, 只允…

Rsyslog 8.1901.0 配置Tls模式加密传输log

需求背景:客户需要配置Tls加密模式上传log,老虎动手来搞搞, 推荐看下面的技术文档,官方的没有下面这个好用 https://rsyslog.readthedocs.io/en/latest/tutorials/tls_cert_summary.html 我们可以在github上下载官方文档编译后查看…

OCC 创建简单几何

使用 OCC 创建 正方体和圆柱体&#xff0c;并且通过布尔运算&#xff0c;切除正方体内的圆柱体&#xff0c;保存 stl 几何模型。 #include <iostream> #include <iomanip> #include "BRepPrimAPI_MakeCylinder.hxx" #include "BRepPrimAPI_MakeBox…

Elasticsearch的批量bulk 提交 写入的方式会有顺序问题吗?

Elasticsearch的分布式特性可能会导致写入操作的执行顺序与提交顺序稍有不同。在分布式环境中,Elasticsearch将数据分散到不同的节点上进行存储和处理,因此写入操作的执行顺序可能会受到网络延迟、负载均衡等因素的影响。 根源在于ES的分布式架构。如上图所示,客户端的命令首…

C++学习笔记(十五)

继承 继承是面向对象三大特性之一 有些类与类之间存在特殊的关系&#xff0c;例如下图中&#xff1a; 我们发现&#xff0c;定义这些类时&#xff0c;下级别的成员除了拥有上一级的共性&#xff0c;还有自己的特性。 这个时候我们就可以考虑利用继承的技术&#xff0c;减少重…

自动封箱打包码垛缠绕流水线案例

广西交投在某地新建工厂后&#xff0c;需要建设一条生产隧道灯&#xff0c;后段自动封箱打包码垛缠绕包装线。 凯隆包装在深入了解客户需求后&#xff0c;结合客户实际生产情况&#xff0c;为客户量身定制了集智能感应系统、产品自动折盖上下封箱、捆扎两道打包带、码垛机械臂自…

windows如何环境搭建属于自己的Zblog博客并发布上线公网访问?

文章目录 1. 前言2. Z-blog网站搭建2.1 XAMPP环境设置2.2 Z-blog安装2.3 Z-blog网页测试2.4 Cpolar安装和注册 3. 本地网页发布3.1. Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语 1. 前言 想要成为一个合格的技术宅或程序员&#xff0c;自己搭建网站制作网页是绕…

2024上半年软考别轻易尝试!先了未发布

最近几年&#xff0c;软件考试变得非常受欢迎&#xff01;不论你的专业、学历或工作时间如何&#xff0c;你都可以报名参加&#xff0c;而且通过考试取得证书还能用来抵扣个人所得税、评职称、帮助落户和参与招投标等等。 身边的朋友们纷纷参加软考&#xff0c;这让我也产生了…

自由撰稿人如何快速记录灵感?随手记录灵感素材的电子记事本

随着互联网的发展&#xff0c;催生了很多新的职业&#xff0c;其中“自由撰稿人”就是很多年轻人正在做的工作。而对于自由撰稿人来说&#xff0c;灵感是创作的源泉。然而&#xff0c;灵感往往稍纵即逝&#xff0c;如何快速记录下来&#xff0c;成为了我们面临的一大挑战。 那…

云原生基础入门概念

文章目录 发现宝藏云原生的概念云原生的关键技术为何选择云原生&#xff1f;云原生的实际应用好书推荐 发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【宝藏入口】。 云原生的概念 当谈及现…

Linux下Netty实现高性能UDP服务

前言 近期笔者基于Netty接收UDP报文进行业务数据统计的功能&#xff0c;因为Netty默认情况下处理UDP收包只能由一个线程负责&#xff0c;无法像TCP协议那种基于主从reactor模型实现多线程监听端口&#xff0c;所以笔者查阅网上资料查看是否有什么方式可以接收UDP收包的性能瓶颈…

虹科干货 | 克服端口顺序影响,使用 PCAN实现固定设备ID/通道分配

导读&#xff1a;多设备协同工作是常见的需求。然而&#xff0c;适配器的插入顺序可能会影响到设备的识别和访问&#xff0c;给系统管理带来不便。虹科PCAN能够进行固定设备ID/通道分配&#xff0c;确保设备不受适配器插入顺序的影响&#xff0c;提高系统的稳定性和可靠性。本文…

台积电大幅上调产能,12英寸晶圆产能提至每月5.5万片 | 百能云芯

台积电熊本新厂势如破竹&#xff0c;产能将迎来大幅提升&#xff0c;计划逐步达到每月5.5万片的12英寸晶圆产能。据了解&#xff0c;新厂的扩产计划将从2024年第4季开始实施。此次的战略举措不仅是对海外市场布局的重大突破&#xff0c;更是对日本半导体产业生态系统的积极推动…

TikTok矩阵玩法分享,如何建立TikTok矩阵?

矩阵是在 TikTok 上非常常见的营销方式&#xff0c;很多卖家想要通过矩阵化运营快速涨粉。但要想做好TikTok矩阵&#xff0c;需要有明确的方向和计划。下面东哥我将分享一些做TikTok矩阵的玩法&#xff0c;帮助大家更好地搭建自己的TikTok矩阵。 了解TikTok矩阵 TikTok矩阵是一…

深度学习笔记_6经典预训练网络LeNet-18解决FashionMNIST数据集

1、 调用模型库&#xff0c;定义参数&#xff0c;做数据预处理 import numpy as np import torch from torchvision.datasets import FashionMNIST import torchvision.transforms as transforms from torch.utils.data import DataLoader import torch.nn.functional as F im…

眼镜正确清洗方式有哪些?超声波眼镜清洗机推荐

随着人们对健康的重视&#xff0c;眼镜已经成为了日常生活中的必需品。然而&#xff0c;眼镜的清洗却常常被忽视。正确的清洗方式不仅可以保护眼睛健康&#xff0c;还可以延长眼镜的使用寿命。那么&#xff0c;眼镜的正确清洗方式有哪些呢&#xff1f;经常去眼镜店清洗眼镜的朋…

【PHP入门】1.2-常量与变量

-常量与变量- PHP是一种动态网站开发的脚本语言&#xff0c;动态语言特点是交互性&#xff0c;会有数据的传递&#xff0c;而PHP作为“中间人”&#xff0c;需要进行数据的传递&#xff0c;传递的前提就是PHP能自己存储数据&#xff08;临时存储&#xff09; 1.2.1变量基本概…

未来LED全彩显示屏的发展趋势研究

随着LED产品性能的不断提升&#xff0c;全彩 LED 显示屏在亮度、颜色改善和白平衡方面已经达到了比较理想的效果&#xff0c;完全可以满足户外全天候的环境条件。由于全彩 LED 显示屏在价格性能比上的优势&#xff0c;未来数年内有望逐渐取代传统的灯箱、霓虹灯、磁翻板等产品&…

如何在Eclipse中安装WindowBuilder插件,详解过程

第一步&#xff1a;找到自己安装eclipse的版本&#xff0c;在Help-关于eclipse里面&#xff0c;即Version 第二步&#xff1a;去下面这个网站找到对应的 link&#xff08;Update Site&#xff09;&#xff0c;这一步很重要&#xff0c;不然版本下载错了之后还得删除WindowBuil…

2023大湾区汽车创新大会在深圳坪山开幕

12月15日&#xff0c;2023大湾区汽车创新大会在深圳坪山开幕。 本次大会是由广东省科学技术厅、深圳市发展和改革委员会、深圳市工业和信息化局、中共深圳市新能源和智能网联汽车产业链委员会、坪山区人民政府指导&#xff0c;北京理工大学深圳汽车研究院、广东省大湾区新能源汽…