正点原子驱动开发BUG(一)--SPI无法正常通信

news2024/11/26 20:25:08

目录

    • 一、问题描述
    • 二、讲该问题的解决方案
    • 三、imx6ull的spi适配器驱动程序控制片选分析
        • 3.1 设备icm20608的驱动程序分析
        • 3.2 imx的spi适配器的驱动程序分析
    • 四、BUG修复测试
    • 五、其他问题

一、问题描述

使用正点的im6ull开发板进行spi通信驱动开发实验的时候,主机无法与从机进行正常通信。就算使用正点的例程,也无法正常通信。读不到从机寄存器中的值。以读取从机ID为例,例子为正点原子的例程基础上添加了几行printk用来打印信息:

void icm20608_reginit(void)
{
	u8 value = 1;
	u8 test = 1;
	
	icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_1, 0x80);		/* 复位 */
	mdelay(50);
	icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_1, 0x01);		/* 关闭睡眠 */
	mdelay(50);

	printk("ICM20608 ID = %#X\r\n", value);	
	value = icm20608_read_onereg(&icm20608dev, ICM20_WHO_AM_I);	 /* 这里读出来的ID不对 */
	printk("ICM20608 ID = %#X\r\n", value);	
	...
}
...
static unsigned char icm20608_read_onereg(struct icm20608_dev *dev, u8 reg)
{
	u8 data = 0;
	icm20608_read_regs(dev, reg, &data, 1);
	return data;
}
...
static int icm20608_read_regs(struct icm20608_dev *dev, u8 reg, void *buf, int len)
{

	int ret = -1;
	unsigned char txdata[1];
	unsigned char * rxdata;
	struct spi_message m;
	struct spi_transfer *t;
	struct spi_device *spi = (struct spi_device *)dev->private_data;
    
	t = kzalloc(sizeof(struct spi_transfer), GFP_KERNEL);	/* 申请内存 */
	if(!t) {
		return -ENOMEM;
	}

	rxdata = kzalloc(sizeof(char) * len, GFP_KERNEL);	/* 申请内存 */
	if(!rxdata) {
		goto out1;
	}

	/* 一共发送len+1个字节的数据,第一个字节为
	寄存器首地址,一共要读取len个字节长度的数据,*/
	txdata[0] = reg | 0x80;		/* 写数据的时候首寄存器地址bit8要置1 */			
	t->tx_buf = txdata;			/* 要发送的数据 */
    t->rx_buf = rxdata;			/* 要读取的数据 */
	t->len = len+1;				/* t->len=发送的长度+读取的长度 */
	spi_message_init(&m);		/* 初始化spi_message */
	spi_message_add_tail(t, &m);/* 将spi_transfer添加到spi_message队列 */
	ret = spi_sync(spi, &m);	/* 同步发送 */
	if(ret) {
		goto out2;
	}
	
    memcpy(buf , rxdata+1, len);  /* 只需要读取的数据 */

out2:
	kfree(rxdata);					/* 释放内存 */
out1:	
	kfree(t);						/* 释放内存 */
	
	return ret;
}

读ID失败,读出来ID是0,单纯是因为调用icm20608_read_onereg函数时会把返回值初始化为0,也就是根本没读到寄存器中内容

在这里插入图片描述

二、讲该问题的解决方案

首先直接说明问题所在:如果使用正点的spi驱动开发例程则设备树中spi适配器设备节点下的cs-gpios属性不能写成cs-gpio。当使用的属性名位cs-gpios的时候是由该spi适配器匹配的驱动程序来控制片选。

其实正点原子也在开发指南中说了:

2 行,设置当前片选数量为 1,因为就只接了一个 ICM20608。
第 3 行,一定要使用 “cs-gpios”属性来描述片选引脚,SPI 主机驱动就会控制片选引脚。
第 5 行,设置 IO 要使用的 pinctrl 子节点,也就是我们在示例代码 62.5.1.1 中新建的
pinctrl_ecspi3。

正点提供的linux源码中的documentation中也提到怎么编写对应设备树了,该文件位于linux源码位置/Documentation/devicetree/bindings/spi中:

* Freescale (Enhanced) Configurable Serial Peripheral Interface
  (CSPI/eCSPI) for i.MX

Required properties:
- compatible :
  - "fsl,imx1-cspi" for SPI compatible with the one integrated on i.MX1
  - "fsl,imx21-cspi" for SPI compatible with the one integrated on i.MX21
  - "fsl,imx27-cspi" for SPI compatible with the one integrated on i.MX27
  - "fsl,imx31-cspi" for SPI compatible with the one integrated on i.MX31
  - "fsl,imx35-cspi" for SPI compatible with the one integrated on i.MX35
  - "fsl,imx51-ecspi" for SPI compatible with the one integrated on i.MX51
- reg : Offset and length of the register set for the device
- interrupts : Should contain CSPI/eCSPI interrupt
- fsl,spi-num-chipselects : Contains the number of the chipselect
- cs-gpios : Specifies the gpio pins to be used for chipselects.
- clocks : Clock specifiers for both ipg and per clocks.
- clock-names : Clock names should include both "ipg" and "per"
See the clock consumer binding,
	Documentation/devicetree/bindings/clock/clock-bindings.txt
- dmas: DMA specifiers for tx and rx dma. See the DMA client binding,
		Documentation/devicetree/bindings/dma/dma.txt
- dma-names: DMA request names should include "tx" and "rx" if present.

Example:

ecspi@70010000 {
	#address-cells = <1>;
	#size-cells = <0>;
	compatible = "fsl,imx51-ecspi";
	reg = <0x70010000 0x4000>;
	interrupts = <36>;
	fsl,spi-num-chipselects = <2>;
	cs-gpios = <&gpio3 24 0>, /* GPIO3_24 */
		   <&gpio3 25 0>; /* GPIO3_25 */
	dmas = <&sdma 3 7 1>, <&sdma 4 7 2>;
	dma-names = "rx", "tx";
};

但是我太信任正点提供的linux源码了,直接用了正点提供的出厂linux源码,这个出厂linux源码中的READ_ME解释如下:

说明:
1、使用此uboot和linux源码可以编译得到正点原子I.MX6U出货时的uboot和Linux固件。兼容正点原子所有RGB屏,板子上所有功能也相应调试好。直接按【正点原子】I.MX6U用户快速体验Vx.x.pdf文档编译出来使用!
2、驱动指南也提及过编译这里的源码,只是教学编译体验。

问题答疑:
1、看到1、例程源码\10、开发板教程对应的uboot和linux源码这里还有一份正点原子的uboot和linux源码,为什么会有两份源码?
答:1、例程源码\10、开发板教程对应的uboot和linux源码是正点原子驱动指南做驱动实验、移植uboot和linux所用的源码。而出厂源码则是用于出货所使用,客户无需再调试。直接编译使用!

2、为什么要和出厂源码分开?
答:由于多种原因,出厂使用的源码不能与驱动指南所使用的源码同时进行。出厂源码会随时修复bug或者添加新的驱动以兼容正点原子的其他模块。

3、那我可不可以这么理解:出厂源码是给客户直接用在产品上使用,而教程源码则是用于初学者用于学习驱动和移植uboot和Linux上使用?
答:恩,可以这么理解。因为出厂源码是几乎无需再调试了,适用正点原子的ALPHA和Mini开发板,给一些快速上手的客户使用!而教程源码则是用于学习或者自己开发使用!

他说的是出厂源码是几乎无需再调试了,适用于正点原子的ALPHA开发板可以直接上手用,我就直接用了。但其实他的设备树是这么写的:

&ecspi3 {
        fsl,spi-num-chipselects = <1>;
        cs-gpio = <&gpio1 20 GPIO_ACTIVE_LOW>;		/* 必须使用cs-gpio属性来描述片选引脚(如果你想让spi适配器驱动程序来设置片选的话) */
        pinctrl-names = "default";
        pinctrl-0 = <&pinctrl_ecspi3>;	/* 难不成是因为这里是pinctrl-0,这个0正好对应这第0通道,即icm20608 */
        status = "okay";

	spidev: icm20608@0 {
	compatible = "alientek,icm20608";
        spi-max-frequency = <8000000>;
        reg = <0>;
    };
};

打眼一看内容跟正点的驱动指南中提到的都一样,所以我就觉得没啥问题,但是实际上可以看到,有一个属性名写成了cs-gpio而不是cs-gpios,这是与正点的spi驱动开发例程不匹配的。为什么不匹配?这得分析分析适配器的驱动程序

三、imx6ull的spi适配器驱动程序控制片选分析

3.1 设备icm20608的驱动程序分析

首先说明问题:问题出现在厂商编写的spi适配器驱动程序上。但在此之前,我们要先来看看我们的设备驱动,也就是正点使用的设备icm20608的驱动程序中的一个函数:spi_setup()

static int icm20608_probe(struct spi_device *spi)
{
	...
	/*初始化spi_device */
	spi->mode = SPI_MODE_0;	/*MODE0,CPOL=0,CPHA=0*/
	spi_setup(spi);
	icm20608dev.private_data = spi; /* 设置私有数据 */

	/* 初始化ICM20608内部寄存器 */
	icm20608_reginit();		
	return 0;
}

该函数传入一个struct spi_device类型的变量。正点驱动对这个函数一带而过,只是说这个函数必须得有。其实就是这个函数中出了问题。该函数位于drivers/spi/spi.c中,我只列出源码中与错误相关的部分:

int spi_setup(struct spi_device *spi)
{
	unsigned	bad_bits, ugly_bits;
	int		status = 0;
	...
	spi_set_cs(spi, false);

	if (spi->master->setup)
		status = spi->master->setup(spi);
	...
	return status;
}
...
...
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

	if (spi->cs_gpio >= 0)
		gpio_set_value(spi->cs_gpio, !enable);
	else if (spi->master->set_cs)
		spi->master->set_cs(spi, !enable);
}

spi_setup调用的spi_set_cs函数中可以看到,如果spi->cs_gpio >= 0,函数调用gpio_set_value(spi->cs_gpio, !enable)来设置某个goio口的电平,比如在正点的教程中如果要选中icm20608外设,那么就要设置gpio1_20这个gpio口的电平,所以应该出现的情况是spi->cs_gpio = 20。如果没满足第一个if,就会判断第二个else if,这个master->set_cs根本没设置,所以也用不到。

那么spi->cs_gpio是在哪里设置的呢?在spi.c文件中有这么一个函数spi_add_device(),截取出相关的内容:

int spi_add_device(struct spi_device *spi)
{
	static DEFINE_MUTEX(spi_add_lock);
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
	int status;

	/* Chipselects are numbered 0..max; validate. */
	if (spi->chip_select >= master->num_chipselect) {
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
			master->num_chipselect);
		return -EINVAL;
	}
	...
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];
	...
}

可以看到在最后一个if中,如果master->cs_gpios不为0,那么就会设置spi->cs_gpio = master->cs_gpios[spi->chip_select]。这个spi->chip_select相当于master->cs_gpios这个数组的索引(master->cs_gpioscs_gpios的是struct spi_master结构体下的一个成员变量,为一个int类型的指针,其实就是一个数组),这个会在下一部分提到。

spi->chip_select又是在哪设置的呢?看一下spi.c文件中的of_register_spi_device()函数:

#if defined(CONFIG_OF)
static struct spi_device *
of_register_spi_device(struct spi_master *master, struct device_node *nc)
{
	struct spi_device *spi;
	int rc;
	u32 value;

	/* Alloc an spi_device */
	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "spi_device alloc error for %s\n",
			nc->full_name);
		rc = -ENOMEM;
		goto err_out;
	}

	/* Select device driver */
	rc = of_modalias_node(nc, spi->modalias,
				sizeof(spi->modalias));
	if (rc < 0) {
		dev_err(&master->dev, "cannot find modalias for %s\n",
			nc->full_name);
		goto err_out;
	}

	/* Device address */
	rc = of_property_read_u32(nc, "reg", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->chip_select = value;
	...
	/* Register the new device */
	rc = spi_add_device(spi);
	if (rc) {
		dev_err(&master->dev, "spi_device register error %s\n",
			nc->full_name);
		goto err_out;
	}

	return spi;
}

该函数会调用of_property_read_u32()函数解析设备树中的spi设备的reg属性值,并赋值给变量value而在设备树中这个值中填入的正是片选值,然后设置spi->chip_select = value,并调用刚刚提到的spi_add_device()函数。该函数会在of_register_spi_devices()函数中调用:

static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;

	if (!master->dev.of_node)
		return;

	for_each_available_child_of_node(master->dev.of_node, nc) {
		spi = of_register_spi_device(master, nc);
		if (IS_ERR(spi))
			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
				nc->full_name);
	}
}

就相当于可能会注册很多个spi设备,所以用个for循环来一个一个注册。这个注册很多个spi设备的函数会在spi_register_master()函数中被调用,而这个函数是跟spi适配器有关。

可以看到,最终的最终,spi->cs_gpio其实是跟master->cs_gpios有关系,并且上述函数的调用的源头也是spi_register_master()函数。所以必须得去看spi适配器的驱动函数了。但在此之前先来看一下当设备树中写的属性为cs-gpio时出现的情况,我们在驱动程序中编写如下测试代码:

static int icm20608_probe(struct spi_device *spi)
{
	...
	/*初始化spi_device */
	spi->mode = SPI_MODE_0;	/*MODE0,CPOL=0,CPHA=0*/
	spi_setup(spi);
	printk("chip select:%d\r\n", spi->chip_select);
	printk("cs gpio:%d\r\n", spi->cs_gpio);
	icm20608dev.private_data = spi; /* 设置私有数据 */
	...
	return 0;
}

注册编译出来的ko模块的时候结果如下:

在这里插入图片描述
可以看到,spi->chip_select正常获取到了设备树中spi设备reg属性的值,但是spi->cs_gpio却没有获取到我们想要获取的gpio号20吗,而是-2。至于为什么,需要看下一部分。

3.2 imx的spi适配器的驱动程序分析

在第二部分中列出的设备树代码中只是列出了引用ecspi3时的一些修改,该设备真正定义在imx6ull.dtsi下:

ecspi3: ecspi@02010000 {
	#address-cells = <1>;
	#size-cells = <0>;
	compatible = "fsl,imx6ul-ecspi", "fsl,imx51-ecspi";
	reg = <0x02010000 0x4000>;
	interrupts = <GIC_SPI 33 IRQ_TYPE_LEVEL_HIGH>;
	clocks = <&clks IMX6UL_CLK_ECSPI3>,
			<&clks IMX6UL_CLK_ECSPI3>;
	clock-names = "ipg", "per";
	dmas = <&sdma 7 7 1>, <&sdma 8 7 2>;
	dma-names = "rx", "tx";
	status = "disabled";
};

其中的属性compatible = "fsl,imx6ul-ecspi", "fsl,imx51-ecspi";,根据这个去找对应的驱动程序,找到的驱动程序为drivers/spi/spi-imx.c,找到其.probe函数,并列出其与问题相关的部分:

static int spi_imx_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	const struct of_device_id *of_id =
			of_match_device(spi_imx_dt_ids, &pdev->dev);
	struct spi_imx_master *mxc_platform_info =
			dev_get_platdata(&pdev->dev);
	struct spi_master *master;
	struct spi_imx_data *spi_imx;
	struct resource *res;
	int i, ret, num_cs, irq;

	if (!np && !mxc_platform_info) {
		dev_err(&pdev->dev, "can't get the platform data\n");
		return -EINVAL;
	}

	ret = of_property_read_u32(np, "fsl,spi-num-chipselects", &num_cs);	/* 获取到num_cs为1 */
	if (ret < 0) {
		if (mxc_platform_info)
			num_cs = mxc_platform_info->num_chipselect;
		else
			return ret;
	}

	master = spi_alloc_master(&pdev->dev,
			sizeof(struct spi_imx_data) + sizeof(int) * num_cs);	/* 这个函数会把num_chipselect初始化为1 */
	if (!master)
		return -ENOMEM;

	...
	spi_imx->bitbang.master = master;

	for (i = 0; i < master->num_chipselect; i++) {
		int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
		if (!gpio_is_valid(cs_gpio) && mxc_platform_info)	/* gpio_is_valid: asm-generic/gpio.h return 1 or 0*/
			cs_gpio = mxc_platform_info->chipselect[i];

		spi_imx->chipselect[i] = cs_gpio;
		if (!gpio_is_valid(cs_gpio))
			continue;

		ret = devm_gpio_request(&pdev->dev, spi_imx->chipselect[i],
					DRIVER_NAME);
		if (ret) {
			dev_err(&pdev->dev, "can't get cs gpios\n");
			goto out_master_put;
		}
	}

	spi_imx->bitbang.chipselect = spi_imx_chipselect;
	spi_imx->bitbang.setup_transfer = spi_imx_setupxfer;
	spi_imx->bitbang.txrx_bufs = spi_imx_transfer;
	spi_imx->bitbang.master->setup = spi_imx_setup;
	spi_imx->bitbang.master->cleanup = spi_imx_cleanup;
	spi_imx->bitbang.master->prepare_message = spi_imx_prepare_message;
	spi_imx->bitbang.master->unprepare_message = spi_imx_unprepare_message;
	spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
	...
	master->dev.of_node = pdev->dev.of_node;
	ret = spi_bitbang_start(&spi_imx->bitbang);
	...
	return ret;
}

并会在spi_bitbang_start函数中调用了spi_register_master()函数,也就是上一部分提到的很多函数的源头,向内核注册spi_master设备,该函数位于drivers/spi/spi-bitbang.c中,列出相关部分:

int spi_bitbang_start(struct spi_bitbang *bitbang)
{
	struct spi_master *master = bitbang->master;
	int ret;

	if (!master || !bitbang->chipselect)
		return -EINVAL;

	spin_lock_init(&bitbang->lock);
	...
	ret = spi_register_master(spi_master_get(master));
	if (ret)
		spi_master_put(master);

	return 0;
}

接下来我们就可以看一下spi_register_master()这个函数了。上一部分讲的函数主要作用是帮助注册spi设备,而这个函数的作用是向内核注册spi适配器设备,该函数同样位于spi.c中,只列出与我们的bug相关的代码:

int spi_register_master(struct spi_master *master)
{
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
	struct device		*dev = master->dev.parent;
	struct boardinfo	*bi;
	int			status = -ENODEV;
	int			dynamic = 0;

	if (!dev)
		return -ENODEV;

	status = of_spi_register_master(master);
	...
	/* Register devices from the device tree and ACPI */
	of_register_spi_devices(master);		/* 这里会调用of_register_spi_device */
	acpi_register_spi_devices(master);
done:
	return status;
}

关键函数就是of_spi_register_master()这个函数,该函数同样定义在spi.c中,其源码如下:

#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
	int nb, i, *cs;
	struct device_node *np = master->dev.of_node;
	printk("in of_spi_register_master?\r\n");  /* 我自己加的test,判断一下CONFIG_OF这个宏定义是否开启了 */
	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
	master->num_chipselect = max_t(int, nb, master->num_chipselect);

	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
		return 0;
	else if (nb < 0)
		return nb;

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

	for (i = 0; i < master->num_chipselect; i++)
		cs[i] = -ENOENT;

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}

从这个函数中可以看出,该函数首先调用of_gpio_named_count来统计cs-gpios这个属性中设置的gpio的个数。很不幸,我们在设备树中把属性写成了cs-gpio,所以该函数找不到节点,就会返回负值。然后该函数将master->num_chipselect设定为了master->num_chipselectnb这两个变量中的最大值,master->num_chipselect这个变量会在.probe函数中通过读取设备树中spi适配器设备节点中的"fsl,spi-num-chipselects"属性来初始化。根据设备树来看,该属性的值被设为了1。

前文提到,cs_gpios是一个int类型的指针,所以在该函数中将他指向了一段使用devm_kzalloc()函数分配的内存,可以理解为现在cs_gpios就是一个数组了。

然后该函数调用两个for循环,来对master->cs_gpios这个数组进行初始化,因为master->num_chipselect为1,所以第一个for循环正常执行,csp[i] = -ENOENT而这个宏定义ENOENT恰恰就是2。并且第二个for不会执行,因为他根本找不到"cs-gpios"这个属性(我们写的设备树烧了一个s)。

所以综上,master->cs_gpios全被初始化为了-2,导致第一部分提到的spi设备结构体中的变量(即spi->cs_gpio)也为-2,从而导致在调用gpio_set_value()函数来对spi->cs_gpio这个gpio号的时候没有正确设置。

四、BUG修复测试

前面已经说明了,把设备树中的属性改为"cs-gpios"应该就行了:

&ecspi3 {
        fsl,spi-num-chipselects = <1>;
        cs-gpios = <&gpio1 20 GPIO_ACTIVE_LOW>;		/* 必须使用cs-gpio属性来描述片选引脚,可能spi适配器驱动里用的就是这个名称"cs-gpio" */
        pinctrl-names = "default";
        pinctrl-0 = <&pinctrl_ecspi3>;	/* 难不成是因为这里是pinctrl-0,这个0正好对应这第0通道,即icm20608 */
        status = "okay";

	spidev: icm20608@0 {
	compatible = "alientek,icm20608";
        spi-max-frequency = <8000000>;
        reg = <0>;
    };
};

然后重新编译设备树,测试结果如下:
在这里插入图片描述
gpio口获取也对了,也能正确读到icm20608的设备id了。

五、其他问题

其实有个问题不知道有没有注意到,就是在分析驱动程序的时候出现了一个#ifdef CONFIG_OF,上述很多函数都依赖于这个宏必须得被定义了才能起作用。这个宏我根本没找到在哪里定义的,如果没定义这个宏,那之前的分析就白费了,所以找了一个依赖于这个宏的函数进行测试:

#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
	int nb, i, *cs;
	struct device_node *np = master->dev.of_node;
	printk("in of_spi_register_master?\r\n");  /* 我自己加的test,判断一下CONFIG_OF这个宏定义是否开启了 */
	...
	return 0;
}

然后重新编译内核,再次启动内核,启动过程中打印结果如下:

在这里插入图片描述
看来这个宏确实是定义了,但是定义在哪个位置我真没找到,有知道的老哥可以教一下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1319186.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring Boot 3 + Vue 3 整合 WebSocket (STOMP协议) 实现实时通信

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

VSCode 常用的快捷键和技巧系列(2)

一、如何让VSCode工程树显示图标 第一步&#xff1a;安装 快捷键 CtrlP &#xff0c;输入 ext install vscode-icons &#xff0c;然后点击安装插件 第二步&#xff1a;配置 安装成功后&#xff0c;点击Reload重新加载。 然后配置&#xff0c;当前图标使用VsCode-Icons Go…

Harmony4.0鸿蒙应用开发初识+实践小案例

Harmony4.0鸿蒙应用开发初识实践小案例 一、华为的“18N”产品战略 在华为HarmonyOS及全场景新品发布会上&#xff0c;华为介绍了华为“18N”三圈层全场景智慧生态解决方案&#xff0c;从而打造面向未来的全新生态&#xff0c;其中&#xff0c;1指的是手机&#xff0c;8指的是…

【LeetCode刷题笔记(8-1)】【Python】【接雨水】【动态规划】【困难】

文章目录 引言接雨水题目描述提示 解决方案1&#xff1a;【动态规划】结束语 接雨水 引言 编写通过所有测试案例的代码并不简单&#xff0c;通常需要深思熟虑和理性分析。虽然这些代码能够通过所有的测试案例&#xff0c;但如果不了解代码背后的思考过程&#xff0c;那么这些代…

python:import自定义包或py文件时,pyCharm正常但终端运行提示ModuleNotFoundError: No module named错误

问题 示例项目引用items.py&#xff0c;项目在pycharm开发工具中可以正常运行&#xff0c;但使用终端直接运行会报错ModuleNotFoundError: No module named。如下图。 原因 pycharm开发工具运行正常&#xff0c;说明目录和引用模块是没问题的。问题在于终端的运行环境只搜索文…

LLM - 大模型速递之 Yi-34B 入门与 LoRA 微调

一.引言 目前国内大部分开源模型都集中在 7B、13B&#xff0c;而国外开源模型则是集中在 7B、13B、70B 的尺寸范围&#xff0c;算法开发很需要一个介于 13B-70B 的大模型&#xff0c;弥补 13B 模型能力不足和 70B 模型显卡不够的空档。虽然 LLaMA-1-33B 有一些衍生的 Chinese …

Golang清晰代码指南

发挥易读和易维护软件的好处 - 第一部分 嗨&#xff0c;开发者们&#xff0c;清晰的代码是指编写易于阅读、理解和维护的软件代码。它是遵循一组原则和实践&#xff0c;优先考虑清晰性、简单性和一致性的代码。清晰的代码旨在使代码库更易管理&#xff0c;减少引入错误的可能性…

Go语言并发编程:死锁预防的性能优化之旅

文章目录 引言:Go并发编程的挑战与机遇Go并发的特点并发编程的挑战死锁对性能的影响文章概览死锁基础:原因、类型和识别死锁的定义死锁产生的原因死锁的类型识别死锁的方法代码示例:简单的死锁3. 预防策略:编写无死锁的Go代码理解并正确使用锁合理使用通道和goroutines侦测…

C# 命令行参数解析库示例

写在前面 在日常开发中&#xff0c;我们经常会用到命令行参数&#xff0c;比如cmd下的各种指令&#xff1b;还有C#的控制台类型的项目&#xff0c;在默认入口Main函数中&#xff0c;那个args参数&#xff0c;就是有系统传入到程序进程的命令行参数&#xff1b;在传入的参数相对…

✺ch3——数学基础

目录 3D坐标系和点矩阵单位矩阵转置矩阵逆矩阵逆转置矩阵矩阵的运算矩阵加法()矩阵乘法() 常用的变换矩阵平移矩阵缩放矩阵旋转矩阵透视矩阵正射投影矩阵LookAt矩阵 向量加法和减法点积叉积 局部空间和世界空间——模型矩阵M视觉空间和合成相机——模型-视图矩阵MV用GLSL函数构…

机器学习算法---异常检测

类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统计学检验箱…

RTOS队列的写入与读出

我们在stm32f103c8t6单片机上验证RTOS队列的写入与读出&#xff0c;利用stm32cube进行RTOS的配置。在选择TIM2当做RTOS的时钟&#xff0c;裸机的时钟源默认是 SysTick&#xff0c;但是开启 FreeRTOS 后&#xff0c;FreeRTOS会占用 SysTick &#xff08;用来生成1ms 定时&#x…

flask简单应用-1

目标&#xff1a; 做一个搜索网页&#xff0c;搜索当前路径下是否含有指定关键字的文件&#xff0c;如果有就列出来&#xff0c;没有返回消息 第一步&#xff1a;我们需要先显示一个搜索页面&#xff0c;页面上需要有一个可以输入的对话框&#xff0c;一个按钮执行搜索 建立ht…

Vue3-05-计算属性使用详解

计算属性简介 计算属性的函数是 computed()。计算属性可以帮助我们处理有复杂逻辑的响应式数据的渲染&#xff0c; 从而代替 模板表达式 的写法。比如 &#xff1a; 一个数值类型的数组对象&#xff0c;我们希望页面展示的只有 偶数。 此时&#xff0c;就可以通过 计算属性 来…

02.Git常用基本操作

一、基本配置 &#xff08;1&#xff09;打开Git Bash &#xff08;2&#xff09;配置姓名和邮箱 git config --global user.name "Your Name" git config --global user.email "Your email" 因为Git是分布式版本控制工具&#xff0c;所以每个用户都需要…

手拉手EasyExcel极简实现web上传下载(全栈)

环境介绍 技术栈 springbootmybatis-plusmysqleasyexcel 软件 版本 mysql 8 IDEA IntelliJ IDEA 2022.2.1 JDK 1.8 Spring Boot 2.7.13 mybatis-plus 3.5.3.2 EasyExcel是一个基于Java的、快速、简洁、解决大文件内存溢出的Excel处理工具。 他能让你在不用考虑性…

【PostgreSQL】从零开始:(十三)PostgreSQL-SQL语句操作架构(模式) Schema

Schema概述 PostgreSQL 数据库集群包含一个或多个命名数据库。角色和一些其他对象类型在整个集群中共享。与服务器的客户端连接只能访问单个数据库中的数据&#xff0c;该数据库在连接请求中指定。 用户不一定有权访问集群中的每个数据库。共享角色名称意味着不能在同一集群中…

IDEA2023 + spring cloud 工程热部署设置方法

基于spring cloud 工程进行热部署 &#xff0c;实现每次修改工程源文件&#xff0c;后台自动启动&#xff0c;方便开发测试工作。具体分为5步骤即可&#xff1a; 1、修改工程的pom文件&#xff0c;增加adding devtools 工具包。 <dependency> <groupId>org.s…

1264. 动态求连续区间和(树状数组---某个位置加上一个数/求在线(动态)前缀和/蓝桥杯)

题目&#xff1a; 输入样例&#xff1a; 10 5 1 2 3 4 5 6 7 8 9 10 1 1 5 0 1 3 0 4 8 1 7 5 0 4 8输出样例&#xff1a; 11 30 35 树状数组&#xff1a; 代码&#xff1a; #include<cstdio> #include<iostream> using namespace std;const int N100010; int n,…

【elementui笔记:el-table表格的输入校验】

之前做得比较多的校验是在el-form表单里做的&#xff0c;但有时也遇到&#xff0c;需要在table内输入数据&#xff0c;然后校验输入的数据是否符合要求的情况。因此记录一下。 思路&#xff1a; 1.需要借助el-form的校验&#xff0c;el-table外层嵌套一层el-form&#xff0c;使…